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Abstract

Basic issues of the general model-building framework of the mechanics of
complex bodies are discussed. Attention is focused on the representation
of the material elements, the conditions for the existence of ground
states in conservative setting and the interpretation of the nature of the
various balance laws occurring.
Keywords: Complex bodies, material substructures, covariance

1 Introduction

Materials in which changes in the molecular or crystalline texture at various
microscopic scales (substructure) influence the macroscopic behavior through
peculiar interactions are commonly available. Liquid crystals, ferroelectrics,
quasicrystals, polymeric fluids are paradigmatic examples. The attribute com-
plex is assigned to bodies made of these materials in order to underline that
significant substructural effects must be accounted for.

In complex bodies the prototype material element is a system. Often it
is a perfectly identifiable Lagrangian system, like in nematic liquid crystals
in which the characteristic stick molecules embedded in a soft matrix may be
extracted and isolated from the rest. Sometimes it does not and the substruc-
ture is in a certain sense virtual, like in microcracked bodies: microcracks do
not exist per se, rather they are determined only by the surrounding matter.
On the other hand, the substructure can be procedural in the sense that it is
a consequence of local rearrangements of the matter due to phase transitions
from one energetic well to another as in martensite-austenite mixtures.

∗DICeA, University of Florence, via Santa Marta 3, I-50139 Firenze, Italy, email:
paolo.mariano@unifi.it

235



236 Paolo Maria Mariano

Notwithstanding the variety of phenomena displayed by complex bodies
and classified in condensed matter physics, there exists an abstract model-
building framework for the mechanics of complex bodies. It unifies in a unique
format existing models of special classes of complex bodies and is a flexible
tool for analyzing new materials.

Basic aspects of such a model-building framework are discussed here with
pedagogical purposes and constructive criticism. Some appropriate references
are scattered throughout the subsequent sections.

2 Representation of the morphology of mate-

rial elements

In its primitive meaning, a body can be regarded as an abstract set B collecting
material elements, each one being the smallest piece of matter characterizing
the material composing the body. The basic issue is the ‘representation’ of
such a set. In the standard format of continuum mechanics the geometrical
representation adopted is the minimal one: each material element is mapped
onto a place that it occupies in the ambient space Rd. However, in the real
world the material elements are groups of entangled molecules, simple or com-
plex pieces of crystalline structures, stick molecules dispersed in a ground fluid
etc., and substructural changes may generate actions that it is hard to identify
only with perturbations of the standard stress. In all these cases the stan-
dard representation of bodies is too minimalist. The material element should
be considered in essence a system rather than a windowless box so that, in
the representation of the body, a map attributing to each material element a
morphological descriptor ν of its (inner) substructure has to be defined. To
construct the essential structures of the mechanics of complex bodies, at least
at the level of first principles, it is not necessary to render precise the nature of
the morphological descriptor except assuming that it is an element of a finite-
dimensional differentiable manifold M with minimal geometrical properties
(each property of M has in fact physical meaning, see [11]). Once a reference
place B for the entire body is selected in Rd, any other actual place Ba (with
the index a meaning actual) is considered to be achieved in an isomorphic copy
R̂d of Rd itself by means of a transplacement map

B 3 x 7→ y (x) ∈ Ba

which is assumed to be one-to-one, differentiable and orientation preserving,
with spatial derivative

F := Dy (x) ∈ Hom
(
TxB, Ty(x)Ba

)
.
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The geometry of the inner structure of the material elements is described (at
least at a coarse grained level) by a morphological descriptor map

B 3 x 7−→ ν (x) ∈M

which is assumed differentiable with spatial derivative

N := Dν (x) ∈ Hom
(
TxB, Tν(x)M

)
.

Motions are then time-parametrized families of transplacements and morpho-
logical descriptors, namely for x ∈ B and t ∈ [0, t̄] ⊂ R the time

(x, t) 7−→ y := y (x, t) ∈ R̂d,

(x, t) 7−→ ν := ν (x, t) ∈M,

both fields assumed to be piecewise twice differentiable in time so that

ẏ :=
d

dt
y (x, t) and ν̇ :=

d

dt
ν (x, t)

represent the macroscopic velocity and the rate of change of the substructure
respectively.

3 Standard and substructural actions

3.1 Observers

The description of material substructures constrains to give a detailed look to
the essence of the notion of observer. I have discussed the point repeatedly
(see e.g. [13] and references therein). The essential aspects of the discussion
are summarized below (with additional remarks) as a preamble to the use of
a weaker invariance requirement under changes in observers presented later.
The aim is to underline how the geometrical features of the ambient space
R̂d and the manifold of substructural shapes M influence the structure of the
integral balances of the interactions of macroscopic and substructural nature.

My point of view is that an observer should be considered as a representa-
tion of all geometrical environments necessary to describe the morphology of
a given body and its motion. To this aim, in standard continuum mechanics
one needs to select the reference place B, the ambient space, say R̂d, and the
interval of time. They are all the geometrical environments needed. Different
is the stage when substructural complexity arises and its changes influence the
gross behavior. The manifold of substructural shapes comes into play in the
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way described above and one needs to represent it, specifically, one needs to
select atlantes over M.

Once M is accounted for, the definition of changes in observers should
involve the representations of R̂d, B, [0, t̄], M. In particular, the attention is
focused here on changes in observers leaving invariant B and the interval of
time. The last requirement defines synchronous changes in observers. Really,
one could consider affine time rescaling: non essential consequences accrue so
that they are not considered here.

• Changes in the ambient space are given by elements of Diff(R̂d, R̂d),
the group of diffeomorphisms of R̂d onto itself. Really one takes smooth
curves

s 7−→ fs ∈ Diff(R̂d, R̂d), s ∈ R+,

with f0 = id, where id means identity. The parameter s can be identified
with the time so that the curve s 7−→ fs can be interpreted in the common
way as the motion by which two observers differ as the time flows. In
particular the vector field y 7−→ v (y) := dfs

ds
|s=0 can be considered as

the (virtual) velocity of an observer moving with respect to another one,
a velocity pulled back in the frame of the first observer.

• The material substructures are placed in the ambient space and the man-
ifold M collects only the elements of a concise description of the charac-
teristic features of their geometry in space. Thus changes of frames in the
ambient space alter in principle the geometry of the substructures and
their consequent representation over M. Disconnection between changes
in the manifold of substructural shapes and changes of frames in space
is admissible only when ν represents only a generic property of the sub-
structures not associated with their geometry in space. Changes in the
choice of atlantes over M are governed by elements of the Lie group of
diffeomorphisms of M onto itself, namely

G := {g : M−→M | g a diffeomorphism} .

The link with changes in the ambient space are then assured by assuming
the existence of a differentiable homeomorphism

h : Diff(R̂d, R̂d) → G, h (id) = idG,

where idG is the identity over G, so that a curve

s 7−→ νg := hs (ν) ,

with hs = h (fs). By indicating by ξ the element of the Lie algebra

g of G given by the derivative dgs

ds
|s=0 = dh(fs)

ds
|s=0 , its value over a
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given ν is indicated by ξM (ν) := dνs

ds
|s=0 . In particular, if the curve

s 7−→ fs is selected over the special orthogonal group SO (d), a subgroup
of Diff(R̂d, R̂d), for ∧q an element of the Lie algebra so (d), q ∈ R̂d, it
is possible (and also convenient) to write ξM (ν) as the product A (ν) q
with A (ν) ∈ Hom(R̂d, TνM).

Isometric semi-classical changes in observers are the ones that, by leav-
ing invariant B and [0, t̄], are characterized by the choice of the subgroup of
Diff(R̂d, R̂d) coinciding with the semi-direct product R̂d n SO (d).

Rotational semi-classical changes in observers are the ones in which the
subgroup of Diff(R̂d, R̂d) selected as ambient of s 7−→ fs is just SO (d). In
this case, by indicating by ẏ∗ and ν̇∗ the rates evaluated after the change in
observer (they are the pull-back in the frame of the first observer of the rates
evaluated by the second observer), one gets

ẏ∗ = ẏ + q ∧ (y − y0) , (3.1)

where y0 is an arbitrarily fixed centre of rotation in the ambient space, and

ν̇∗ = ν̇ +A (ν) q. (3.2)

Remind that q depends only on the parameter s that is identified here with
the time, so that q = q (t).

3.2 Augmented external power and SO (d) invariance

A part of B is any subset b of B itself with non-vanishing volume measure and
the same geometric ‘regularity’ of B (that is the same topological properties).
All parts of B form an algebra P (B) with respect to the operations of meet
and join (see [2]).

Let V el be the space of all rate fields (x, t) 7−→ ẏ (x, t) and (x, t) 7−→ ν̇ (x, t)
over the tube B×[0, t̄], rates calculated along possible motions (x, t) 7−→ y (x, t)
and (x, t) 7−→ ν (x, t).

A power along motions (y, ν) is a functional

P : P (B)× V el → R

which is additive over disjoint parts and linear in the rates.
The explicit representation of a given P requires classification of the in-

teractions occurring in a body. The interest here is on the expression of the
power of all external actions over a generic part b and along a motion (y, ν),
a functional indicated from now on by Pext

b (ẏ, ν̇).
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Once b is selected arbitrarily, interactions with the rest of the power and the
external environment are classified in two main subclasses: (1) standard actions
power conjugated with the macroscopic deformation, (2) substructural actions
associated with the rate of change of the substructure inside the material
elements. Each subclass is further subdivided into bulk and contact actions
which admit densities with respect to volume and surface measures, dx and
dHd−1, respectively.

The natural expression of the external power satisfying previous assump-
tions is then given by

Pext
b (ẏ, ν̇) :=

∫

b

(b · ẏ + β · ν̇) dx +

∫

∂b

(t · u̇ + τ · ν̇) dHd−1,

a power written in referential form. The term ‘augmented’ in the title of
this section underlines the presence of the power densities of the substructural
actions. At any x in b one gets

b := b (x) ∈ T ∗
y(x)Ba ' R̂d, β := β (x) ∈ T ∗

ν(x)M,

while, for x ∈ ∂b,

t := t (x) ∈ T ∗
y(x)Ba ' R̂d, τ := τ (x) ∈ T ∗

ν(x)M.

Cauchy theorem indicates that the standard traction t can be expressed in
Lagrangian representation by means of the first Piola-Kirchhoff stress tensor
P , so that t = Pn at any x ∈ ∂b where n is defined. P (x) belongs to
Hom(Rd, T ∗

y(x)Ba) and also it is natural to consider it as the density of a form
over B. The argument of the proof is the standard Cauchy’s one based on the
tetrahedron, or subtle refinements of it (see the results in [20]). In analogous
way one may presume that τ = Sn with S (x) ∈ Hom(Rd, T ∗

ν(x)M). Of
course, even the microstress S can be considered as the density of a form over
B. The standard tetrahedron argument does not apply here because the field
x 7−→ τ (x) takes values on the whole cotangent bundle T ∗M = ∪ν∈MT ∗

νM so
that its total over a generic side of the tetrahedron is not defined, as pointed
out more in general later. To prove the existence of S by using the tetrahedron
argument, it is necessary to embed M in a linear space (the relevant proof is
in [2]). The embedding always exists since M is assumed here to be finite-
dimensional (Whitney theorem) and can be selected to be also isometric (Nash
theorem), this choice having the advantage to preserve the quadratic part
of the independent kinetic energy that can be sometimes attributed to the
material substructure (see relevant comments in [13]). However, the theorems
indicating the availability of the embedding of M in a linear space do not
assure the uniqueness of the embedding itself. More precisely, the embedding
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is neither unique nor rigid (M can be at the end folded in various manners in
the process). Additionally, the dimension of the target linear space depends
on the regularity of the embedding (Nash theorem). In all cases, if one finds
convenient embedding M in a linear space for technical purposes, for example
for constructing appropriate finite elements for some special model of complex
bodies, the choice of the embedding becomes strictly a matter of modelling.
Of course, such a peculiarity disappears when the complex material under
examination admits a manifold of substructural shapes which is coincident
with a linear space, as in the case of micromorphic or, more generally, affine
bodies (see [18]).

One might näıvely claim thatM is always a linear space so that the scheme
of affine bodies (the one discussed for example in [7], [9]) is sufficient for ana-
lyzing the material complexity at substructural level.

Solids with distributed magnetic spins in conditions of magnetic saturation
(M coincides with S2) and the superfluid helium 4He (where M = S1 ⊂ C)
are elementary counterexamples to the claim. With the aim of unifying the
treatment of as many special cases of physical interest as possible, it is then
necessary to consider M as an abstract manifold prescribing only the minimal
geometrical properties necessary to build up the essential objects which are
useful for constructing the mechanics of complex bodies. In this case the
existence of the microstress S (x) ∈ Hom(Rd, T ∗

ν(x)M) can be assumed a priori

(an intrinsic representation of S in terms of measures is presented in [19] where
the primary object considered is the inner power, instead of the external one).

Without investigating further on the question, I assume here that τ de-
pends linearly on the normal at x to ∂b so that the natural expression of the
external power of all actions over the generic part b along y and ν is then

Pext
b (ẏ, ν̇) :=

∫

b

(b · ẏ + β · ν̇) dx +

∫

∂b

(Pn · ẏ + Sn · ν̇) dHd−1.

A crucial axiom is the requirement that the power Pext
b is invariant under

isometric changes in observers, that is under the action of the semi-direct
product R̂dnSO (d) over the ambient space and the action of elements of G over
M induced by the homeomorphism h introduced above (see also additional
remarks in [11], [13], [15]). Here, a weaker axiom is used, namely invariance
of the power under the sole action of SO (d) in space and the corresponding
action of G over M through h. It is thus required that observers differing only
by a proper rotation evaluate the same power.

Axiom 1 (SO (d) invariance) At mechanical equilibrium the external power
of all actions on any part of B is invariant under rotational semi-classical
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changes in observers, namely

Pext
b (ẏ∗, ν̇∗) = Pext

b (ẏ, ν̇) (3.3)

for any choice of the rotational velocity q (t) ∈ R̂d and any b ∈ P (B).

Theorem 1 (i) If for any b the vector fields x 7→ Pn and x 7→ A∗Sn are
defined over ∂b and are integrable there, the integral balances of actions on b

hold: ∫

b

b dx +

∫

∂b

Pn dHd−1 = 0, (3.4)

∫

b

((y − y0) ∧ b +A∗β) dx +

∫

∂b

((y − y0) ∧ Pn +A∗Sn) dHd−1 = 0. (3.5)

(ii) Moreover, if the tensor fields x 7→ P and x 7→ S are of class C1 (B0) ∩
C0(B̄0) then

DivP + b = 0 (3.6)

and there exist a covector field x 7→ z ∈ Tν(x)M such that

skw (PF ∗) =
1

2
e (A∗z + (DA∗)S) (3.7)

and

DivS − z + β = 0, (3.8)

with z = z1 + z2, z2 ∈ KerA∗. (iii) If the rate fields (x, t) 7−→ ẏ (x, t) ∈ R̂d

and (x, t) 7−→ ν̇ (x, t) ∈ Tν(x)M are differentiable in space, the local balances
imply

Pext
b (ẏ, ν̇) = P int

b (ẏ, ν̇) (3.9)

where

P int
b (ẏ, ν̇) :=

∫

b

(P · Ḟ + z · ν̇ + S · Ṅ) dx.

Above e is Ricci’s alternating index. P int
b (ẏ, ν̇) is called an inner (or inter-

nal) power.
PROOF: The immediate consequence of the axiom of SO (d) invariance

is the integral balance of moments (3.5) obtained by using (3.1) and (3.2)
in (3.3). In (3.1) the point y0 is arbitrary. As a consequence, by taking an
arbitrary vector w ∈ R̂d, one can substitute y0 with y0 + w in (3.5). Such a
substitution corresponds to a simple shift of the centre of the rotation of one
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observer with respect to the other. By subtracting (3.5) from its counterpart
calculated at y0 + w, one then gets

w · (
∫

b

b dx +

∫

∂b

Pn dHd−1) = 0,

which corresponds to (3.4) as a consequence of the arbitrariness of w. Note
that the substitution y0 −→ y0 + w is possible due to the linear structure of
R̂d, a structure that is in general not available over the manifold of substruc-
tural shapes M. Under the regularity hypotheses above, the local balance (3.6)
follows as usual by exploiting Gauss theorem and the arbitrariness of b. The
same localization procedure applied to the integral balance (3.5) and the validity
of (3.6) imply the local balance

ePF ∗ − (DA∗)S = A∗ (DivS + β) .

Since A∗ (ν) ∈ Hom(T ∗
vM, R̂d), two information are available from this equa-

tion: (1) At each ν ∈M the difference ePF ∗−(DA∗)S is the image in R̂d of a
covector in T ∗

vM, let say z. (2) Such a covector is just equal to DivS+β. The
equation (3.9) follows by direct calculation under the validity of the pointwise
balances (3.6) and (3.8).

Of course, the balance equations above include the dynamic case because
the bulk actions can be decomposed additively in their inertial and non-inertial
parts, the latter being identified by requiring that their power balances the
rate of change of the kinetic energy. In this procedure it is assumed that the
energy is the sum of macroscopic and substructural contributions. For the sake
of conciseness the topic is not developed here (see [13] for the details).

Theorem 1 is the same that can be obtained by imposing as an axiom
the invariance of the external power under isometric semi-classical changes in
observers mentioned earlier (see [11]). Such an equivalence underlines that
the integral balance of standard forces is a peculiar consequence of the ‘rigid’
structure of R̂d (its linear structure) and is associated with one of the Killing
fields of the metric in the ambient space (see [21] for the analogous observa-
tion in the case of simple bodies). The same property is not available over
M straight away. In fact, it has been assumed here that the manifold of sub-
structural shapes is abstract so that it does not coincide with a linear space
in general. For this reason the totals of the substructural actions are not de-
fined a priori, as mentioned above in discussing the possible path toward the
proof of the existence of the microstress S. Consider, for example, the field
x 7−→ β (x) ∈ T ∗

ν(x)M that is β : B −→ T ∗M. The target space T ∗M is
not a linear space so that the integral of β on any part b of B is not de-
fined unless M itself is a linear space. Analogous remarks hold for the fields
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x 7−→ z (x) ∈ T ∗
ν(x)M and x 7−→ (Sn) (x) ∈ T ∗

ν(x)M. As a consequence, not
only an integral balance of substructural actions does not follow from the re-
quirement of invariance of the power under changes in observers but it is even
not defined. Moreover, the fact that β and S appear only in the balance of
moments does not means that they represent (micro) couples because in the
integral balance of moments they are multiplied by the the formal adjoint of
A which maps at each ν elements of TνM onto elements of R̂d.

Various alternative paths can be followed to get pointwise balances of ac-
tions. The comments below apply to them.

1. One could postulate the integral balances of standard and substructural
actions as first principles. However, as pointed out above, such a point
of view can be adopted only in the (very) special case in which M is a
linear space. When it is not the case, the balance of substructural actions
cannot be postulated, because the integrals appearing are not defined.

2. One could adopt the virtual power procedure proposed in [7] for affine
bodies, by postulating in fact the weak form of the balance equations.
In this case one must postulate not only the expression of the external
power but also the internal power, the power of the inner actions. In
this way one should postulate the existence of the inner self-action z. In
contrast, in Theorem 1 the existence of z is proven.

3. One could adopt the point of view by Green, Rivlin and Naghdi along
the path indicated by Marsden’s and Hughes’s theorem in [16] by pos-
tulating the expression of the first principle of thermodynamics (a point
of view exploited in [3] with reference to isometric changes in observers).
In this case, however, one is forced not only to postulate the existence of
the energy but also to prescribe its functional dependence on the state
variables, in contrast with the minimalist approach followed in Theorem
1. Such a point of view is however one of the manners useful to prove
the covariance of the pointwise balance of actions (that is the invariance
under the action of the entire group of diffeomorphisms on the ambi-
ent space and the action of G on M). The other ways are given by
the exploitation of Noether theorem and/or d’Alembert-Lagrange type
principles in presence of viscous-type dissipation at macroscopic and/or
substructural level (see [4] and [13] for the relevant results). A require-
ment of covariance allows one to eliminate the indetermination given by
z2 ∈ KerA∗: in this case z2 vanishes identically.

When ν represents only a generic property of the substructures not asso-
ciated with their geometry in space, changes of frame in the ambient space
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and over M can be considered disconnected. By imposing invariance of the
external power with respect to isometric semi-classical changes in observers,
one gets two distinct integral balances of moments:

∫

b

(y − y0) ∧ b dx +

∫

∂b

(y − y0) ∧ Pn dHd−1 = 0

and ∫

b

A∗β dx +

∫

∂b

A∗Sn dHd−1 = 0.

Theorem 1 can be rewritten. The sole difference in this case is that 3.7 splits
in the two equations

skw (PF ∗) = 0, skw (A∗z + (DA∗)S) = 0. (3.10)

4 The energetic scenario and the existence of

ground states

4.1 A priori restrictions on constitutive structures.

After describing the morphology of the generic material element and represent-
ing the actions along a motion, the local energetic scenario must be specified.

At the macroscopic scale, since deformation is accounted for, each mate-
rial element (considered as a whole) is assumed in energetic contact with the
neighboring fellows. The consequent interactions are standard tensions.

At the scale of the substructure, i.e. within each material element, some
alternatives are possible (see additional remarks in [14]). They are classified
under suggestion of the common path followed in statistical physics.

1. The generic material element is a closed system with respect to its sub-
structure: there is no migration of substructures out of the material
element, and the substructure itself does not interact energetically with
the neighboring fellows.

2. The substructure of the generic material element is in energetic contact
with the substructures of the neighboring elements. No migration occur.

3. The material element is an open system: both energetic contact and
migration of substructures are possible.

Here the attention is focused on case 2 mainly. Remarks are added on case
1. Case 3 is not touched here for the sake of brevity (see [12] for relevant
developments).



246 Paolo Maria Mariano

The procedure to establish a priori constitutive restrictions is the stan-
dard one, based on the Clausius-Duhem inequality which is written here in
isothermal form as a mechanical dissipation inequality. It prescribes that

d

dt
Ψ (b)− Pext

b (ẏ, ν̇) ≤ 0, (4.1)

for any choice of the rate fields. Ψ (b) is the total free energy of b along
(x, t) 7−→ (y (x, t) , ν (x, t)). The standard assumption is that Ψ (b) is abso-
lutely continuous with respect to the volume measure so that there is a density
ψ such that

Ψ (b) =

∫

b

ψ dx.

The constitutive dependence on the state variables must then be assigned not
only for ψ but also for the stress measures (namely P , z and S). Simple
assumptions are as follows:

ψ = ψ (F, ν, N) , P = P (F, ν, N) , z = z (F, ν,N) , S = S (F, ν, N) .

If ψ admits partial derivatives with respect to its entries, the arbitrariness of
b and equation (3.9) imply the local dissipation inequality

(∂F ψ − P ) · Ḟ + (∂νψ − z) · ν̇ + (∂Nψ − S) · Ṅ ≤ 0. (4.2)

The possibility to choose arbitrarily the rate in (4.2) from any given state
(F, ν, N) implies the classical relations (see also [1])

P = ∂F ψ (F, ν, N) , z = ∂νψ (F, ν, N) , S = ∂Nψ (F, ν, N) . (4.3)

The mechanical dissipation inequality (4.1) forbids the dependence of ψ
on the rate of the fields involved. In fact, if ψ would depend on (let say) ν̇,
in the reduced version of the mechanical dissipation inequality a term of the
type ∂ν̇ψ (F, ν,N, ν̇) · ν̈ would appear with no correspondence in the structure
of the internal power P int

b (ẏ, ν̇) where no action developing power in ν̈ is
presented. The arbitrariness of ν̈ would imply then ∂ν̇ψ = 0. In contrast,
P , z and S may depend on the rates of the state variables when viscous-like
effects occur at various scales. The dependence on the the rate of the state
variables is compatible with the mechanical dissipation inequality 4.1, provided
that one assumes the validity of an additive decomposition of P , z and S into
conservative and dissipative parts. By indicating the triple (F, ν, N) by ς, one
then presumes that

P = P c (ς) + P d (ς, ς̇) , z = zc (ς) + zd (ς, ς̇) , S = Sc (ς) + Sd (ς, ς̇) .
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Such decompositions must be supplemented by the assumption that the conser-
vative components are determined by the free energy. The use of (4.1) implies
once more the relations (4.3) for the conservative addenda and the reduced
dissipation inequality

P d · Ḟ + zd · ν̇ + Sd · Ṅ ≥ 0. (4.4)

Consequently, P d, zd and Sd are linear in Ḟ , ν̇ and Ṅ . Additional assumptions
on the structure of the dissipation can be made.

1. One may presume that strong dissipation conditions are satisfied a priori
(that is independently of 4.1), namely

P d · Ḟ ≥ 0, zd · ν̇ ≥ 0, Sd · Ṅ ≥ 0.

Then one may write

P d = aP Ḟ , zd = azν̇, Sd = aSṄ ,

with aP , az and aS positive definite (scalar valued) state functions.

2. One could consider a strong condition for the macroscopic dissipation,
namely

P d · Ḟ ≥ 0

and a weaker dissipation condition for the substructure:

zd · ν̇ + Sd · Ṅ ≥ 0.

In this case, P d is equal to aP Ḟ while zd and Sd are linear functions of
ν̇ and Ṅ .

3. Other conditions can be presumed to hold. They may describe differ-
ent viscous-like effects. Dissipative effects of plastic-like type can be
accounted for. The standard plasticity theory and its strain gradient
version fall within this scheme, when one identifies ν with the plastic
strain. In all cases of plastic-like behavior a flow condition in terms
of the subdifferential of some admissible region in the state space must
be involved (here the existence of a dissipation pseudo-potential is as-
sumed). Energetic solutions to the resulting evolutionary problem can
be obtained under appropriate hypotheses (relevant analytical tools can
be found in [17], [6]).
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One may ask what is the relation with standard internal variable schemes.
In their initial formulation, such schemes have been proposed with the aim of
describing the removal from thermodynamical equilibrium (see [5], [10]). In
this (historical) sense internal variables are by definition not observable and
play a parametric role at equilibrium, in contrast with the approach proposed
here. The derivatives of the energy with respect to the internal variables and
their derivatives are not considered true interactions, rather they are thermo-
dynamic affinities (see once more [17], [6]). They do not appear in the expres-
sion of the external power. In contrast, I consider ν as an observable quantity
the variations of which contribute to the equilibrium by means of true inter-
actions. This is the reason for which I call ν morphological descriptor rather
than internal variable. Connections are possible between the internal variable
scheme and the multifield scheme that I discuss here. Assumptions should be
necessary in order to avoid to render the comparison only formal.

4.2 Ground states

Consider a complex body displaying a pure conservative behavior. In this case
one may identify the free energy with the elastic one. In absence of inertia,
the energy of the whole body is then

E (y, ν) :=

∫

B
e (x, y (x) , F (x) , ν (x) , N (x)) dx,

where the density e is the difference between the elastic energy ei and the
potential of body forces ee

1 + ee
2, the latter being decomposed in the part

associated with standard gravitational forces (ee
1) and the potential of pos-

sible external fields acting directly over the substructure (ee
2), namely e =

ei (x, F ,ν,N)− (ee
1 (u) + ee

2 (ν)), with ei the elastic energy.

A pair of fields (u, ν) satisfying the variational principle

min
y,ν

E (y, ν)

is called ground state. Conditions for the existence of ground states follow
constitutive assumptions on (i) the nature of the functional classes in which
one places y and ν, (ii) the ‘structural’ properties of e.

Let y : B → R̂d be a Sobolev map, namely an element of W 1,1(B, R̂d).
Denote first by M (F ) the d−vector in R̂2d collecting all the minors of F (i.e.
of Dy). M (F ) is then an element of Λd(Rd × R̂d).

It is possible to construct the d−current integration Gy over the graph of
y. Precisely, Gy is the linear functional on smooth d−forms ω with compact
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support in B × R̂d defined by

Gy :=

∫

B
〈ω (x, y (x)) ,M (Dy (x))〉 dx.

The boundary current associated with Gy is indicated by ∂Gy and defined

by ∂Gy (ω) := Gu (dω), ω ∈ Dd−1(B × R̂d) with Dd−1(B × R̂d) the space of

(d− 1)−forms with compact support in B× R̂d (details on the nature and the
properties of Cartesian currents can be found in [8]).

The functional spaces in which the existence of minima is investigated must
be specified. Their choice has constitutive nature.

1. The macroscopic deformation y is assumed to be a weak diffeomorphism
(in symbols y ∈ dif 1,1(B, R̂d)). In fact, y is considered a W 1,1(B, R̂d)
map such that (i) |M (Dy)| ∈ L1 (B), (ii) ∂Gy = 0 on Dd−1(B × R̂d),

(iii) det Dy (x) > 0 for almost every x ∈ B, (iv) for any f ∈ C∞
c (B× R̂d)

∫

B
f (x,y (x)) det Dy (x) dx ≤

∫

R̂d

sup
x∈B

f (x,w) dw.

In particular, the subspace

dif r,1(B, R̂d) :=
{

y ∈ dif 1,1(B, R̂d)| |M (Dy)| ∈ Lr (B)
}

,

for some r > 1, is of special interest below.

2. It is assumed that (i) M has Riemannian structure with (at least)
C1−metric gM, and (ii) covariant derivatives are explicitly calculated by
making use of the natural Levi-Civita connection. The C1−Riemannian
structure implies thatM can be isometrically embedded in a linear space
isomorphic to RM (for some M) by Nash theorem: it is then considered
as a closed submanifold of RM . It is then assumed that ν ∈ W 1,s (B0,M),
s > 1, with

W 1,s (B,M) :=
{
ν ∈ W 1,s

(B,RM
) | ν (x) ∈M for a.e. x

}
.

The energy functional E is then extended to

Wr,s := dif r,1(B, R̂d)×W 1,s (B,M) .

Assumptions on the structural properties of the energy density e must also
be specified. e cannot be convex in F for the standard objectivity argument
but it can be convex in N .
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• e is assumed to be polyconvex in F and convex in N . There exists
a Borel function Pe : B × R̂d × M × Λd(Rd × R̂d) × MM×d → R̄+,
with values Pe (x, y, ν, ξ, N), which is (i) l. s. c. in (y, ν, ξ, N) for
a.e. x ∈ B, (ii) convex in (ξ,N) for any (x, y, ν), (iii) and also such
that Pe (x, y, ν,M (F ) ,N) = e (x, y, ν, F ,N) for any (x, y, ν, F ,N) with
det F > 0.

• By assumption e satisfies the growth condition

e (x, y, ν, F ,N) ≥ C1 (|M (F )|r + |N |s) + ϑ (det F )

for any (x, y, ν, F ,N) with det F > 0, r, s > 1 and C1 > 0 constants, and
ϑ : (0, +∞) → R+ a convex function such that ϑ (t) → +∞ as t → 0+.

Theorem 2 ([15]) The functional E achieves the minimum value in the classes

Wd
r,s := {(y, ν) ∈ Wr,s|y = y0 on ∂By, ν = ν0 on ∂Bν}

and

Wc
r,s :=

{
(y, ν) ∈ Wr,s | ∂Gy = ∂Gy0 on D2(Rd × R̂d), ν = ν0 on ∂Bν

}
.

In the theorem above ∂By and ∂Bν are the portions of the boundary ∂B
where boundary data are assigned in terms of y and ν respectively. Details
and comments on the physical consequences of the assumptions above can be
found in [15].

5 Notes and complements

The first variation of the energy functional E (y, ν) along C1 minimizers allows
one to obtain the balances of standard and substructural actions (3.6) and
(3.8). The condition (3.7) is a consequence of a requirement of objectivity for
the elastic energy ei. Remarks leading to (3.10) also apply. In addition, hori-
zontal variations can be made by altering the reference place by means of the
diffeomorphism Φε (x) := x+εφ (x), φ ∈ C1

0 (B,R3), ε a real parameter. Φε (x)
leaves unchanged the boundary ∂B for ε sufficiently small. In fact, horizon-
tal variations can be considered as a sort of relabeling of the reference place.
One then defines yε (x) := y (Φ−1

ε (x)) and νε (x) := ν (Φ−1
ε (x)), and obtains

a mapping ε 7−→ E (yε, νε). In case of appropriate smoothness, differentiation
with respect to ε gives rise to the configurational balance

DivP+ ∂xe = 0. (5.1)
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where P = eiI − F ∗P − N∗S ∈ Aut
(
Rd

)
is the extended Hamilton-Eshelby

tensor in the mechanics of complex bodies (see [11]). In the smooth case (5.1)
is essentially the pull back in B of the balance of standard forces (3.6).

Different is the stage when the variation is calculated on non-smooth mini-
mizers, namely on Wd

r,s where it is sure by Theorem 2 that ground states exist.
The main difficulty is that Sobolev maps may not admit tangential derivatives
so that the balance of standard forces in terms of first Piola-Kirchhoff stress
(3.6) cannot be derived. One may compute horizontal variations, variations
overM and the variation of the actual shape Ba. I summarize here the relevant
results (see for details [15]).

1. Under appropriate growth conditions for the polyconvex extension of the
energy and its derivatives with respect to x, M (F ) and N , one proves
that (i) F ∗P and N∗S belong to L1 (B) and (ii) the balance (5.1) holds
in terms of distributions.

2. An additional assumption on the growth of |∂yPe| implies that (i) σ :=

(det F )−1 PF ∗ ∈ L1
loc(ỹ (B0) , R̂3⊗ R̂3), with x 7−→ ỹ (x) the Lusin repre-

sentative of y and (ii) the balance of standard forces hold in distributional
sense in terms of the Cauchy stress σ.

3. Variations over M, obtained by means of smooth curves ε → ϕ̄ε ∈
Aut (M), ϕ̄ ∈ C1 (M), and an additional assumption on the growth of
|∂νPe|, allow one to show that S ∈ L1 (B0,R3∗ ⊗ T ∗M) and (ii) the
balance of substructural actions (3.8) holds in the sense of distributions.
Such a result excludes the interpretation (suggested by some author) of
the balance of substructural actions as a sort of balance of configurational
actions, unless the word configurational is used in a sense a little bit far
from the current one.

The remarks in this section contribute to the current debate on the nature
of configurational actions.

Acknowledgements. This paper is the extended version of a talk that I
delivered at Zurich in July 2007, during the ICIAM. The support of the Italian
National Group for Mathematical Physics, GNFM-INDAM, is acknowledged. I
whish to thank also the ”Centro di Ricerca Matematica Ennio De Giorgi” of the
”Scuola Normale Superiore” at Pisa for providing an appropriate environment
for scientific interactions.



252 Paolo Maria Mariano

References

[1] Capriz G. (1989), Continua with microstructure, Springer Verlag, Berlin.

[2] Capriz G., Virga E.G. (1990), Interactions in general continua with mi-
crostructure, Arch. Rational Mech. Anal., 109, 323-342.

[3] Capriz G., Virga E.G. (1994), On singular surfaces in the dynamics of
continua with microstructure, Quart. Appl. Math., 52, 509-517.

[4] de Fabritiis C., Mariano P.M. (2005), Geometry of interactions in complex
bodies, J. Geom. Phys., 54, 301-323.

[5] De Groot S.R., Mazur P. (1962), Non-equilibrium thermodynamics, North-
Holland, Amsterdam.

[6] Francfort G., Mielke A. (2006), Existence results for a class of rate-
independent material models with nonconvex elastic energies, J. Reine
Angew. Math., 595, 55-91.

[7] Germain P. (1973), The method of virtual power in continuum mechanics,
Part 2: microstructure, SIAM J. Appl. Math., 25, 556-575.
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Mehanika kompleksnih tela: komentar o unificiranom
modelovanju materijalnih podstruktura

Diskutuju se osnovne postavke opšteg okvira za gradjenje modela mehanike
kompleksnih tela. Posebna pažna se poklanja reprezentaciji materijalnih ele-
menata, uslovima postojanja nosećih stanja u konzervativnom ustrojstvu kao
i interpretaciji raznih zakona balansa koji se pojavljuju.
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