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Abstract

Subsonic general configuration aircrafts’ unsteady longitudinal
aerodynamic stability derivatives can be estimated using finite el-
ement methodology based on the Doublet Lattice Method (DLM),
the Slender Body Theory (SBT) and the Method of Images (MI).
Applying this methodology, software DERIV is developed. The
obtained results from DERIV are compared to NASTRAN ex-
amples HA21A and HA75H. A good agreement is achieved.
Keywords: unsteady aerodynamics, stability derivatives

1 Introduction

During the 60s, as the computer aerodynamics was just starting to de-
velop, the idea to make use of the lifting surfaces theories for estimation
of aerodynamic derivatives was proposed [1]. All the theories assume
the linear-small amplitude, sinusoidal motion.

To the present day, especially for aircrafts’ flutter clearance a lot of
methods are developed for accuracy steady and determination of oscilla-
tory aerodynamic loads. Nowadays these loads of general configuration
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are calculated using the vortex and doublet-lattice finite elements meth-
ods. The chord wise and span wise load distribution on lifting surfaces
and longitudinal (z-vertical and y-lateral) load distribution on bodies
can be calculated for configurations that consist of an assemblage of
lifting surfaces (with arbitrary plan form and dihedral, with or with-
out control surfaces) and bodies (with variable circular or elliptic cross
sections).

Aerodynamic finite element methods are based on matrix equation:

{w} = [A] {∆Cp} ; ∆Cp =
plower − pupper

ρU2/2
(1)

In Eq.(1) w is column matrix of downwashes (positive down), [A]
is square matrix of aerodynamic influence coefficients, and ∆Cp is col-
umn matrix of dimensionless lifting surface coefficient. The main flow
is defined by density ρ and speed U of free stream. Aerodynamic el-
ements are defined by general configuration geometry in the Cartesian
coordinate system. The motion of general configuration is defined by
degrees of freedom at aerodynamic grid points. Aerodynamic elements
are trapezoidal boxes representing the lifting surfaces, ring slender bod-
ies elements, and ring image elements representing slender body and
interference influence.

The DLM is used for interfering lifting surfaces in subsonic flow. As
DLM is based on the small-disturbance, linear aerodynamics, all lifting
surfaces are assumed to nearly lie parallel to main flow. Each interfer-
ing surface is divided into boxes. Boxes are small thick less (flat palate)
trapezoidal lifting elements. The boxes are arranged to form strips.
Strips lay parallel to free stream and the surface edges. Fold and hinge
lines lie on the box boundaries. In order to reduce problem size, symme-
try option is used. Unknown pressure ∆Cp on each box is represented
by a line of pressure doublet at quarter chord of the box. Known down-
wash w collocation (control) point lies at the mid span of the box three
quarter chord. DLM aerodynamic elements are represented on Fig.1.

SBT is used to represent lifting characteristics for isolated bod-
ies. SBT assumes that the flow near body is quasi-steady and two-
dimensional. Bodies can have z-vertical, y-lateral or both degrees of
freedom. Slender bodies of general configuration are divided slender
body elements (axial velocity doublets) as shown on Fig.2. Slender body
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elements are used to account aerodynamic loading due to motion of the
body.

The subsonic wing-body interference is based on the superposition of
singularities and their images described in the method of images (MI).
Each slender body is substituted by cylindrical interference body, which
circumscribes the slender body. The interference body is divided in in-
terference elements, as shown on Fig.3. The interference element is used
to include in calculation influence of the other bodies and lifting sur-
faces on the body, to which element belongs. Each interference element
is substituted by z-vertical and y-lateral modified acceleration potential
pressure doublets. The primary wing-body interference is accounted for
by a system of images of DLM vortices and a system of doublets within
each interference element. There is no influence between two interference
elements which belong to the same interference body.

Figure 1:

Based on the above described, matrix Eq.(1) can be written in form:
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Figure 2:

In Eq.(2):

• Ar,s is aerodynamic influence matrix element, which includes part
of normal wash of unit strength r-the singularity on s-the finite
element. Indexes for the singularities and the aerodynamic finite
elements are: w-lifting surface, i-image and s-slender body.

• w̄w is column of the known downwashes on lifting surface elements
in the collocation (control) points normalized by free stream speed
U .

• w̄i = {0} is column of zero downwashes on the image elements.

• w̄s is column of the known downwashes on the slender body ele-
ments in axis mid points normalized by free stream speed U .

• ∆Cp is unknown column of the strengths of lifting surface singu-
larities (acceleration potential pressure doublets).
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Figure 3:

• µi is unknown column of the strengths of images singularities
(modified acceleration potential pressure doublets).

• µs is known column of the strengths of slender body singularities
(velocity potential doublets).

The strength of slender body velocity potential doublet of unit length
is known from two-dimensional theory. For j - the slender body element,
described by midpoint (ξ, η, ζ) and radius Rj, follows:

µs,j(ξ, η, ζ, ω) = 2πR2
jUw̄s,j(ξ, η, ζ, ω).

In the above relation ω is the angular frequency of the harmonically
motion of slender body. As each slender body has z-vertical, y-lateral
or both degrees of freedom, generally each j - the element of the body
is substituted by the two velocity potential doublets, acting on the real
element’s axial length ∆ξj:

µ
(y)
s,j = 2πR2

jUw̄
(y)
s,j ∆ξj ; µ

(z)
s,j = 2πR2

jUw̄
(z)
s,j ∆ξj. (3)
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If boundary values on slender bodies are known, using Eq.(3) the
strength of the slender bodies’ singularities can be calculated. Substi-
tuting these obtained strengths in Eq.(2), it follows:

{
w̄w −∆w̄w

−∆w̄i

}
=

[
Aw,w Aw,i

Ai,w Ai,i

]{
∆Cp
µi

}
. (4)

Here w̄w−∆w̄w and −∆w̄i are modification of normalized down washes
on lifting surface elements and images caused by the known slender
body singularities. Eq.(4) represents a system of linear equations with
complex coefficients. The system can be solved in terms of the known
boundary conditions for the unknowns ∆Cp, µ

(y)
i and µ

(z)
i .

Lifting surface pressure distribution ∆Cp can be integrated to give
the lifting surface contributions to the aerodynamic parameters of inter-
est (aerodynamic coefficients, generalized forces, etc.).

The forces on the bodies are determined in more complicated man-
ner. Every lifting surface box ∆Cp, every image µ

(y)
i and µ

(z)
i , every

slender body axis doublet µ
(y)
s and µ

(z)
s affects the force distribution on

bodies. It is known from unsteady computational aerodynamics that ev-
ery singularity can be obtained from the point pressure doublet whose
normal wash flow field is obtained from the standard lifting surfaces
kernel K. Pressure coefficient Cp(x, y, z) at point (x, y, z) on the body
surface due to point pressure doublet of the strength ∆Cp(ξ, η, ζ)∆A in
point (ξ, η, ζ) can be obtained by relation:

Cp(x, y, z) =
∆Cp(ξ, η, ζ)∆A

4π
eιλMa(x−ξ)

(
e−ιλR

R

)
. (5)

In the above equation:

• Ma is free stream Mach number,

• R2 = (x− ξ)2 + (1−Ma2) [(y − η)2 + (z − ζ)2],

• λ = ωMa
U(1−Ma2)

and

• ~N is unit vector in the direction of the doublet.

The term ∆Cp(ξ, η, ζ)∆A is the total pressure doublet strength of lifting
surface box of area ∆A in which lifting pressure coefficient is ∆Cp(ξ, η, ζ).
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An equivalent point pressure doublet is assumed to act in 1
4
-mid chord

box’s point of lifting surface element. The finite length of body dou-
blet ∆ξ is obtained by two point pressure doublets per each body ele-
ment. The first is located at the leading edge of the element and has

the strength µe
ιω∆ξ
2U , and the second at the trailing edge of the strength

−µe−
ιω∆ξ
2U .

Equation (5) must be integrated over the whole body surface to
obtain forces acting on the body due to point doublet located at (ξ, η, ζ).
The effects of all point pressure doublets then must be summed to obtain
total forces on the body. The detail integration of body force is given in
[2].

The main reason for the above described numerical development was
the need for accuracy software for aircrafts’ flutter clearance. For, in ad-
vance, known normal modes of the aircraft’s structure the unsteady load
distributions on general configuration can be calculated. This possibil-
ity can be used to calculate (estimate) steady and unsteady stability
aircraft’s aerodynamic derivatives. In this case, input data are a few of
special rigid body motions of aircraft structure. Definitions of these rigid
body motions depend on the case if one needs longitudinal or lateral air-
craft’s aerodynamic derivatives. In this paper, longitudinal derivatives
are analyzed.

Based on the above short description of the used singularities, soft-
ware package UNAD was developed, used for calculation of unsteady
aerodynamic forces of general configuration for flutter calculation. Named
package has been modified and package DERIV is developed for steady
and unsteady longitudinal aerodynamic derivative calculation of gen-
eral configuration. Developed software DERIV is tested on NASTRAN
examples HA21A and HA75H.

According to the author‘s knowledge in S&CG, projecting teams are
using semiempirical method based on NASA’s DATCOM software for
estimation of unsteady aerodynamic derivatives of general configuration.
Software DERIV is the first domestic package that can give steady and
unsteady derivatives based on the integration of unsteady aerodynamic
loads over the whole aicraft’s configuration.
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2 Short theoretical outlook

Generally, aircraft’s lift and pitch moment coefficients can be represented
by the MacLaurent series:

Cz = Cz0 + Czαα + Czα̇
α̇l

2U
+ Czq

θ̇l

2U
+ Czα̈

α̈l2

4U2
+ Czq̇

θ̈l2

4U2
+

∑

all controls

(Czδδ + Czδ̇

δ̇l

2U
+ · · · ) + · · · , (6)

Cm = Cm0 + Cmαα + Cmα̇
α̇l

2U
+ Cmq

θ̇l

2U
+ Cmα̈

α̈l2

4U2
+ Cmq̇

θ̈l2

4U2
+

∑

all controls

(Cmδδ + Cmδ̇

δ̇l

2U
+ · · · ) + · · · (7)

In the above two relations, (6) and (7), α is aircraft’s angle of attack,
q is aircraft’s pitch velocity (q = θ̇), where θ is pitch angle over air-
crat’c center of gravity (cg) and l is reference length, usually mean wing
aerodynamic chord lmac. The total reference angle of atack αm can be
obtained as a linear combination of all involved kinematic effects:

αm = αm0 + αmαα +
∑

all controls

αmδ
δ + αmq

ql

2U
+ αmα̇

α̇l

2U
+

∑

all controls

αmδ̇

δ̇l

2U
+ αmα̈

α̈l2

4U2
+ αmθ̈

θ̈l2

4U2
+ · · ·

Based on relations (6) and (7), in aircrafts’ control theory, steady and
unsteady longitudinal aerodynamic derivatives are:

• Cz0, Cm0, Czα, Cmα, Czq, Cmq,

• Czα̇, Cmα̇, Czq̇, Cmq̇, Czα̈, Cmα̈.

In the Equations (6) and (7), the influences of slats deflections δslat,
flaps deflections δflap, symmetrical ailerons’ deflections δsymm

ail , elevaters’
deflections δelev and symmetrical rudders’ deflections δsymm

rudd (if fins are
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positioned out of aircraft’s symmetry plane) can be incorporated espe-
cially for calculation of the steady longitudinal derivatives. It should be
mentioned that the aerodynamic forces on control surfaces strongly de-
pend on their boundary layers. As in the used methods viscosity effects
are neglected, derivatives with respect to δ and δ̇ will give only trends
to accurate values.

The coefficients Cz0 and Cm0 are steady longitudinal derivatives for
zero angle of attack (α = 0). Values of these derivatives are dominantly
influenced by viscosity effects. That’s why these derivatives are usually
determined on wind tunnel tests. One can use semi-empirical methods or
CFD programs (for α = 0) to evaluate Cz0 and Cm0, but obtained results
are not reliable in many cases. Lucky, for classical general configurations
derivatives Cz0 and Cm0 are small relative to the other parts in (6) and
(7), so their influence can be neglected.

The named aerodynamic longitudinal derivatives may be divided in
two groups. One group, in principle, can be obtained by steady methods,
while the second one only can be calculated by unsteady methods. When
making this distinction, it should be mentioned that,in principle, all
derivatives should be computed with an unsteady method.

Generally speaking, aerodynamic stability derivatives are determined
in XsYsZs stability axis system, while aerodynamic forces and moments
are calculated aerodynamic axis system XaYaZa. The aerodynamic sys-
tem is colinear with velocity coordinate system XvYvZv. The axis of
aerodynamic system are opposite to the axis of velocity system (xa =
−xv; ya = −yv; za = −zv), when the motion of aircraft is in a
straight line. All of the three systems have the same origin in the cen-
ter of gravity Ccg of aircraft structure. The stability and the velocity
systems are represented on Fig.4. In connection with relation (6), it is
necessary to outline that Czs = Czv = −Cza .

In the reference condition the Xa - axis is parallel to airspeed U ,
but departs from it, Xs - axis is moving with the airplane during a
disturbance. That means that the angle of attack αs, defined as the angle
between the Xs - axis and the direction of U , is not necessarily identical
to absolute value of the angle of attack αa = α, used in aerodynamic
calculations. The axe Xa is in direction of the undisturbed flight path,
while Xs - axe is oscillating with rigid airplane. Clearly, αs represents
the disturbance from an aerodynamic state α. As small disturbances
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Figure 4:

have been assumed, simple conversion rules between the stability and
the aerodynamic axis systems for symmetric motions are:

XsYsZs ⇒ −α = ιk
hz

lmac

+ θ ⇐ XaYaZa,

XsYsZs ⇒ −q = ιkθ ⇐ XaYaZa.

In the stability axis system αs - variation is equivalent to a variation
of down wash of the airplane. So, it is equivalent to the angle of attack to
be prescribed in the methods used in this paper, where the aerodynamic
axis system is used. A q-variation, as defined in the stability axis system,
is felt by the airplane as linearly varying down wash in the aerodynamic
system

As already stated in the introduction of this paper, concept of inte-
gration of unsteady aerodynamic loads is used, so that obtained lift C̄z

and pitch moment C̄m coefficients are complex numbers. These complex
coefficients are connected to (6) and (7) by relations:

Cz = <e(C̄ze
ιωt); Cm = <e(C̄meιωt). (8)

In order to calculate unsteady longitudinal derivatives, three general
configuration motions are of interest. The first is quasi-steady harmonic



Software development for subsonic aircraft’s... 329

change of attack angle, the second is slow steady pitch and the third is
aircraft’s quasi-steady harmonic vertical translation:

A1 Quasi-steady harmonic change of the angle of attack ⇒ α(x, y, z, t);
α0 = const.

α = α0e
ιωt ⇒ α̇ = ιωα ⇒ α̈ = −ω2α. (9)

A2 Slow steady pitch angle ⇒ θ(x, y, z, t) ; q = dθ
dt

= const.

By introducing a constant pitch angular velocity q, it follows that

θ =
q(x− xcg)

U
=

qlmac

2U

2(x− xcg)

lmac

≡ ∂h0p

∂x
. (10)

For the value qlmac

2U
= 0.1 Eq. (11) can be integrated:

dh0p

dx
=

.2(x− xcg)

lmac

⇔ h0p = 0.1
(x− xcg)

2

lmac

. (11)

It is clear that, dh0p/dt = 0.

A3 Quasi-steady harmonic vertical translation ⇒ hz(t) ; dhz/dx = 0

hz = h0ze
ιωt ⇒ ḣz = ιωhz ≡ αzU ⇒

αz = ι
ω

U
hz = ι

k

lmac

hz; (12)

k =
ωlmac

U

Angle αz is the angle of attack (from stability axis system) induced
by small amplitude quasi-steady harmonic vertical oscillations hz

relative to the path of aircraft motion. In relation (12) k is reduced
frequency.

As in the steady calculations harmonic vertical translation doesn’t
exist and vs. in the unsteady calculations slow steady pitch doesn’t
exist, the cases A2. and A3. can be treated as one case.
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In the flutter calculation the boundary conditions can be obtained
from aircraft’s structure normal modes’ shapes (deflections and slopes of
mode shape). In, per example [7], is shown that the boundary condition
– normalized downwash on each lifting surface or body’s element is:

w̄ij =
wij

U
=

dh0j

dx
+

1

U

dh0j

dt
=

dh0j

dx
+ ι

ω

U
h0j

;

(13)

hi(xj, yj, zj, t) = <e[h0i
(xj, yj, zj)e

ιωt]

In Eq. (13), the index j is the number of element and the index i is
the normal mode number.

Using the same idea, in order to calculate the previously mentioned
longitudinal derivatives, seven harmonic rigid body (quasy-steady o steady)
motions of the general configuration, instead of normal modes, have to
be incorporated:

B1 Quasi-steady harmonic change of the angle of attack In developed
software α0 = 0.1 is default value, as it is acceptable in the used
linear theories.

• On lifting surface j − the element in point (x, y, z)

h01(x, y, z) = tgα0(xcg − x) cos γj;

(14)

∂h01

∂x
= −tgα0 cos γj

Variable γj is dihedral angle of j− the lifting surface element.

• On image body axe j − the element in midpoint (x, y, z) in
vertical direction

h01(x, y, z) = tgα0(xcg − x);
∂h01

∂x
= −tgα0 (15)

B2 Steady pitch and quasi-steady harmonic vertical translation

In developed software qlmac

2U
= 0.1 and h̄z = 0.1 lmac

2
are default

values, as they are acceptable in the used linear theories.
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• For steady pitch on lifting surface j − the element in point
(x, y, z) it follows

h02(x, y, z) = − 0.1
(x− xcg)

2

lmac

cos γj;

(16)

∂h02

∂x
= − 0.2

x− xcg

lmac

cos γj

On lifting surface j − the element in point (x, y, z) in quasi-
steady hamonic vertical translation

h02(x, y, z) = −h̄z cos γj;
∂h02

∂x
= 0 (17)

• On image body axe j − the element in midpoint (x, y, z) in
vertical direction for steady pitch, it follows:

h01(x, y, z) = − 0.1
(x− xcg)

2

lmac

;

(18)

∂h01

∂x
= − 0.2

x− xcg

lmac

On image body axe j− the element in point (x, y, z) in quasi-
steady harmonic vertical translation in vertical direction

h02(x, y, z) = −h̄z;
∂h02

∂x
= 0 (19)

B3 Steady slats’ deflection

The default slat deflection is δslat = 0.1. Only lifting surface ele-
ments on the wing’s slats are deflected. In any slat control point
(xkj, ykj, zkj) it follows:

h03 = δslat(xkj − xarm
k,slot) cos λslat ;

∂h03

∂x
= δslat cos λslat (20)
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In the above relations, xarm
k,slot is distance from control point to slat

rotation axe and λslat is the swept angle of slat rotation axe. On
all the other elements, meaning on all the other lifting surface

elements and image bodies elements h03 = 0 and
∂h03

∂x
= 0.

B4 Steady flaps’ deflection

The default flap deflection is δ=
flap0.1. Only lifting surface ele-

ments on the wing’s flaps are deflected. In any flap control point
(xkj, ykj, zkj) it follows:

h04 = δflap(xkj − xarm
k,flap) cos λflap;

∂h04

∂x
= δflap cos λflap (21)

In Eq. (21), xarm
k,flap is distance from control point to flap rotation

axe and λflap is the swept angle of flap rotation axe. On all other
elements, meaning on all the other lifting surface elements and

image bodies elements h04 = 0 and
∂h04

∂x
= 0.

B5 Steady symmetric ailerons’ deflection

If ailerons have different up and down deflection angles, any com-
bination of their deflections can be obtained as sum of symmetrical
and anti symmetrical deflections.

δsymm
ail =

1

2
(δdown

ail + δup
ail); δanti

ail =
1

2
(δdown

ail − δup
ail)

The default symmetric aileron deflection is δsymm
ail = 0.1. Only

lifting surface elements on the wing’s ailerons are deflected. In
any aileron control point (xkj, ykj, zkj) it follows:

h05 = δsymm
ail (xkj − xarm

k,ail) cos λail;
∂h05

∂x
= δsymm

ail cos λail (22)

In the above relations, xarm
k,ail is distance from control point to

aileron rotation axe and λail is the swept angle of aileron rota-
tion axe. On all the other elements, meaning on all the other
lifting surface elements and image bodies elements h05 = 0 and
∂h05

∂x
= 0.
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B6 Steady elevators’ deflection

The default symmetric elevator deflection is δelev = 0.1. Only
lifting surface elements on the tail’s elevator are deflected. In any
elevator control point (xkj, ykj, zkj) it follows:

h06 = δelev(xkj − xarm
k,elev) cos λelev;

∂h06

∂x
= δelev cos λelev (23)

In Eq. (23), xarm
k,elev is distance from control point to elevator ro-

tation axe and λelev is the swept angle of elevator rotational axe.
On all the other elements, meaning on all the other lifting surface

elements and image bodies elements h06 = 0 and
∂h06

∂x
= 0.

B7 Steady symmetric rudders’ deflection

If aircraft’s fin is out of symmetry plane than steady aerodynamic
derivatives for rudder symmetric deflection can be obtained. Usu-
ally in this case general configuration incorporates two fins out
of aircraft’s symmetry plane. The default symmetric rudder de-
flection is δsymm

rudd = 0.1. Only lifting surface elements on the fins’
rudders are deflected. In any rudder control point (xkj, ykj, zkj) it
follows:

h07 = δsymm
rudd (xkj − xarm

k,rudd) cos δrudd;

(24)

∂h07

∂x
= δsymm

rudd cos λrudd

In the above relations, xarm
k,rudd is distance from control point to

rudder rotation axe and λrudd is the swept angle of rudder rotation
axe. On all the other elements, meaning on all the other lifting

surface elements and image bodies elements h07 = 0 and
∂h07

∂x
= 0.

Substituting (9) and (10) into (8) one can obtain:
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C̄z = α0[Czα + ιk(Czα̇ + Czq)];

(25)

C̄m = α0[Cmα + ιk(Cmα̇ + Cmq)]

Taking =m(C̄z) and =m(C̄m) from relations (25) it follows:

Czα̇ =
1

k
=m

C̄z

α0

− Czq; Cmα̇ =
1

k
=m

C̄m

α0

− Cmq (26)

Steady longitudinal derivatives Czα, Cmα, Czq and Cmqcan be de-
termined from integration of all over general configuration aerodynamic
loadings in steady flow condition for steady boundary conditions (k = 0)
by introducing (9) and (10) into (13).

In order to account unsteady longitudinal derivatives Czα̈ and Cmα̈,
it is necessary to introduce (11) into (8). Then one can obtain:

C̄z

hz/lmac

= ιkCzα − k2Czα̇ − ιk3Czα̈;

(27)

C̄m

hz/lmac

= ιkCmα − k2Cmα̇ − ιk3Cmα̈

Taking =m(C̄
)
z and =m(C̄m) from relations (27) it follows:

Czα̈ =
1

k3

[
=m

(
C̄z

hz/lmac

+ k2Czα̇

)
+ kCzα

]
;

Cmα̈ =
1

k3

[
=m

(
C̄m

hz/lmac

+ k2Cmα̇

)
+ kCmα

]
.

For determination of unsteady derivatives, it is necessary to develop
(6) and (7) in the MacLaurent series of higher order and it follows:

C̄z = α0[Czα + ιk(Czα̇ + Czq)− k2(Czα̈ − Czq̇)]

(28)

C̄m = α0[Cmα + ιk(Cmα̇ + Cmq)− k2(Cmα̈ − Cmq̇)]
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In (28) only Czq̇ and Cmq̇ are unknowns. So, taking <e(C̄z) and
<e(C̄m) from (28) one can find:

Czq̇ = −Czα̈ − 1

k2

{
Czα −<e

[
C̄z

α0

− ιk(Czα̇ + Czq)

]}
,

(29)

Cmq̈ = −Cmα̈ − 1

k2

{
Cmα −<e

[
C̄m

α0

− ιk(Cmα̇ + Cmq)

]}
.

3 Examples

Two examples from the well known software NASTRAN are tested.
The first example was case HA21A for steady longitudinal aerodynamic
derivatives, and the second was case HA75H for unsteady flow.

3.1 Case HA21A

The case is taken from [3]. Forward-Swept-Wing (FSW) airplane with
coplanar canard-wing configuration was tested in trimmed see level steady
flight at Mach number 0.9. The model is idealized as shown on Fig.5.

The wing has an aspect ratio of 4.0, no taper, twist, camber, or
incidence relative to fuselage, and a forward sweep angle of 30o. The
canard has an aspect ratio of 1.0, and no taper, twist, camber, incidence,
or sweep. The chords of both the wing and canard are 3050, 00 [mm],
and reference length is equal to the wing mid aerodynamic chord lmac =
3050, 00[mm]. The half-span model of aircraft is divided on 32 equal
panels (8 span-wise, 4 chord-wise) on the wing and 8 equal panels (2
span-wise, 4 chord-wise) on the canard. The fuselage length is 9150, 00
[mm]. Aerodynamic forces on the fuselage are neglected.

The aerodynamic coordinate system is located in the beginning of
the fuselage in coplanar plane of wing-canard configuration. Center of
gravity is 4575, 00[mm] behind aerodynamic coordinate system origin in
mid point of canard root-chord.

The comparison of results from [3] and DERIV are given in Table 1.
Steady derivatives Czδc and Cmδc are related to canard deflection δc.
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Figure 5:

Software Czα Cmα Czq Cmq Czδc Cmδc

NASTRAN[3] -5.0711 -2.8712 -12.0746 -9.9549 -0.2461 0.5715
DERIV -5.0710 -2.8710 -12.0740 -9.9540 -0.2461 0.5715

Table 1:
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Based on the results given in Table 1. steady longitudinal aerody-
namic derivatives from NASTRAN and DERIV are in good agreement.

3.2 Case HA75H

The case is taken from [5] and [6]. Typical transport aircraft’s wing was
tested in unsteady flow at Mach number 0.8 at see level. Geometry of
the wing is given on Fig.6. The wing has an aspect ratio of 8.0, taper
ltip/lroot = 0.25, no twist, camber, or incidence relative to fuselage, and
a leading edge sweep angle of 33.1142o. The sweep angle of the wing
mean aerodynamic chords’ line is 30o. The pitch axe of the wing includes
point at lmac/4. In the wing’s symmetry plane origin of pitch axe is at
827.35[mm] behind leading edge of the wing’s root chord. The half-
span model of wing is divided in 75 panels (15 equal span-wise, 5 equal
chord-wise).

Figure 6:

In [6] and DERIV moments’ derivatives are calculating for pitch axe
located in wing symmetry’s plane at lmac/4. As in [5] pitch axe was in
leading wing edge in its symmetry plane, it was necessary to recalculate
moments’ derivatives. If (Cm∗)1 and (Cm∗)2 are moments’ derivatives
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for longitudinal location of pitch axe x1 andx2, respectively, then they
are correlated using relation:

(Cm∗)2 = (Cm∗)1 + Cz∗
x1 − x2

lmac

In the Table 2. calculated steady and unsteady longitudinal aerody-
namic derivatives are given, taken from [5], [6] and DERIV. Unsteady
derivatives are compared for reduced frequency k = ωlmac/(2U) = 0.010.
The data marked as (*) in the Table 2. are not represented in [5] or [6].

[5] [6] DERIV
Cmα (*) - 5.8490 - 5.8455
Cmα (*) - 0.5643 - 0.5847
Czq (*) - 5.9360 - 5.9978
Cmq (*) - 3.2050 - 3.2887
Czα̇ 12.5300 12.5400 12.4325
Cmα̇ 0.8504 0.8744 0.8980
Cmq̇ -16.4000 (*) -16.3317
Cmq̇ (*) (*) 0.7749
Czα̈ 94.7000 (*) 93.7748
Cmα̈ 11.6375 (*) 11.1347

Table 2:

Based on the Table 2., the results for HA75H obtained from [5], [6]
and DERIV are in good agreement.

4 Conclusion

Shortly described, the developed methodology and test results of devel-
oped software DERIV for calculation of unsteady longitudinal aerody-
namic derivatives for general configurations are given in the paper.

The obtained results from developed software DERIV are in good
agreement to results from NASTRAN.
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Razvoj softvera za proračun nestacionarnih,
uzdužnih aerodinamičkih derivativa podzvučnih

aviona

UDK 536.7

Nestacionarni, uzdužni aerodinamički derivativi subsoničnih aviona
proizvoljne konfiguracije mogu se proceniti korǐsćenjem metoda konačnih
elemenata baziranih na metodi rešetke dubleta (Doublet Lattice Method
– DLM), teoriji vitkih tela (Slender Body Theory – SBT) i metodi za-
mena (Method of Images – MI). Primenom navedene metodologije razvi-
jen je softverski paket DERIV. Rezultati dobijeni programom DERIV
testirani su na primerima HA21A i HA75H iz NASTRAN-a. Postignuto
je dobro slaganje rezultata.


