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Abstract

The plane state of stress in an elastic-perfectly plastic isotropic
rotating annular disk mounted on a rigid shaft is studied. The
analysis of stresses, strains and displacements within the disk of
constant thickness and density is based on the Mises yield crite-
rion and its associated flow rule. It is observed that the plastic
deformation is localized in the vicinity of the inner radius of the
disk, and the disk of a sufficiently large outer radius never becomes
fully plastic. The semi-analytical method of stress-strain analysis
developed is illustrated by some numerical examples.
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Notations:

A,B constants of integration;
a, b inner and outer radii of the disk, respectively;
c radius of elastic-plastic boundary;
E modulus of elasticity;
k shear yield stress;
q ratio of inner to outer radius of the disk;
u non-dimensional radial displacement;
rθ plane polar coordinate system;
sr, sθ non-dimensional deviator components of the stress tensor;
β non-dimensional polar radius;
γ non-dimensional radius of elastic-plastic boundary;
ε total strain tensor;
εr, εθ components of the total strain tensor;
εe, εp elastic and plastic portions of the total strain tensor, respectively;
εp

r, ε
p
θ plastic components of the strain tensor in the plastic zone;

εe
r, ε

e
θ elastic components of the strain tensor in the plastic zone;

εE
r , εE

θ elastic components of the strain tensor in the elastic zone;
ϕ function of r ;
ϕe value of ϕ at Ω = Ωe and β = q
ϕq, ϕγ values of ϕ at β = q and β = γ , respectively;
Φ1, Φ2, Φ3,
Φ4, Φ5, Φ6 functions of ϕ ;
ν Poisson’s ratio;
ρ density of the material;
σr, σθ non-dimensional components of the stress tensor;
ξp
r , ξ

p
θ , ξ

e
r , ξ

e
θ derivatives of εp

r, ε
p
θ, ε

e
r, ε

e
θ with respect to Ω ;

ω angular velocity;
ωe angular velocity at the initial yielding;
Ω, Ωe, Ωmax non-dimensional angular velocity parameters.
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1 Introduction

An annular disk mounted on a circular shaft rotating at high speed is
widely used in engineering applications. Numerous works have been pub-
lished on analysis and design of such disks. In the case of elastic/plastic
disks, the study of stress and strain fields in rotating disks has begun
with models based on the Tresca yield criterion. A review of these works
is given in [1]. Other piece-wise linear yield criteria have been adopted
in [2, 3]. It has been mentioned in [1] that the analysis based on the
Tresca yield criterion is simpler than that based on the Mises yield cri-
terion. However, in fact, it depends on loading conditions, and matching
different regimes on the Tresca yield surface can require so cumbersome
algebraic transformations that the differential formulation following from
the Mises constitutive equations looks much simpler [4]. On the other
hand, the development of computational models for plane stress elasto-
plasticity meets some difficulties which do not exist in 3D and plane strain
formulations [5]. Therefore, it seems that an appropriate approach to deal
with disk problems under plane stress conditions is to advance the analyt-
ical treatment of the system of equations as much as possible and, then,
to solve the resulting equation (or equations) numerically. In the case of
the Mises yield criterion, such an approach has been developed [4, 6 – 8]
for a class of problems for thin plates and disks. In particular, a hollow
rotating disk with pressures prescribed at its inner and outer counter has
been studied in [4, 8]. In the present paper, this approach is extended to
rotating disks mounted on a rigid shaft. The presence of the shaft leads
to new qualitative features of the solutions which may be of importance
in practical applications and may be helpful in gaining insight into the
nature of possible numerical difficulties while solving more complex (ge-
ometrically or physically) problems by means of finite element or other
similar methods. Note that solutions for thin rotating disks based on the
Mises yield criterion are known in the literature, for example [9 - 14]. In
all of these studies, a deformation theory of plasticity has been adopted
(stresses are related to plastic strains in the plastic zone). Different disk
shapes, hardening laws and loading conditions have been investigated,
though conceptually all these solutions are very similar to each other.

In contrast, the solution proposed in the present paper, as well as the
solutions given in [6, 8], use the theory of plastic flow (stresses are related
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to plastic strain rates in the plastic zone). It makes a significant difference
with the solutions [9 – 14] in both the formulation of the problem and
the result obtained. In particular, because of the nature of deformation
theories of plasticity, it has been possible to prescribe a simple boundary
condition in terms of stress on the surface of a rigid inclusion (shaft)
[11], whereas the present formulation requires a condition in terms of
velocity (displacement). Moreover, in [12, 13] the fully plastic disk has
been considered, whereas the present solution shows that such a state of
the disk is almost impossible and the limit angular velocity is determined
by another condition.

2 Statement of the problem and elastic load-

ing

Consider a thin disk of material density ρ, shear yield stress k, Young’s
modulus E, Poisson’s ratio ν, outer radius b, inner radius a mounted on
a rigid shaft and rotating at an angular speed ω. The problem geometry
suggests the use of a plane polar coordinate system rθ with its origin at
the center of the shaft (Fig. 1). When the angular speed is high enough,
the plastic zone develops in the region a ≤ r ≤ c where c is the radius of
elastic-plastic boundary. Obviously, the value of c depends on ω. In con-
trast to the problem of a rotating hollow disk with prescribed pressures at
r = a and r = b [4, 8], the problem under consideration is not statically
determined (even for perfectly plastic materials) since the only one stress
boundary condition is given at r = b whereas the boundary condition
at r = a is given in terms of velocity (or displacement). This signifi-
cantly complicates the solution. Because of the symmetry, the solution is
independent of θ.

Within the elastic zone c ≤ r ≤ b (or, in non-dimensional form,
γ ≤ β ≤ 1) the Hooke’s law holds

(E/k) εr = σ−r νσ,
θ (E/k) εθ = σ−θ νσr (1)

together with the compatibility equation

εr = d (βεθ)/dβ, (2)
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which is obtained from the well-known strain-displacement relations

εr = du/dβ, εθ = u/β (3)

Here σr and σθ are the non-dimensional (referred to k) radial and
circumferential components of the stress tensor, respectively; εr and εθ

are the radial and circumferential components of the strain tensor, re-
spectively; β is the non-dimensional radius,β = r/b; and u is the non-
dimensional (refereed to b) radial displacement; γ = c/b is the non-
dimensional radius of the elastic-plastic boundary.

The only non-trivial equation of motion is

dσr/dβ + (σr − σθ)/β = −Ωβ, (4)

where Ω = ρω2b2/k is the non-dimensional angular velocity parameter.
The outer radius of the disk is stress free. Therefore,

σr = 0 at β = 1 (5)

Both σr and σθ are to be continuous across the elastic-plastic bound-
ary:

[σr] = 0, [σθ] = 0 at β = γ (6)

where square brackets denote the amount of jump in the quantity enclosed
in the brackets. Eq. (5) in the case of elastic solution and Eqs. (5)-
(6) in the case of elastic-plastic solution constitute the stress boundary
conditions which must be supplemented with the displacement boundary
conditions. Since the shaft is rigid,

u = 0 at β = q (7)

where q = a/b. The other condition, which is only applicable in the case
of elastic-plastic solution, is

[u] = 0 at β = γ (8)

Upon combining Eqs. (1) - (4), the radial displacement and stress
distributions in the elastic zone take the form
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u =
A (1 + ν)

β
+ Bβ − 1− ν2

8

k

E
Ωβ3 (9)

σr = − A

β2
+

B

1− ν
− 3 + ν

8
Ωβ2,

(10)

σθ =
A

β2
+

B

1− ν
− 1 + 3ν

8
Ωβ2

where A and B are constants to be found from the boundary conditions.
For purely elastic loading occurring at small angular speeds, the bound-

ary conditions (5) and (7) result in

A = Ωq2 (1− ν)

8

[
(1 + ν) q2 − (3 + ν)

(1− ν) q2 + (1 + ν)

]
,

(11)

B = (1− ν)

(
3 + ν

8
Ω + A

)

In the case of plastic loading, the representation for B in the form of
Eq. (11)2 is still valid. Substituting it into Eqs. (9) - (10) leads to the
displacement, strain and stress distributions in the elastic zone of the
elastic/plastic disk

E

k
u = A

(
(1− ν) β +

1 + ν

β

)
+

1− ν

8
βΩ

[
3 + ν − β2 (1 + ν)

]
(12)

E

k
εE

r = A

(
1− ν − 1 + ν

β2

)
+

1− ν

8
Ω [3 + ν − 3β2 (1 + ν)] ,

E

k
εE

θ = A

(
1− ν +

1 + ν

β2

)
+

1− ν

8
Ω [3 + ν − β2 (1 + ν)]

(13)

σr = A

(
1− 1

β2

)
+

3 + ν

8
Ω

(
1− β2

)
,
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(14)

σθ = A

(
1 +

1

β2

)
+

3 + ν

8
Ω

(
1− 1 + 3ν

3 + ν
β2

)

3 Plastic loading

Within the plastic zone q ≤ β ≤ γ, the stress equations consist of the
plane stress Mises yield criterion

σ2
r + σ2

θ − σrσθ = 3 (15)

and Eq. (4). Assuming that yielding starts at the inner radius of the disk,
β = q, the value of the non-dimensional angular velocity parameter at
which the plastic zone appears in the disk, Ωe, is obtained by substitution
of Eqs. (10)-(11) into Eq. (15)

Ωe =
4
√

3 [q2 (1− ν) + 1 + ν]

(1− q2) (ν2 − ν + 1)1/2 [q2 (1− ν) + 3 + ν]
(16)

To satisfy the yield criterion (15), the stresses can be represented in
the form

σr =
√

3 cos ϕ− sin ϕ, σθ = −2 sin ϕ (17)

This substitution is very similar to the standard substitution intro-
duced in [15]. The equation for ϕ (β, Ω) is determined upon substitution
of Eq. (17) into Eq. (4)

(√
3 sin ϕ + cos ϕ

) ∂ϕ

∂β
−

(√
3 cos ϕ + sin ϕ

) 1

β
− Ωβ = 0 (18)

Using Eq. (11) it is possible to find from Eq. (10) and Eq. (16) that

σr =
√

3
/√

ν2 − ν + 1, σθ =
√

3ν
/√

ν2 − ν + 1

at Ω = Ωe and β = q. Combining these values of the stresses and Eq.
(17) determines ϕ at Ω = Ωe and β = q in the form
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ϕe = − arcsin
[√

3ν
/(

2
√

ν2 − ν + 1
)]

(19)

It is interesting to mention that ϕe depends only on Poisson’s ratio.
Since the coefficient of the derivative in Eq. (18) vanishes at ϕ = −π/6, it
is a singular point of this equation. It is possible to show that its solution
cannot be extended beyond this point. Therefore, the admissible range
of ϕ-value is

ϕe ≤ ϕ < −π/6 (20)

It is convenient to introduce the following functions of ϕ

Φ1 (ϕ) =
√

3 sin ϕ + cos ϕ, Φ2 (ϕ) =
√

3 sin ϕ− cos ϕ,

Φ3 (ϕ) =
√

3 cos ϕ + sin ϕ, Φ4 (ϕ) =
√

3 cos ϕ− sin ϕ,

Φ5 (ϕ) = ν
√

3 sin ϕ− (2− ν) cos ϕ,

Φ6 (ϕ) = ν
√

3 cos ϕ + (2− ν) sin ϕ

(21)

Substituting Eq. (14) and Eq. (17) into the boundary conditions (6)
yields

γ2 =
32

√
Ω2 + 2ΩΦ6 (ϕγ) + Φ3 (ϕγ)

2 − 2Φ3 (ϕγ)− Ω (1 + ν)

Ω (1− ν)
(22)

A =
γ2

1 + γ2

{
Ω

8

[
γ2 (1 + 3ν) + (3 + ν)

]− 2 sin ϕγ

}
(23)

where ϕγ is the value of ϕ at β = γ.
The total strainε in the plastic zone is decomposed into its elastic and

plastic parts as

εr = εe
r + εp

r and εθ = εe
θ + εp

θ (24)

The elastic part is obtained by substituting Eq. (17) into the Hooke’s
law (1)

(E/k) εe
r =

√
3 cos ϕ− (1− 2ν) sin ϕ,
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(25)

(E/k) εe
θ = −ν

√
3 cos ϕ− (2− ν) sin ϕ

Differentiation of these equations with respect to time, which is denoted
by the superimposed dot, gives the elastic portions of the strain rate
tensor, ε̇e

r and ε̇e
θ,

(E/k) ε̇e
r = −ϕ̇

[√
3 sin ϕ + (1− 2ν) cos ϕ

]
,

(26)

(E/k) ε̇e
θ = ϕ̇

[
ν
√

3 sin ϕ− (2− ν) cos ϕ
]

The plastic portions of the strain rate tensor, ε̇p
r and ε̇p

θ, obey the
associated flow rule. A consequence of this rule is

ε̇p
r/ε̇

p
θ =sr/sθ (27)

where the components of the stress deviator tensor, sr and sθ, follow from
Eq. (17) with the use of plane-stress assumption σz = 0

sr = 2 cos ϕ
/√

3, sθ = −
(√

3 sin ϕ + cos ϕ
)/√

3 (28)

The incompressibility equation for plastic strains determines the strain
rate ε̇p

z. Substituting Eq. (28) into Eq. (27) yields

ε̇p
r = −2ε̇p

θ cos ϕ
/(√

3 sin ϕ + cos ϕ
)

(29)

Eq. (2) and Eq. (24) are also applicable to strain rates. Combining
these equations gives

∂ (ε̇p
θβ)/∂β = −∂ (ε̇e

θβ)/∂β + ε̇p
r + ε̇e

r (30)

Then, substituting Eq. (26) and Eq. (29) into Eq. (30) gives, with
the use of Eq. (21),

E

k

(
β

∂ε̇p
θ

∂β
+
√

3ε̇p
θ

Φ3

Φ1

)
= −

[
(1 + ν) Φ2ϕ̇ + β

(
Φ5

∂ϕ̇

∂β
+ Φ6ϕ̇

∂ϕ

∂β

)]
(31)
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where the derivative ∂ϕ/∂β follows from Eq.(18) and will be denoted by
D (β, ϕ)

D (β, ϕ) = ∂ϕ/∂β =
[
β2Ω + Φ3 (ϕ)

]/
[βΦ1 (ϕ)] (32)

The time derivatives of functions involved in Eq. (31) may be written
in the following form with Ω being a time-like variable

ε̇p
θ = (∂εp

θ/∂Ω) · (dΩ/dt) = ξp
θ · (dΩ/dt) ,

ϕ̇ = (∂ϕ/∂Ω) · (dΩ/dt) ,

∂ϕ̇/∂β = (∂2ϕ/∂Ω∂β) · (dΩ/dt)

(33)

Analogously, it is possible to introduce the quantities

ε̇θ = (∂εθ/dΩ) · (dΩ/dt) = ξθ · (dΩ/dt) ,

ε̇r = (∂εr/dΩ) · (dΩ/dt) = ξr · (dΩ/dt) ,

ε̇p
r = (∂εp

r/dΩ) · (dΩ/dt) = ξp
r · (dΩ/dt) ,

ε̇e
r = (∂εe

r/dΩ) · (dΩ/dt) = ξe
r · (dΩ/dt) ,

ε̇e
θ = (∂εe

θ/dΩ) · (dΩ/dt) = ξe
θ · (dΩ/dt) ,

ε̇E
r =

(
∂εE

r /dΩ
) · (dΩ/dt) = ξE

r · (dΩ/dt) ,

ε̇E
θ =

(
∂εE

θ /dΩ
) · (dΩ/dt) = ξE

θ · (dΩ/dt)

(34)

Then, Eq. (31) becomes

βΦ1
∂ξp

θ

∂β
+
√

3Φ3ξ
p
θ =

k

E

{
∂ϕ

∂Ω

[
2

Φ1

(
Φ5 −

√
3β2Ω

)− Φ3Φ6 − Φ1Φ2 (1 + ν)

]
− Φ5β

2

} (35)

The partial derivative ∂ϕ/∂Ω can be found as a function of β from the
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solution of the following equation obtained by differentiating Eq. (18)
with respect to Ω

βΦ2
1

∂

∂β

(
∂ϕ

∂Ω

)
+

[
Φ4

(
Ωβ2 + Φ3

)
+ Φ1Φ2

] ∂ϕ

∂Ω
− β2Φ1 = 0 (36)

It is now necessary to formulate the boundary conditions to Eqs. (35)-
(36). Denote the value of ϕ at β = q and β = γ by ϕq and ϕγ, respectively.
Obviously, ϕq and ϕγ are functions of Ω. Since the surface β = q is
motionless, the following equation is valid

(∂ϕ/∂Ω)|β=q = dϕq/dΩ (37)

On the other hand, at the elastic-plastic boundary, β = γ,

∂ϕ

∂Ω
=

dϕγ

dΩ
− ∂ϕ

∂β

dγ

dΩ
(38)

where ∂ϕ/∂Ω and ∂ϕ/∂β should be taken at β = γ. The latter derivative
is defined by Eq. (32). Therefore, Eq. (38) transforms to

∂ϕ

∂Ω

∣∣∣∣
β=γ

=
dϕγ

dΩ
−D (γ, ϕγ)

dγ

dΩ
(39)

Differentiating Eq. (22) with respect to Ω gives the following relation
between dϕγ/dΩ and dγ/dΩ

dγ

dΩ
=

4
[
γ2Φ2 (ϕγ) +

√
3Φ3 (ϕγ)

]
dϕγ/dΩ− [γ4 (1− ν) + 2γ2 (1 + ν)− 3− ν]

4γ [Ωγ2 (1− ν) + Ω (1 + ν) + 2Φ3 (ϕγ)]
(40)

Substituting Eq. (40) into Eq. (39) yields

∂ϕ

∂Ω

∣∣∣∣
β=γ

=

[
1− D (γ, ϕγ)

[
γ2Φ2 (ϕγ) +

√
3Φ3 (ϕγ)

]

γ [Ωγ2 (1− ν) + Ω (1 + ν) + 2Φ3 (ϕγ)]

]
dϕγ

dΩ
+

D (γ, ϕγ) [γ4 (1− ν) + 2γ2 (1 + ν)− 3− ν]

4γ [Ωγ2 (1− ν) + Ω (1 + ν) + 2Φ3 (ϕγ)]

(41)

Equation (36) should satisfy both Eq. (37) and Eq. (41).
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The boundary condition (8) is equivalent to

[ξθ] = 0 at β = γ (42)

Since ξθ = ξE
θ on the elastic side of elastic-plastic boundary and ξθ =

ξe
θ + ξp

θ on its plastic side, Eq. (42) transforms to

ξp
θ = ξE

θ − ξe
θ at β = γ (43)

The value of ξe
θ at β = γ is defined by Eq. (26)2, with the use of Eqs.

(33)-(34). Excluding here (∂ϕ/∂Ω)|β=γ by means of Eq. (39) gives

ξe
θ =

k

E

(
dϕγ

dΩ
−D (γ, ϕγ)

dγ

dΩ

)
Φ5 (ϕγ) (44)

where γ is defined by Eq. (22) and dγ/dΩ by Eq. (40). The value of
ξE
θ can be found by replacing A in Eq. (13)2 by means of Eq. (23) and

differentiating the resulting equation with respect to Ω

ξE
θ = − k

4Eγ (1 + γ2)2

{
G1 (γ, ϕγ)

dϕγ

dΩ
+ G2 (γ, ϕγ)

dγ

dΩ
+

(45)

νγ
(
1− γ4

) [
3 + ν + γ2 (1− ν)

]}

where

G1 (γ, ϕγ) = 8γ [γ4 (1− ν) + 2γ2 + 1 + ν] cos ϕγ,

G2 (γ, ϕγ) = γ6Ω (3ν2 − 2ν − 1) + γ4Ω (3ν2 − 8ν − 3)−

−γ2 [Ω (7ν2 + 10ν − 1)− 16 (1− ν) sin ϕγ] +

(1 + ν) [Ω (3 + ν) + 16 sin ϕγ]

Here and in Eq. (44), γ should be excluded by means of Eq. (22) and
dγ/dΩ by means of Eq. (40). Hence, substituting Eqs. (44)-(45) into
Eq. (43) determines the value of ξp

θ at β = γ in terms of ϕγ and dϕγ/dΩ.
This value will be denoted by ξp

θ |β=γ.
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The boundary condition (7) is equivalent to ξp
θ = −ξe

θ at β = q. The
value of ξe

θ can be found from Eqs. (26)2, (33)-(34). Then, with the use
of Eq. (37),

ξp
θ = − k

E

dϕq

dΩ
Φ5 (ϕq) at β = q (46)

4 Numerical solution

Consider the generic line Ω = Ω(i) in the plastic zone (Fig.2) and assume
that ϕq and dϕq/dΩ at Ω = Ω(i−1) are known. The derivative dϕq/dΩ
within the interval Ω(i−1) ≤ Ω ≤ Ω(i) can be approximated as

dϕq

dΩ

∣∣∣∣
i−1, i

≈ 1

2

(
dϕq

dΩ

∣∣∣∣
i−1

+
dϕq

dΩ

∣∣∣∣
i

)
(47)

On the other hand,

dϕq

dΩ

∣∣∣∣
i−1, i

≈ ϕq|i − ϕq|i−1

∆Ω
(48)

where ∆Ω is the step in Ω, a small prescribed value. Combining Eqs.
(47)-(48) gives

dϕq

dΩ

∣∣∣∣
i

=
2
(
ϕq|i − ϕq|i−1

)

∆Ω
− dϕq

dΩ

∣∣∣∣
i−1

(49)

Consider point e (Fig.2) where ϕγ = ϕq = ϕe, Ω = Ωe = Ω(0) and
γ = q. The values of ϕe and Ωe are known due to Eq. (16) and Eq. (19).
Combining Eq. (37) and Eq. (39) at this point it is possible to arrive at

dϕq

dΩ
=

dϕγ

dΩ
−D (q, ϕe)

dγ

dΩ
(50)

The boundary condition (7) requires that ξE
θ = 0 at point ewhere ξE

θ is
defined by Eq. (45). Combining this condition with Eq. (40) leads to the
system of two equations with respect to dϕγ/dΩ and dγ/dΩ at Ω = Ωe =
Ω(0), ϕ = ϕc, γ = q. Substituting these derivatives into Eq. (50) gives the
value of dϕq/dΩ at Ω = Ω(0). Taking into account this value and following
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the procedure outlined by Eq. (49), it is possible to find the derivative
dϕq/dΩ at Ω = Ω(1), let’s denote it by (dϕq/dΩ)|1, in terms of ϕq|1. It
is now necessary to solve Eqs. (18), (35)-(36) numerically at Ω = Ω(1).
The boundary conditions for Eq. (18) and Eq. (36) are ϕ = ϕq|1 and Eq.
(37), respectively, where dϕq/dΩ = (dϕq/dΩ)|1. The solution to these
equations, with the use of Eqs. (22) and (41), determines, respectively,
ϕγ|1 and (dϕγ/dΩ)|1. Therefore, ξp

θ |β=γ at Ω = Ω(1) is found in terms

of ϕq|1. The value of ξp
θ |β=γ may serve as a boundary condition to Eq.

(35). However, the solution to Eq. (35) should also satisfy Eq. (46)
which ultimately defines ∆Ω, and consequently ϕq|1. Since the derivative
(dϕq/dΩ)|1 is now known, the procedure of finding distributions of ϕ, ξp

θ

and other functions along β at Ω = Ω(2) can be repeated for Ω = Ω(2)

and, then, for all other values Ω = Ω(i) at i > 2 as long as ϕq satisfies Eq.
(20).

The derivative of radial displacement with respect to Ω is determined
by

∂u/∂Ω = β (ξp
θ + ξe

θ) (51)

The distribution of the radial displacement is obtained by numerical
integration in Eq. (51) after the distribution of ξp

θ and ξe
θ has been found

in the entire interval of Ω. The boundary condition to (51) follows from
(12) at β = γ.

5 Numerical examples and conclusions

The theory presented is illustrated by some numerical examples. The
following material properties have been used in all calculations: ν = 0.3,
E = 200× 103MPa, and k = 127MPa.

Figs 3 through 5 show, respectively, the variation of ϕq, its derivative
dϕq/dΩ, and the ratio γ/q, with the non-dimensional angular velocity
parameter at different values of q. It is seen that the difference between
the maximum possible angular velocity parameter corresponding to Ωmax

and the angular velocity parameter corresponding to Ωe is very small.
Here Ωmax can be considered as the non-dimensional limit angular velocity
and is the value of Ω at ϕq = −π/6. The larger the shaft radius, the lower
angular velocity is required to reach max. It is also seen that the gradient
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of dϕq/dΩ is extremely high in the vicinity of Ωmax. It may lead to
difficulties in numerical solutions for more complicated geometries where
the analytical treatment of the problem is impossible. Fig. 5 shows
that the maximum possible thickness of the plastic zone is very small
as compared to the shaft radius. This result is very different from that
obtained by means of a deformation theory of plasticity [11-13].

The variation of ξp
θ with Ω/Ωe at different β is illustrated in Fig. 6. It

is interesting to mention here that the function ξp
θ (Ω) at specific values

of β reaches a minimum near Ω = Ωmax and, then, when Ω → Ωmax, its
gradient is very high.

The radial and circumferential stress distributions along the radius
at different values of the non-dimensional angular velocity parameter are
shown in Figs 7 and 8, respectively. In the plastic zone, σr and σθ are
almost linear functions of β and the gradient of σθ is very high. To
show better this qualitative effect of σθ distributions, the variation of σθ

with the radius at different values of the non-dimensional angular velocity
parameter is illustrated in Fig.9 by using another scale. The increase in
angular velocity leads to substantial rise in the circumferential stress in
the plastic region but does not produce such an effect with regard to the
radial stress. While σθ reaches substantially high values in the plastic
region, σr accordingly adjusts itself so that the stress state remains on
the yield locus. Such variation of σθ with the radius is quite different
from that found by means of a deformation theory of plasticity [11-13].
Even though variable thickness disks of strain-hardening material have
been considered in these works, the disk of a constant thickness with no
strain hardening is obtained as a special case.

The variation of the total radial and circumferential strains with the
non-dimensional radius at different values of the non-dimensional angular
velocity parameter is shown in Figs 10 and 11, respectively, and their
plastic portions in Figs 12 and 13, respectively. The total circumferential
strain is positive (Fig. 11) and slightly depends on Ω. However, its
plastic portion is negative everywhere in the plastic zone (Fig. 13) and
significantly depends on Ω. On the other hand, the solution predicts that
the plastic portion of the radial strain is positive everywhere in the plastic
zone (Fig. 12), and the total radial strain becomes negative only at the
edge of the disk (Fig. 10). The gradient of the radial strain is very high
in the plastic zone (theoretically infinite when ϕq = −π/6). This results
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in a high gradient of the axial strain, εz, and to intensive thinning in a
narrow zone near β = q. The same effect (but opposite in terms of the
sign) has been found in [16] in the case of expansion of a hole in a plate
under plane stress conditions. The behavior of the radial displacement
(Fig. 14) is similar to that of total circumferential strain (Fig. 11).

Effects similar to the aforementioned ones also occur in disks with
hard inclusions subject to thermal loading [6]. In the case of anisotropic
rotating disks these effects can be even more pronounced, though it de-
pends on the orientation of the principal axes of anisotropy. An illustra-
tive example of the influence of anisotropy on the size of the plastic zone
is given in [17]. Even though, the solution found is for perfectly plastic
material, it may be more practical than the solutions found in [9–14] for
strain hardening materials. First, the present solution is based on a more
advanced theory of plasticity. Second, for materials with a yield plateau
the elastic perfectly/plastic model adopted is more appropriate at small
strains than models with strain hardening used in [9–14]. Moreover, even
if hardening starts from the very beginning, it is believed that its influence
on the qualitative behaviour of the solution is not so significant (though
this question requires further investigations) and the assumption of plane
stress plays the most important role.

Of special interest is comparison of solutions based on Tresca and
Mises yield criteria. Under different conditions, such comparisons have
been made in [4, 12, 18, 19, 20]. It has been mentioned that the differ-
ence between the solutions depends on the boundary conditions chosen.
The boundary conditions accepted in the present paper have also been
considered in [19, 20] where, however, a deformation theory of plasticity
of strain-hardening material has been adopted (in [19, 20], disks of vari-
able thickness have been considered but the disk of a constant thickness
with no strain hardening is obtained as a special case). The comparison
made in this paper does not show a significant difference between the
solutions based on Tresca and Mises yield criteria. On the other hand,
none of these solutions shows the qualitative effects demonstrated in the
present solution, for example, the existence of the maximum angular ve-
locity beyond which no solution exists, whereas the existence of such a
velocity (or another parameter in the case of non-rotating disks) has been
demonstrated in other thin disk problems solved with the use of the the-
ory of plastic flow [16, 21]. Another important effect of the application of
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Tresca yield criterion is that no plastic solution exits for a rotating solid
disk [22]. In other words, it means that no plastic zone develops. On the
other hand, under different sets of conditions the solution based on Tresca
criterion predicts a greater spread of plasticity at similar angular veloci-
ties, as compared with the solution based on Mises criterion [21]. Taking
into account a great variety of results on comparison of the two types
of solutions, it is important to find the exact solution for the problem
under consideration based on Tresca yield criterion and compare it with
the present solution. This will be the subject of further investigations.
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Figure 1: Rotating disk geometry.
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Figure 2: Illustration to the numerical procedure

Figure 3: Variation of ϕq with Ω/Ωe at different values of q.
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Figure 4: Variation of dϕq/dΩ with Ω/Ωe at different values of q.

Figure 5: Variation of the ratio γ/q with Ω/Ωe at different values of q.
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Figure 6: Variation of ξp
θ with Ω/Ωe at different values of β.

Figure 7: Radial stress distribution at q = 0.6 and different values of Ω.
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Figure 8: Hoop stress distribution at q = 0.6 and different values of Ω.

Figure 9: Hoop stress distribution at q = 0.6 and different values of Ω
(different scale as compared to Fig.8).
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Figure 10: Full radial strain distribution at q = 0.6 and different values
of Ω.

Figure 11: Full circumferential strain distribution at q = 0.6 and different
values of Ω.
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Figure 12: Plastic radial strain distribution at q = 0.6 and different values
of Ω.

Figure 13: Plastic circumferential strain distribution at q = 0.6 and dif-
ferent values of Ω.
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Figure 14: Radial displacement distribution at q = 0.6 and different
values of Ω.
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Analiza napona i deformacije u obrtnom disku
postavljenom na kruto vratilo

UDK 539.74

Proučava se ravansko naponsko stanje u elastično–idealno plastičnom
izotropnom obrtnom disku sa centričnim otvorom. Analiza napona, de-
formacija i pomeranja unutar diska konstantne debljine i gustine zasniva
se Mises-ovom pridruženom uslovu tečenja. Primećuje se da je plastična
deformacija lokalizovana u blizini unutrašnjeg poluprečnika diska, tako
da disk dovoljno velikog spoljnog poluprečnika nikada ne postaje pot-
puno plastičan. Poluanalitička metoda naponsko-deformacione analize je
razvijena i ilustrovana nekim numeričkim primerima.


