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Abstract

A linear stability analysis has been presented for hydromagnetic
dissipative Couette flow, a viscous electrically conducting fluid be-
tween rotating concentric cylinders in the presence of a uniform ax-
ial magnetic field and constant heat flux at the outer cylinder. The
narrow-gap equations with respect to axisymmetric disturbances
are derived and solved by a direct numerical procedure. Both types
of boundary conditions, conducting and non-conducting walls are
considered. A parametric study covering on the basis of µ, the ra-
tio of the angular velocity of the outer cylinder to that of inner
cylinder, Q, the Hartmann number which represents the strength
of the axial magnetic field, and N, the ratio of the Rayleigh num-
ber and Taylor number representing the supply of heat to the outer
cylinder at constant rate is presented. The three cases of µ < 0
(counter rotating), µ > 0 (co-rotating) and µ = 0 (stationary outer
cylinder) are considered wherein the magnetic Prandtl number is
assumed to be small. Results show that the stability characteristics
depend mainly on the conductivity on the cylinders and not on the
heat supplied to the outer cylinder. As a departure from earlier
results corresponding to isothermal as well as hydromagnetic flow,
it is found that the critical wave number is strictly a monotonic
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decreasing function of Q for conducting walls. Also, the presence
of constant heat flux leads to a fall in the critical wave number for
counter rotating cylinders, which states that for large values of -µ,
there occur transition from axisymmetric to non-axisymmetric dis-
turbance whether the flow is hydrodynamic or hydromagnetic and
this transition from axisymmetric to non-axisymmetric disturbance
occur earlier as the strength of the magnetic field increases.

Keywords: hydrodynamic and hydromagnetic flow, non-axisymmetric
disturbance, critical wave number, rotating concentric cylinders, lin-
ear stability analysis

1 Introduction

Taylor-Couette flow is one of the most important examples of fluid systems
that exhibit the spontaneous formation of increasingly complex dynamic
flow structures. The Couette apparatus was developed by Couette [1] as
a means for measuring the viscosity of a fluid at small-imposed angular
velocities of the cylinders. This occurs through a sequence of transitions,
which takes place as the drive is increased. At small angular velocities
of the inner cylinder (Ω1) the flow driven around, it is purely azimuthal
(circular Couette flow, or CCF). Taylor [2] found that when the angular
velocity of the inner cylinder exceeds some critical value, then the circular
Couette flow becomes unstable to axisymmetric perturbations. The radial
and axial velocity components grow exponentially in time and then satu-
rate nonlinearly to a flow pattern, which consists of axisymmetric vortices
stacked on top of one another in the axial direction, with radial inflows and
outflows. This is what we now know as Taylor vortex flow (TVF). If the
rotation rate of the inner cylinder is further increased TVF becomes unsta-
ble to non-axisymmetric perturbations, and azimuthal waves are formed
which rotate around the inner cylinder at some wave speed (wavy modes).
A further increase in the rotation rate of the inner cylinder leads to an even
wider variety of flows, each with clearly defined stability boundaries, due
to the exact way in which more and more spatial and temporal symme-
tries are broken, Taylor-Couette flow is an ideal setting in which to study
instabilities and nonlinear behavior in a fluid system.
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This article is concerned with that of hydromagnetic Couette flow; in
this case the fluid contained within the narrow-gap of coaxial cylinders is
electrically conducting (such as liquid sodium, gallium or mercury) and an
external magnetic field is applied keeping the cylinders at different tem-
peratures with constant heat flux at the outer cylinder. This problem is
also interesting because of its important applications for the gaseous core
nuclear reactors and power-generating devices. Using the infinite cylinders
approximation, Chandrasekhar [3] calculated the linear stability of both
hydrodynamic and hydromagnetic Couette flow, not only for the simple
case of the inner cylinder rotating, but also for co- and counter rotating
cylinders. Experimentally, Donnelly & Ozima [4] and Donnelly & Cald-
well [5] confirmed the results of Chandrasekhar using mercury contained
between Perspex and stainless steel cylinders, although not much differ-
ences were found between the different boundary conditions (insulating
and conducting) in the two cases. The boundary conditions in the hydro-
magnetic case are not trivial, and were described with clarity by Roberts
[6], who also performed calculations on the stability of non-axisymmetric
perturbations. Tabelling [7], using a method similar to Davey’s [8] am-
plitude expansion, calculated the effective viscosity of axisymmetric flow
in the TVF regime and compared with Donnelly’s [4] experiments which
indicate that the onset of wavy vortices is significantly inhibited by the
magnetic field. Nagata [9] has more recently investigated nonlinear so-
lutions in the planar geometry, and Hollerbach [10] shows Taylor’s cells
in spherical geometry. Willis & Barenghi [11] developed a numerical for-
mulation based on spectral methods suitable to study three-dimensional
nonlinear hydrodynamic Taylor-Couette flow and compared with experi-
ment. When only the inner cylinder is rotated it was found that the critical
value for the onset of non-axisymmetric motion was just above the crit-
ical value in the hydrodynamic case. Takhar et al. [12] further showed
the amplitude of the radial velocity and the cell-pattern on graphs for
axisymmetric disturbances and for both conducting and non-conducting
walls with several different values of µ and Q. Chen & Chang [13] studies
the hydromagnetic Couette flow for small-gap equations with respect to
non-axisymmetric disturbances and presented an analysis for the station-
ary as well as oscillatory critical mode. Recently, Willis & Barenghi [14]
investigated magnetic Taylor-Couette flow in the non-linear regime. In the
presence of an axial magnetic field the Lorentz force was found to have a
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significant damping effect at larger length scales as a consequence of the
small magnetic Parndtl number limit. The significant enhanced stability
was observed at only small-imposed field strengths.

The linear stability analysis of CCF in a weak magnetic field at various
radius ratios has been studied by Soundalgekar et al. [15] and the combined
effect of radial temperature gradient and constant heat flux at the outer
cylinder has been studied by Ali et al. [16] for hydrodynamic case with
narrow gap geometry, which motivates to undertake the present study
for the effect of radial temperature gradient and constant heat flux at
the outer cylinder for hydromagnetic case. The plan of this article is the
following. In §2 we present the governing MHD equations coupled with
the energy equation and the boundary conditions, and introduce the small
Prandtl number limit, which is relevant to liquid metals available in the
laboratory. In §3, we present results and discussion in the small Prandtl
number limit with the consideration of the effect of constant heat flux
at the outer cylinder and in §4 the summary is spelt out. A systematic
study which covers −1.0 6 µ 6 1.0 is presented for low as well as high
values of the Hartmann number Q for N ¿ 0. Here N, being the parameter
characterizing the supply of heat flux at the outer cylinder. Results for
three typical cases are reported. These belong to the flow between (i) a
rotating inner wall with a stationary outer wall, (ii) counter-rotating walls,
and (iii) co-rotating walls.

2 Problem formulation and method of solu-

tion

Let r, θ and z denote the usual cylindrical polar coordinates, and let
ur, uθ, uz and Hr, Hθ and Hz denote the components of velocity and mag-
netic field intensity, respectively. We consider two infinitely long concentric
circular cylinders with the z-axis as their common axis and let the radii and
angular velocities of the inner and outer cylinders are R1, R2 and Ω1, Ω2,
respectively. The equations of motion and energy equation for an incom-
pressible, viscous electrical conducting fluid in the presence of a uniform
magnetic field in the axial direction and constant heat flux at the outer
cylinder admit of a steady solution,
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ur = uz = 0, uθ = V (r) = Ar + B/r, T = T1 +
qR2

K
ln

r

R1

Hr = Hθ = 0, Hz = H = constant





(1)

where

A =
µ− η2

1− η2
Ω1, B =

R2
1(1− µ)

1− η2
Ω1, η =

R1

R2

(2)

Clearly the solutions given in (1) are consistent with the following
boundary conditions for velocity and temperature

ur = 0, uθ = V (r) = Ω1R1, uz = 0, T = T1 at r = R1

ur = 0, uθ = V (r) = Ω2R2, uz = 0,
dT

dr
=

q

K
at r = R2

(3)

In deriving the temperature distribution in (1) from the energy equa-
tion, viscous dissipation and energy associated with change in pressure are
neglected. Here q is the uniform surface heat flux; K the thermal conduc-
tivity of the fluid and T1 is the temperature of the inner cylinder.

To study the stability of this flow we superimpose a general disturbance
on the basic solution, substitute it in the governing equations and neglect
quadratic terms in the usual way. Since the coefficients in the resultant
disturbance equations depend only on r, it is possible to look for solutions
of the form

uθ = {V (r) + v(r)}eσt cos λz (4)

where v(r) is the azimuthal component of the small disturbance velocity,
and with similar expressions for the other components of velocity, pressure,
temperature and the components of magnetic field intensity. It is assumed
that the axial wave length λ be real. The parameter σ is the complex
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growth rate. In view of the physical similarity of this problem with Taylor’s
stability problem of Couette flow; it is likely that in the present problem
also the onset of stability will be as a steady secondary flow. Thus when
the marginal state is stationary we may put σ = 0 in (4). In the present
analysis we will be concerned with the narrow-gap case in which the gap
d = R2 − R1 is small compared to R1 so that terms of O(d/R1) can be
neglected. The derivation of the narrow-gap equations in our study are
the same as those derived by Takhar et al.[17] except that now we must
consider the constant heat flux at the outer cylinder. The scaling for u
and θ are ν/2Ad2, µCpq/(2AK2) used to non-dimensionalize. We introduce
further the following non-dimensional variables for radial variable and wave
length as:

x =
r −R1

d
, a = λd (5)

Now we define the Taylor number, Prandtl number, magnetic Prandtl
number, and Hartmann number Q as:

T = −4AΩ1d
4

ν2
, Pr =

µCp

K
,Pm =

ν

e
,Q =

µeH
2d2

4πρνe
(6)

where µe, e, Cp, ρ, ν are the magnetic permeability, electric resistivity, spe-
cific heat of the fluid, density and kinematic viscosity, respectively. Here, α
appears from the Boussinesque approximation as the coefficient of cubical
expansion. After combining the governing equations of perturbations, we
obtain the following system of ordinary differential equations:

[(D2 − a2)2 + Qa2]u = −a2TG(x)[(D2 − a2)g + NG(x)θ] (7)

[(D2 − a2)2 + Qa2]g = u (8)

(D2 − a2)θ = u (9)

where D = d/dx, G(x) = 1 − (1 − µ)x, and g represents the azimuthal
component of the small disturbance magnetic field.
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Here, N is the ratio of a Rayleigh number,

Ra =
αd4 Pr

ν2
βRLMΩ2

1

and the Taylor number based on the centrifugal acceleration RLMΩ2
1 with

RLM = R1/η and β = q/K being the adverse temperature gradient which
is maintained

It is known that the onset of Taylor vortices in the hydromagnetic case
depends strongly on the conductivity of the containers and also on the
magnetic Prandtl number. It has been found that if the magnetic Prandtl
number is of order 1, then the presence of the magnetic field is strongly
destabilizing and the Hartmann number Q does not have to be very large
for there to be an effect. For example, Q ∼ O (10) is enough to cause
significant destabilization. For the sake of comparison it is worth noting
that Q ∼ O(103) was achieved in the experiments of Donnelly & Ozima
[4]. However, if the magnetic Prandtl number is reduced and approaches
realistic values for laboratory liquid metals, this destabilization disappears,
and the application of a magnetic field is strongly stabilizing. Following
these terrestrial conditions, we let the magnetic Prandtl number to be
small, since laboratory liquid metals generally have very small Prandtl
numbers, for example, for liquid sodium Pm ∼ O(10−5) and for mercury
Pm ∼ O(10−7).

The derivation of the boundary conditions for the magnetic field is
somewhat more involved, due to the fact that they depend on the con-
ductivity of the cylinders. For the sake of mathematical convenience it is
often assumed in the literature that the cylinders are either perfectly insu-
lating (so the conductivity is exactly zero) or perfectly conducting (so the
conductivity tends to infinity). We refer the reader to Willis & Barenghi
[18] and Roberts [6] who determined boundary conditions for cylinders of
arbitrary conductivity, and do not repeat here again. Accordingly, the
appropriate boundary conditions at x = 0 and x = 1 for non-conducting
walls are

u = Du = g = (D2 − a2)g = θ = 0 at x = 0

u = Du = g = (D2 − a2)g = Dθ = 0 at x = 1



 (10)
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and for conducting walls are

u = Du = Dg = (D2 − a2)g = θ = 0 at x = 0

u = Du = Dg = (D2 − a2)g = Dθ = 0 at x = 1



 (11)

The homogenous set of equations (7)-(9) with the boundary conditions
(10) or (11) determine an eigenvalue problem of the form

F (µ,Q, N, a, T ) = 0 (12)

For given values of µ,Q, N , which determine the basic state velocity,
temperature and magnetic field strength, we seek the minimum real pos-
itive T for which there is a non-trivial solution for (12). The value of T
sought is the critical Taylor number Tc for assigned values of µ, Q, and N.
The value of a corresponding to Tc which determine the form of the critical
disturbance is called critical wave number. We solve the two point eigen-
value problem defined by (7)-(9) using (10) or (11) by a shooting technique
together with a unit disturbance method. Indeed, there are many analyt-
ical methods, which can be used in the stability analysis, for example, the
work done by Weinstein [19, 20] for wavy vortices in the flow between two
long concentric rotating cylinders. The method used in the present study
has also been widely used by several workers for similar hydrodynamic sta-
bility problems, for example Chen & Chang [13], Chen & Chang [21] and
Deka & Takhar [22]. For details, the reader is referred to Harris & Reid
[23]. In order to obtain a faster convergence of the iteration, we use the
modified algorithm developed by Chen & Chang [21] for this eigenvalue
problem.

3 Results and discussion

Takhar et al. [17] studied the instability of hydromagnetic dissipative
Couette flow with respect to axisymmetric disturbances in the presence of
radial temperature gradient and axial magnetic field for narrow gap, which
is a special case of present study with constant heat flux at the outer cylin-
der. So, we conduct calculations and check the results in terms of ac and Tc
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for both conducting and non-conducting walls with the corresponding data
obtained by Takhar et al.[17] and presented in Table 1. The comparison
is in good agreement.

We note that our stability analysis combines in one problem the simul-
taneous effects of radial temperature gradient due to a constant heat flux
at the outer cylinder, axial magnetic field, and rotation velocities ratio.
The study includes, as special cases, the stabilizing influence of only one
or two factors, previously examined by different authors. Setting Q = 0
and N = 0, the governing equations reduce to those derived first by Tay-
lor [2] under the narrow-gap approximations and then by Chandrasekhar
[24]. When Q = 0 but N 6= 0, we recover the stability equations of radial
temperature gradient obtained by Soundalgekar et al. [25]. Finally, when
N = 0 but Q 6= 0, we come to the problem considered by Chandrasekhar
[26] for an electrically conducting Couette flow with an axial magnetic field
under narrow-gap assumptions.

We have calculated the critical values of a, T for various value of Q,
N, and rotation ratio µ. In this study the range of N is taken from 0 to 1,
rotation ratio from -1. to 1.0, Q from 10 to 300. The computed values with
these parametric values are listed in Tables 1 - 7 for conducting as well as
non-conducting walls. It is observed that owing to the supply of heat to
the outer cylinder at constant rate, the critical value of the Taylor number
decreases indicating less stable flow, for example, in the absence of axial
magnetic field (Q = 0) the value of Tc for N = 0 is 18666 when µ = −1.0
and the corresponding value of Tc for N = 1.0 is 9508. From these tables,
further we observe that the critical Taylor number Tc decreases with N
but increases with the strength of the magnetic field parameter Q. This
indicates, the presence of a magnetic field for a viscous conducting fluid
has a stabilizing effect. And for the same Q, the Tc for conducting walls is
always higher than non-conducting walls, which means, the flow remains
more stable between conducting walls. On the contrary, the imposition of
constant heat flux at the outer cylinder is not inspiring for the stability of
the flow.

The variation of Tc versus varying µ for assigned values of N are shown
in figure 1 in the absence of axial magnetic field (Q = 0) and demon-
strating the decreasing trend of critical Taylor number as the parameter N
increases from 0 to 1, indicating unstable flow, where N = 0 corresponds
to isothermal case. The corresponding variation of Tc versus N for both
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conducting and non-conducting walls are presented in figures 2 and 3, for
µ = −0.25, 0, 0.25 and Q = 10 & 50 and it is observed that Tc is generally
a monotonic decreasing function of N but increasing function of Q for all µ
considered. This implies that the flow is no longer stable by the imposition
of constant heat flux at the outer cylinder but stable due to the conduc-
tivity of the walls. The effect of radial temperature gradient together with
the application of axial magnetic field to the electrically conducting fluid
on the stability of Taylor-Couette flow has been studied by Takhar et al.
[15] for narrow gap, predicting stabilizing effect due to negative temper-
ature gradient. On the other hand, the effect of constant heat flux at
the inner cylinder for narrow and wide gap has been studied by Takhar
et al. [27, 28] and showed that constant heat flux at the inner cylinder
too stabilizes the flow. Thus our result reflects that in the presence of
constant heat flux at the outer cylinder, the stability of flow is delayed in
comparison to the both isothermal and non-isothermal case as well as the
application of constant heat flux at the inner cylinder. The variation of
Tc versus µ are shown in figures 4 and 5, where the parameter µ is varied
from -1.0 to 1.0 considering the moderate values of Q = 0, 50, 100 for
both conducting as well as non-conducting walls. We observe from these
figures that for counter rotating cylinders the flow is more stable in com-
parison to the co-rotating and stationary outer cylinder. Further, these
figures show that the critical values of Tc increase as Q increases from 0 to
a higher value. This means that the applied magnetic field always has a
stabilizing effect on this flow. The variation of Tc with Q are presented in
figures 6 and 7 for rotation ratios 0.5 and 1, since for µ = 0.5 and 1, the
disturbance is reported to be axisymmetric ( Chen & Chang [19]). It is
confirmed again that when N 6= 0, the critical values of Taylor number are
lower than the values corresponding to N = 0 (isothermal case), for both
conducting as well as non-conducting walls. Strikingly, we observe from
figures 4 and 5 that, when µ < −0.9, N = 1, Q = 50, the values of criti-
cal Taylor number attains a lower value. For hydrodynamic case, Krueger
et al. [29] predicted for narrow-gap gap that when µ 6 −0.78 the flow
becomes non-axisymmetric when the cylinders are isothermal. There is
growing evidence, both theoretical and experimental that when µ < −0.78
(in the narrow gap approximation) instability sets in at a smaller value
of the Taylor number with respect to non-axisymmetric disturbances (cf.
Ref [30]). Thus, in agreement to their finding, in the presence of constant
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heat flux at the outer cylinder, we have found that the stability sets at a
smaller value of Tc for large −µ. Also the fall in the values of Tc occurs
earlier for large values of Q, viz; Q = 100 as shown in the graphs.

Now, we pay attention to the transition of the critical wave number ac

in the axial direction as Q and N increases for a given rotation ratio. In the
presence of heat flux i.e. for N = 0, 0.25, 0.5, 0.75, 1.0 corresponding values
of ac for µ = -1.0 are 3.99, 3.80, 3.56, 3.27, 3.00 when the axial magnetic
field is absent (Q = 0). This indicates that the critical axial wave length
2πd/ac for which axisymmetric disturbances occur increases which implies
that the spacing of the vortices remarkably increases. On the other hand,
for conducting walls, Q = 10, 50, 100, 200, 300 the corresponding values of
ac are 4.16, 3.88, 3.50, 2.99, 2.66 when N = 1.0 for same µ = −1, thereby
showing the same decreasing trend of wavelength in the axial direction for
conducting walls and it is true for non-conducting walls also and these
are clearly demonstrated in figures 8 & 9 drawn for conducting and non-
conducting walls for −1 6 µ 6 1. The figures 8 and 9 are drawn when the
parameter Q takes value of 0, 50, 100 for the two cases N = 0 (absence
of constant heat flux) and N = 1. It has been observed from these two
figures that the values of ac corresponding to isothermal case, decreases
with rotation ratio but increases monotonically for conducting walls and
decreases for non-conducting walls in agreement with Chen & Chang [13],
but in the presence of constant heat flux at the outer cylinder the trend
reverses. For conducting fluid and isothermal case Chen & Chen [13] found
ac to be a monotonic decreasing function of Q when the walls are non-
conducting, while for conducting walls, at first ac increases monotonically
with Q and then decreases. For N = 1, i.e. in the presence of constant
heat flux at the outer cylinder, it is found that the critical values of wave
number decreases monotonically as Q for both conducting as well as non-
conducting walls. In other words, elongated Taylor cells will be observed
for all Q in both the cases. However, when µ 6 −0.9, the values of ac takes
a decreasing trend for Q = 0 in the presence of constant heat flux at the
outer cylinder when N = 1. Thus the critical values of the wave number
increase from a smaller value and reaches maximum near µ = −0.9 and
then decrease as µ decreases. This is due to the fact that for µ 6 −0.9,
the flow turns to become non-axisymmetric when N 6= 0. This transition
occurs earlier as Q increases. In the cases for which non-axisymmetric
disturbances occur, the critical value of a is less than the critical value of a
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for an axisymmetric disturbance (see ref. [29]) and the critical wavelength
2π/λ = 2πd/a, for non-axisymmetric disturbance will be slightly greater
than the value for an axisymmetric disturbance at that value of µ. Thus,
in conclusion, we can state that in the presence of constant heat flux and
for large values of −µ, the axisymmetric problem is irrelevant physically
and one must consider the full three dimensional problem whether of the
flow is hydrodynamic or hydromagnetic.

4 Conclusions

It is quite evident from our study that the vital contributions to the fluid
stability comes from the magnetic field (Q 6= 0) rather than from apply-
ing constant heat flux at the outer cylinder as because the flow becomes
strongly unstable when N 6= 0 and this is reflected for the cases of counter-
rotating, co-rotating and stationary outer cylinder. The critical wave num-
bers are clearly a monotonic decreasing function of N as well as Q for both
conducting as well as non-conducting walls. Also, in the presence of con-
stant heat flux and for large values of −µ, the axisymmetric problem is
irrelevant physically and one must consider the full three-dimensional prob-
lem whether the flow is hydrodynamic or hydromagnetic and for N 6= 0,
the transition from axisymmetric to non-axisymmetric disturbance occur
earlier as the strength of the magnetic field increases.
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Stoffübertragung, 22, 23 (1988).

[29] Krueger, E.R., Gross, A. and DiPrima, R.C., J. Fluid Mech. 24, 521
(1966).

[30] Drazin, P. G. and Reid, W.H., Hydrodynamic Stability, CUP (1981).

Tc

m

N=0

N=0.5

N=1.0

Figure 1: Variation of Tc with µ for assigned values of N (hydrodynamic
case, Q = 0)
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Figure 2: Variation of Tc with N for assigned values of µ and Q (Conducting
walls). The solid curves are drawn for Q = 10, while the dashed are for Q
= 50

T
C

m=-0.25

m=  0

m=  0.25

N

Figure 3: Variation of Tc with N for assigned values of µ and Q (non-
Conducting walls). The solid curves are drawn for Q = 10, while the
dashed are for Q = 50
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Q = 0

Q = 50

Q = 100
Tc

m

Figure 4: Variation of Tc with µ for assigned values of N and Q (Conducting
walls). The solid curves are drawn for N = 1, while the dashed are for N
= 0

Q = 0

Q = 50

Q = 100
Tc

m

Figure 5: Variation of Tc with µ for assigned values of N and Q (non-
Conducting walls). The solid curves are drawn for N = 1, while the dashed
are for N = 0
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Figure 6: Variation of Tc with Q for assigned values of N. (Conducting
walls). The solid curves are drawn for N = 0, while the dashed are for N
= 1

ln(Q)

ln(T )c

m=0.5
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Figure 7: Variation of Tc with Q for assigned values of N. (non-Conducting
walls). The solid curves are drawn for N = 0, while the dashed are for N
= 1
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Q = 0

Q = 50

Q = 100

m m

Figure 8: Variation of ac with µ for assigned values of N and Q (Conducting
walls). The solid curves are drawn for N = 0, while the dashed are for N
= 1

m

Q = 0

Q = 50

Q = 100

m

Figure 9: Variation of ac with µ for assigned values of N and Q (non-
Conducting walls). The solid curves are drawn for N = 0, while the dashed
are for N = 1
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A B
µ Q ac Tc ac Tc

-1 0 3.998 18666 3.999 18662
10 4.167 24396 4.166 24390
50 4.480 50796 4.481 50793
100 4.698 91851 4.699 81849

-0.75 0 3.406 10518 3.406 10517
10 3.661 15188 3.662 15186
50 4.037 36758 4.038 36755
100 4.209 70927 4.210 70919
200 4.371 160858 4.370 168053

-0.5 0 3.197 6413 3.198 6413
10 3.427 9809 3.427 9808
50 3.720 26646 3.721 26643
100 3.804 54581 3.801 54575
200 3.769 129981 3.70 129975
300 3.696 227581 3.700 227577

-0.25 0 3.144 4461 3.144 4461
10 3.352 6954 3.352 6954
50 3.563 19930 3.564 19929
100 3.542 42422 3.544 42419
200 3.307 104543 3.307 104542
300 3.024 185057 3.024 185058

0 0 3.126 3389 3.127 3390
10 3.326 5319 3.327 5319
50 3.497 15576 3.498 15576
100 3.417 33788 3.417 33788
200 3.059 84805 3.060 84806
300 2.685 150342 2.686 150345

Table 1: Comparison of the values Tc and ac calculated in present study
(A) with those of Takhar et al. [17] (B) when N = 0, Q 6= 0 for various
values of µ (Conducting walls)
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µ Q N ac Tc

-1 0 0.0 3.998 18666
0.5 3.566 13381
1.0 3.004 9508

10 0.0 4.167 24396
0.5 3.503 16679
1.0 2.662 10973

50 0.0 4.480 50796
0.5 2.349 28002
1.0 2.034 14582

-0.75 0 0.0 3.406 10518
0.5 3.232 7880
1.0 3.107 6232

10 0.0 3.661 15188
0.5 3.334 10731
1.0 3.108 8127

50 0.0 4.037 36758
0.5 3.066 21616
1.0 2.585 14345

-0.50 0 0.0 3.197 6413
0.5 3.128 5043
1.0 3.079 4151

10 0.0 3.427 9809
0.5 3.245 7179
1.0 3.129 5638

50 0.0 3.720 26646
0.5 3.047 15603
1.0 2.766 10800

Table 2: The critical values of Tc and the corresponding values of ac for
assigned values of N, Q, µ (conducting walls)
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µ Q N ac Tc

-0.25 0 0.0 3.144 4461
0.5 3.075 3491
1.0 3.029 2866

10 0.0 3.352 6954
0.5 3.173 5029
1.0 3.062 3925

50 0.0 3.563 19930
0.5 2.912 11131
1.0 2.667 7576

0 0 0.0 3.126 3389
0.5 3.036 2562
1.0 2.976 2057

10 0.0 3.326 5319
0.5 3.107 3676
1.0 2.980 2793

50 0.0 3.497 15576
0.5 2.761 7983
1.0 2.525 5241

0.25 0 0.0 3.120 2724
0.5 3.001 1962
1.0 2.929 1530

10 0.0 3.316 4287
0.5 3.046 2785
1.0 2.902 2047

50 0.0 3.470 12664
0.5 2.629 5830
1.0 2.411 3682

Table 3: The critical values of Tc and the corresponding values of ac for
assigned values of N, Q, µ (conducting walls)
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µ Q N ac Tc

0.50 0 0.0 3.117 2275
0.5 2.970 1552
1.0 2.887 1175

10 0.0 3.312 3582
0.5 2.990 2173
1.0 2.835 1545

50 0.0 3.459 10622
0.5 2.526 4363
1.0 2.330 2664

0.75 0 0.0 3.116 1951
0.5 2.942 1259
1.0 2.850 926

10 0.0 3.311 3074
0.5 2.940 1739
1.0 2.779 1198

50 0.0 3.454 9126
0.5 2.448 3351
1.0 2.274 1991

1.0 0 0.0 3.116 1707
0.5 2.917 1042
1.0 2.819 746

10 0.0 3.311 2690
0.5 2.896 1420
1.0 2.732 952

50 0.0 3.454 7989
0.5 2.389 2637
1.0 2.235 1533

Table 4: The critical values of Tc and the corresponding values of ac for
assigned values of N, Q, µ (conducting walls)
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µ Q N ac Tc

-1.0 50 0.0 3.751 42781
0.5 2.529 25080
1.0 2.088 14378

100 0.0 3.378 71516
0.5 1.968 33644
1.0 1.815 17784

300 0.0 2.013 207803
0.5 1.436 57124
1.0 1.449 28191

-0.75 50 0.0 3.124 29825
0.5 2.577 18168
1.0 2.370 12618

100 0.0 2.685 53007
0.5 2.092 27339
1.0 1.975 17665

300 0.0 1.476 158027
0.5 1.466 56713
1.0 1.467 33035

-0.50 50 0.0 2.620 20506
0.5 2.456 12778
1.0 2.397 9262

100 0.0 2.019 37894
0.5 2.016 19998
1.0 2.012 13564

300 0.0 1.063 113060
0.5 1.429 44370
1.0 1.483 27280

Table 5: The critical values of Tc and the corresponding values of ac for
assigned values of N,Q, µ (non-conducting walls)
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µ Q N ac Tc

-0.25 50 0.0 2.429 14808
0.5 2.342 8981
1.0 2.312 6448

100 0.0 1.788 27620
0.5 1.903 14071
1.0 1.937 9449

300 0.0 0.957 82102
0.5 1.360 31248
1.0 1.433 19018

0 50 0.0 2.364 11392
0.5 2.263 6433
1.0 2.233 4482

100 0.0 1.725 21298
0.5 1.850 9901
1.0 1.876 6450

300 0.0 0.926 63208
0.5 1.334 21354
1.0 1.400 12637

0.25 50 0.0 2.340 9199
0.5 2.212 4739
1.0 2.180 3189

100 0.0 1.700 17212
0.5 1.822 7128
1.0 1.844 4491

300 0.0 0.914 51058
0.5 1.335 14820
1.0 1.392 8526

Table 6: The critical values of Tc and the corresponding values of ac for
assigned values of N,Q, µ (non-conducting walls)
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µ Q N ac Tc

0.5 50 0.0 2.332 7694
0.5 2.179 3595
1.0 2.145 2342

100 0.0 1.692 14401
0.5 1.810 5288
1.0 1.828 3234

300 0.0 0.911 42709
0.5 1.346 10626
1.0 1.395 5975

0.75 50 0.0 2.327 6604
0.5 2.156 2802
1.0 2.124 1774

100 0.0 1.688 12361
0.5 1.805 4042
1.0 1.820 2412

300 0.0 0.909 36658
0.5 1.359 7889
1.0 1.401 4358

1 50 0.0 2.327 5780
0.5 2.139 2236
1.0 2.108 1383

100 0.0 1.687 10820
0.5 1.804 3172
1.0 1.816 1855

300 0.0 0.908 32085
0.5 1.371 6045
1.0 1.407 3295

Table 7: The critical values of Tc and the corresponding values of ac for
assigned values of N, Q, µ (non-conducting walls)
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Stabilnost MHD Taylor-Couette-tečenja u uzanom
procepu pri radijalnom zagrevanju i konstantnom

toplotnom fluksu na spoljnom cilindru

UDK 537.84

Prikazana je linearna analiza stabilnosti hidrodinamičkog dispativnog
Couette-tečenja viskoznog elektroprovodnog fluida izmedju obrtnih kon-
centričnih cilindara u prisustvu uniformnog uzdužnog magnetnog polja i
konstantnog toplotnog fluksa na spoljnom cilindru. Jednačine za uzani
procep u odnosu na osnosimetrične poremećaje su izvedene i rešene direk-
tnim numeričkim postupkom. Posmatrana su oba tipa graničnih uslova
sa provodnim i neprovodnim zidovima. Data je parametarska studija
na osnovu µ, odnosa ugaone brzine spoljnog i unutrašnjeg cilindra, Q,
Hartmann-ovog broja koji reprezentuje jačinu uzdužnog magnetnog polja,
i N, odnosa Rayleigh-evog i Taylor-ovog broja koji prikazuje priraštaj
toplote konstantnom brzinom ka spoljnom cilindru. Posmatrana su tri
slučaja µ < 0 (suprotno obrtanje), µ > 0 (istosmerno obrtanje) i µ =
0 (stacionarni spoljni cilindar) pri čemu je pretpostavljeno da je mag-
netski Prandtl-ov broj mali. Rezultati pokazuju da karakteristike sta-
bilnosti uglavnom zavise od provodljivosti cilindara, a ne od toplotnog
fluksa na spoljnom cilindru. Za razliku od prethodnih rezultata dobi-
jenih za izotermsko i hidromagnetsko tečenje, kritični talasni broj je strik-
tno opadajuća funkcija od Hartmann-ovog broja za provodljive zidove.
Takodje, prisustvo konstantnog toplotnog fluksa dovodi do pada kritičnog
talasnog broja za suprotno obrtne cilindre, što pokazuje da se za ve-
like vrednosti -µ dešava prelaz od osnosimetričnog ka neosnosimetričnom
poremećaju kako za hidrodinamičko tako i za hidromagnetsko tečenje i da
se ovaj prelaz pojavljuje ranije ako magnetsko polje raste.


