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Abstract

This paper examines the loss of contact between a square plate and
the unilateral supports under uniformly distributed load. Since the
plate is rested on the unilateral supports, it will have the regions
of lost contact between a plate and the supports due to the ab-
sence of restraining corner force at the plate corners. This leads
to the mixed boundary conditions and these conditions are then
written in the form of dual-series equations, which can further be
reduced to a Fredholm integral equation by taking advantage of
finite Hankel transform technique. Numerical results are given for
the deflections of free edge and deflections along the middle line of
the plate with different values of the Poisson’s ratio. In addition,
the deflection surface is also presented. From the investigation,
it can be indicated that the loss of contact is decreased upon the
increasing Poisson’s ratio.
Keywords : plate, receding contact, mixed boundary conditions,
dual-series equations, unilateral support, Hankel transform, Fred-
holm integral equation
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1 Introduction

A simple bending problem of plates that analyzed in the past is the
problem of uniformly loaded square plate having all edges supported by
the simple support as shown in Fig. 1(a). By the meanings of this type of
support condition, the plate corners in general have to be anchored by a
concentrated load that called the corner force resulting from the adjacent
twisting moments corresponding at that corner [1]. If there are no corner
forces applied at the corners of the plate, it is found that parts of the
plate near the corners will be bent away from the supports upon loading.
For instance, the plate considered becomes a unilaterally supported plate.

The definition of the unilateral support was introduced by Keer and
Mak [2] which can be explained as a unilateral constraint allowing only
upward motion of the plate. Therefore, during bending of the plate due
to uniform loading, some parts of the plate edge will separate from the
supports as demonstrated in Fig. 1(b). It is now immediately seen that
the boundary conditions of the plate are mixed and the solution is more
difficult to solve because the shear singularity in the order of an inverse
square root type exists at the points where the unilateral support changes
to a free edge.

Mathematically, there are various methods used to analyze the prob-
lems of plate having mixed boundary conditions. Nowacki and Olesiak
[3] and Noble [4] solved the problems of circular plate clamped on part
of its boundary and simply supported on the remainder. They obtained
the solutions from an integral equation in term of the unknown function.
The variational method has been applied to determine the solution of
these problems by Bartlett [5]. Moreover, the various cases of circular
plate with combinations of clamped, simply supported and free bound-
ary conditions loaded with uniform loading were also studied by Conway
and Farnham [6] in which the method of superposition was used to for-
mulate the problems and solved numerically by a direct point-matching
approach. It is interesting to note that no attempt was made to handle
the singularity of the solution analytically.

In fact, whether the boundary conditions of plate are of the mixed
types, the stress singularity will be occurred at the transition points of
discontinuous support. This pointed out by Williams [7], who first con-
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structed an infinite set of the appropriate eigenfunctions to characterize
the singularity orders of plate having the combinations of boundary con-
ditions. It can be concluded from the previous works that the bending
stress is unbounded for the plate with mixed boundary conditions.

Stahl and Keer [8] reconsidered the problem of uniformly loaded circu-
lar plates using the finite Hankel integral transform techniques where the
moment singularity is taken into account in the analysis. Subsequently,
similar method was extended by Kiattikomol and Sriswasdi [9] to treat
the problem of annular plate. For the other cases of plate, Keer and
Sve [10] presented the moment stress intensity factor due to the effects
of crack geometry in rectangular plates under the static load where the
free vibration and stability problems were carried out by Stahl and Keer
[11]. A simply supported rectangular plate with an internal line support
has been investigated for the free vibration and buckling problems [12].
Recently, Sompornjaroensuk and Kiattikomol [13] examined the advanc-
ing contact between the plate with different boundary conditions and an
internal sagged support in which the method of analysis is identical to
Dundurs et al. [14]. It is worth to notice that the singularity in the
solution is in the order of square root in the shear corresponding to the
nature of free contact as explained by Dundurs and Stippes [15].

Many problems of plate with mixed edge conditions and having the
right-angle corners as described above, the corners of the plate are an-
chored which are opposed to the present paper. The problem of plate
supported by the unilateral supports with no restrained corners is in-
volved to the natural receding contact problem. This problem has been
analytically investigated by Dempsey et al.[16] using a finite Fourier in-
tegral transform with including the shear singularity in the solution. For
the numerical treatments, Salamon et al.[17] modeled the unilateral sup-
ports by discrete elastic springs using a finite element method where the
characteristic of discrete springs as well as the spring stiffnesses can be
varied from the elastic support to nearly rigid support. Another numerical
method was done by Hu and Hartley [18], who utilized a direct bound-
ary element method to study the problem of general polygonal shape of
plates in which the support system consists of discrete elastic springs.
However, the two latter numerical methods [17,18] do not include the
singular behavior at the transition points of support condition.
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Therefore, the aim of this paper is to analytically examine the loss
of contact between a square plate and the unilateral supports. The so-
lution is set up by using the L?vy-N?dai approach [1] and the problem
is formulated through the dual-series equations that followed to the pre-
vious work [16]. Most importantly, the correct singularity that satisfied
the nature of free contact problems [15] is also considered in the analysis.
Based on the method of finite Hankel transform techniques [9,10,13,14],
an integral equation of the Fredholm-type governing the problem solu-
tion can be derived. The results are given for the deflections of the free
edge and deflections of the middle line of the plate with different values
of Poisson’s ratio. The validation of the present results is compared with
results obtained by other analytical [16] and numerical [18] techniques.

2 Problem formulation

To simplify the analysis, the scaled square plate configuration is shown in
Fig. 1 whereas the actual length of plate is a and its scaled by the factor
π/a. Therefore, the equation governing the deflection w(x, y) of the plate
under the uniform load (q) in the transformed coordinates (x, y) is given
by

∂4w/∂x4 + 2∂4w/∂x2∂y2 + ∂4w/∂y4 = (a/π)4(q/D), (1)

where D = Eh3/12(1− ν2) =flexural rigidity of the plate, both E and ν
are, the material properties, called the Young’s modulus and the Poisson’s
ratio, respectively, and h =plate thickness.

Using the notations given in Dempsey et al.[16] and due to the two-
fold symmetry in the problem, the deflection function for the unilaterally
supported square plate as shown in Fig. 1(b) can be expressed in the
form of Levy-Nadai approach [1]

w(x, y) = (qa4
/
2D)

∞∑
m=1,3,5,...

[Wm(x, y) + Wm(y, x)] + Wc, (2)

where the last term of the equation shown above (Wc) is defined as the
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deflection of the corner at x = y = 0 and

Wm(x, y) = [4
/
(πm)5 + Ym(x)] sin(my), (3)

Ym(u) = Am cosh(mu)+Bmmu sinh(mu)+Cm sinh(mu)+Dmmu cosh(mu),
(4)

in which Am, Bm, Cm, and Dm are the unknown constants to be deter-
mined.

It is notable that the first and the second terms of equation (3) rep-
resent the particular and complementary solutions of equation (1), re-
spectively. Because of the symmetry of the lateral load and deflection
function, the boundary conditions need to be considered only on the up-
per left quadrant of the plate as shown in Fig. 1(b), thus, the boundary
conditions are:

∂w/∂y = 0 : 0 ≤ x ≤ π/2 ; y = π/2, (5)

Vy = 0 : 0 ≤ x ≤ π/2 ; y = π/2, (6)

My = 0 : 0 ≤ x ≤ π/2 ; y = 0, (7)

w = ∂w/∂x = 0 : e < x ≤ π/2 ; y = 0, (8)

Vy = 0 : 0 ≤ x < e ; y = 0, (9)

w = Wc : x = 0 ; y = 0, (10)

R = 0 : x = 0 ; y = 0. (11)

where equations (8) and (9) are the mixed boundary conditions of the
problem that will be used to formulate the dual-series equations.

The bending moment (My), supplemented shearing force (Vy), and
corner force (R) corresponding to the coordinates (x, y) of the scaled
plate can be expressed as follows [1]:

My = −D(π/a)2(∂2w
/
∂y2 + ν∂2w

/
∂x2), (12)

Vy = −D(π/a)3[∂3w
/
∂y3 + (2 + ν)∂3w

/
∂x2∂y], (13)

R = 2D(1− ν)(π/a)2∂2w
/
∂x∂y. (14)
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It can be remarked that the corner forces are considered as positive if
they act on the plate in the downward direction in order to prevent the
plate corners from rising up during bending.

Substituting equation (2) into equations (5) to (7) and with using the
definition of equations (12) and (13) leads to the relations of unknown
constants Am, Bm, and Cm in term of Dm as follows:

Am = 4νη′
/
(πm)5 + 2Dmη′ coth β, (15)

Bm = −Dm coth β, (16)

Cm = −4νη′ tanh β
/
(πm)5 −Dm[2η′ + β(tanh β − coth β)], (17)

where
η′ = 1/(1− ν) , β = mπ/2, (18)

It is seen that the problem is then reduced to the determination of
a single constant Dm, which can be determined from the boundary con-
ditions along the plate edge at y = 0 as provided in equations (8) and
(9). It is more convenient to use equations (8b) and (9) to be mixed
with respect to the slope and the shear for the permission of dual-series
equations to be cast into the proper form for solution [16] and then, they
can be written as

∞∑
m=1,3,5,...

mPm cos(mx) = 0 ; e < x ≤ π/2, (19)

∞∑
m=1,3,5,...

{m3Pm(1 + F (1)
m ) sin(mx) + m3Pm[F (2)

m sinh(mx)− 2η cosh(mx)

+F (3)
m mx cosh(mx)− ηmx sinh(mx)]}

=
∞∑

m=1,3,5,...

[F (4)
m sin(mx) + F (5)

m + F (6)
m sinh(mx)− F (5)

m cosh(mx)

+F (7)
m mx cosh(mx)− F (8)

m mx sinh(mx)] ; 0 ≤ x < e, (20)

where
Pm = 2

/
(πm)5 + Dm coth β, (21)
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1 + F (1)
m = tanh β − ηβsech2β, (22)

F (2)
m = η(2 tanh β + βsech2β), (23)

F (3)
m = η tanh β, (24)

F (4)
m = (2

/
π5m2)[(3− ν) tanh β/(3 + ν)− ηβsech2β], (25)

F (5)
m = 4

/
[(3 + ν)π5m2], (26)

F (6)
m = (2

/
π5m2)[2 tanh β/(3 + ν) + ηβsech2β], (27)

F (7)
m = 2η tanh β

/
π5m2, (28)

F (8)
m = 2η

/
π5m2, (29)

and
η = (1− ν)/(3 + ν). (30)

As treated in [16], the dual series equations that presented in equations
(19) and (20) were further be reduced to a single integral equation by
assuming the unknown function Pm as given in equation (21) in the form
of finite Fourier transform where Pm was assumed to has the order of an
inverse square root singularity in the shear at the transition points from
unilateral support to free edge similar to Keer and Mak [2]. Moreover, this
assumed Pm was also automatically satisfied the first dual series equations
of equation (19) and then, equation (20) can finally be expressed in the
form of a Cauchy-type singular integral equation of the first kind.

It is remarkable that in the numerical analysis of the mentioned work
[16], some approximations were required to evaluate the kernel of singular
integral equation. Therefore, this paper aims to present an alternate
method to avoidance of this problem. For this purpose, the solution
technique similar to those used by Kiattikomol et al.[19] and Kiattikomol
and Porn-anupapkul [20] is applied to the present work except that, the
order of singularity is assumed to be an inverse square root in the shear
[2,13,14,16] instead of the moment [7].

By introducing the function Pm in the form of a finite Hankel integral
transform as

m2Pm =

e∫

0

tφ(t)J1(mt)dt ; m = 1, 3, 5, ..., (31)
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while φ(·), Jn(·) are the unknown auxiliary function and Bessel function
of the first kind and order n, respectively. This type of integral transform
has been widely used to analytical study the problems in elasticity theory
or in mathematical physics which can be found in the scattering technical
literature [21-25].

It can easily be shown that equation (31) automatically satisfies equa-
tion (19). Verification is made by substitution of Pm that given above into
equation (19) and with the help of certain identity presented in [12]

∞∑
m=1,3,5,...

m−1J1(mt) cos(mx) = (1/2t)(t2 − x2)1/2H(t− x) ; x + t < π,

(32)
where H(·) is the Heaviside unit step function. Thus the result yields

e∫

0

tφ(t)[(1/2t)(t2 − x2)1/2H(t− x)]dt = 0 ; e < x ≤ π/2. (33)

It can clearly be seen that since t and e are always less that x, the
left-hand side of equation (33) is automatically vanished.

As described previously, the form of Pm that given in equation (31) is
also required to produce an inverse square root singularity in the shear at
the tips of unilateral support. To verify the correct order of singularity,
it is convenient to rewrite the expression of the shear force distribution
on the unilateral support in the new form. Thus equation (20) may be
expressed as

Vy(e < x ≤ π/2, 0) ∼ − d

dx

∞∑
m=1,3,5,...

[m2Pm cos(mx)

+m2PmF (1)
m cos(mx) + ... (34)

Substituting equation (31) into the first term on the right-hand side
of equation (34) and utilizing the identity [12]

∞∑
m=1,3,5,...

J1(mt) cos(mx) = 1/2t− (x/2t)(x2 − t2)−1/2H(x− t)
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+

∞∫

0

[exp(πs) + 1]−1I1(ts) cosh(xs)ds ; x + t < π, (35)

where In(·) is the modified Bessel function of the first kind and order n,
therefore, the singular part in the vicinity of the tip of support can be
found to be

Vy(e + ε, 0) ∼ −(e/2)φ(e)(2eε)−1/2 + O(ε1/2). (36)

This revealed that there is a singularity in shear of order O(ε−1/2) as
expected. It can be noted that equation (36) is obtained by substituting
x = e + ε into equation (34) where ε is the small distance measured from
the singular point.

3 Fredholm integral equation

The method of reduction of equation (20) to the integral equation form
can be seen in the recent work of Sompornjaroensuk and Kiattikomol
[13]. With using the identity of equation (35) and the assistance of some
certain identities given in [26,27], equation (20) is then reduced to the
following inhomogeneous Fredholm integral equation of the second kind,
with introducing t = er, eρ

Φ(ρ) +

1∫

0

K(ρ, r)Φ(r)dr = f(ρ) ; 0 ≤ ρ ≤ 1, (37)

where

Φ(ρ) = φ(eρ) , Φ(r) = φ(er), (38)

K(ρ, r) = 2e2r

∞∑
m=1,3,5,...

[−4ηm/π − ηmL1(meρ)− ηm2eρL0(meρ)

+mF (1)
m J1(meρ) + m(F (2)

m − F (3)
m )I1(meρ)

+m2F (3)
m eρI0(meρ)]J1(mer)
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−2e2r

∞∫

0

s[exp(πs) + 1]−1I1(seρ)I1(ser)ds, (39)

f(ρ) = 2
∞∑

m=1,3,5,...

[F (4)
m J1(meρ) + (F (6)

m − F (7)
m )I1(meρ) + mF (7)

m eρI0(meρ)

+(F (8)
m − F (5)

m )L1(meρ)−mF (8)
m eρL0(meρ)], (40)

in which Ln(·) is the modified Struve function of order n.

4 Solution to the integral equation with zero

corner force condition

To determine the unknown auxiliary function Φ(ρ), the Simpson’s rule
of integration can be applied for this purpose to transform equation (37)
into a system of linear algebraic equations which is solved numerically
for the discretized value of Φ(ρ) by using the direct method of Gaussian
elimination with partial pivoting [28]. However, the correct value of Φ(ρ)
is constrained with the condition of zero corner force. This condition
can be obtained from equation (11). Substituting equations (2) into (14)
and using the prescribed condition of equation (11), after changing the
variable t = er where 0 ≤ r ≤ 1, leads to

e2

1∫

0

T (er) rΦ(r)dr = B, (41)

where

T (er) =
∞∑

m=1,3,5,...

[(1 + ν)η′ tanh β − βsech2β]J1(mer), (42)

B = 2
∞∑

m=1,3,5,...

[(1
/
π5m3)(tanh β − βsech2β)]. (43)
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It is observed from equation (37) that the function Φ(ρ) depends on
the value of noncontact length e. The method of finding the value e is
done by first assuming e in equation (37) and then, the function Φ(ρ)
is obtained. The correct value of e can be found by iteration until the
condition of equation (41) is satisfied. Thus Fig. 2 presents the variation
of Φ(ρ)-values with varying of the Poisson’s ratio. In the present inves-
tigation, the Poisson’s ratios are taken as 0.1, 0.3, and 0.5. As a result,
it is found that the noncontact length or the loss of contact length e is
independent of the level of loading, but only depended on the Poisson’s
ratio. This corresponds to the nature of receding contact problems [15].

5 Deflections of unilaterally supported square

plate

The remaining important physical quantity is the deflection of the corner
Wc which has remained undetermined. This can be obtained by imposing
y = 0 into equation (2) and using equations (15) to (17) together with
equation (21), yields

w(x, 0) = (qa4η′
/
D)

∞∑
m=1,3,5,...

Pm sin(mx) + Wc ; 0 ≤ x ≤ π/2. (44)

Considering the identity that given below [12],

∞∑
m=1,3,5,...

m−2J1(mt) sin(mx)

= (1/4)[(x/t)(t2 − x2)1/2 + t sin−1(x/t)] ; x < t, x + t < π, (45)

= πt/8 ; x ≥ t, x + t < π, (46)

after that substituting equation (31) for Pm and equation (46) into equa-
tion (44), then, the quantity of Wc is determined by applying the bound-
ary condition that presented in equation (8a), leads to

Wc = −(qa4πη′e3
/
8D)

1∫

0

ρ2Φ(ρ)dρ. (47)
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Subsequently, the deflection of free edge is also determined by using
equations (45) and (47). Thus it can be taken in the form as

w(x, 0)

(qa4/D)
= (η′e3

/
4)

1∫

ξ

Φ(ρ)[ξ(ρ2 − ξ2)1/2

+ρ2 sin−1(ξ/ρ)− (π/2)ρ2]dρ, (48)

where ξ = x/e and 0 ≤ ξ, ρ ≤ 1. Figure 3 presents the numerical results
for the deflection of free edge that calculated from equation (48).

To determine the deflection along the middle line of the plate, the
unknown constants Am, Bm, Cm, and Dm that shown in equations (15)
to (17) and (21) should be rewritten in the forms of integral representation
by using equation (31), the results are then given as

Am = −4
/
(πm)5 + 2η′(e/m)2

1∫

0

ρΦ(ρ)J1(meρ)dρ, (49)

Bm = 2
/
(πm)5 − (e/m)2

1∫

0

ρΦ(ρ)J1(meρ)dρ, (50)

Cm = 2[2 tanh β − β sec h2β]
/
(πm)5 − [2η′ tanh β − β sec h2β]

×(e/m)2

1∫

0

ρΦ(ρ)J1(meρ)dρ, (51)

Dm = −2 tanh β
/
(πm)5 + tanh β(e/m)2

1∫

0

ρΦ(ρ)J1(meρ)dρ. (52)

Substitution of equations (49) to (52) and equation (47) into equation
(2) with setting y = π/2, hence, the deflection along the middle line of
the plate w(x, π/2) can be calculated. The numerical results are shown
in Fig. 4.
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6 Results and conclusions

In the preceding analysis, an integral equation that governed the problem
solution is derived analytically and its numerical solution is also presented
graphically as in Fig. 2. From the obtained results, it indicates that
the loss of contact between a plate and the unilateral supports is not
depended on the level of loading but strongly depended on the Poisson’s
ratio. Therefore, the values of the loss of contact length e for each case of
the Poisson’s ratios ν are listed as follows: e = 0.3015, 0.2626, 0.2188 for
ν = 0.1, 0.3, and 0.5, respectively. This can be concluded that the loss of
contact is decreased upon the increasing of the Poisson’s ratio.

In addition to the solution of integral equation, the deflections of
the free edge w(x, 0) and deflections along the middle line w(x, π/2) of
the plate with different values of the Poisson’s ratio are, respectively,
demonstrated in Figs. 3 and 4. The results are also compared with other
techniques and an excellent agreement is found. As the results obtained,
it can be seen that the magnitude of both deflections is increased when
the Poisson’s ratio is decreased. To consider the global deformation of
the plate upon loading, the deflection surface that bounded by the region
0 ≤ x, y ≤ π/2 is presented for an example in Fig. 5 only for a case of
the Poisson’s ratio taken as 0.3.

In the conclusions of this paper, an alternative analytical method is
proposed to study the behavior of square plate supported by the unilateral
supports and the loss of contact is examined. Although the case of a
square plate subjected to a uniformly distributed load is only considered,
however, the present method can be extended to other cases of rectangular
plate under the arbitrary loads but the formulation of problem is more
complicated.

Based on the finite Hankel integral transform techniques, the solution
of problem can be formulated and treated analytically, and can be ob-
tained from the inhomogeneous Fredholm integral equation of the second
kind in term of an unknown auxiliary function satisfying the order of an
inverse square root singularity in the shear at the tips of contact between
the plate and the unilateral supports. The advantages of this present
method are that the singularity of the problem is isolated and the solu-
tion is determined with no approximation. A good agreement is found



302 Yos Sompornjaroensuk, Kraiwood Kiattikomol

from the analysis when compared to the other investigators.
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Figure 1: Uniformly loaded square plate with (a) simply supported edges
and (b) unilaterally supported edges
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Figure 2: Auxiliary function Φ(ρ) in integral equation

Figure 3: Deflections of free edge for unilaterally supported square plate
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Figure 4: Deflections along the middle line for unilaterally supported
square plate

Figure 5: Deflection surface for a quarter segment (0 ≤ x, y ≤ π/2) of
square plate (ν = 0.3)
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Rešenje nekog gubitka kontakta medju pločom i
jednostranim oloncima

Razmatra se gubitak kontakta medju kvadratnom pločom i jednostranim
osloncima pri jednoliko rasporedjenom opterećenju. Pošto ploča miruje na
jednostranim osloncima, imaće oblasti izgubljenog kontakta zbog odsustva
ugaonih sila na uglovima ploče. Ovo vodi ka mešovitim graničnim uslovima
koji su tada napisani u obliku jednačina dvostrukih redova. Ove se, pak,
redukuju na Fredholmovu integralnu jednačinu uzimajući u obzir Han-
kelovu transformacionu tehniku. Numerički rezultati su dati za odstu-
panja slobodne ivice kao i odstupanja duž srednje linije ploče za različite
vrednosti Poasonovog količnika. Pored toga i površ odstupanja je takodje
prikazana. Može se zaključiti da se gubitak kontakta smanjuje porastom
Poasonovog količnika.
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