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Abstract

The present investigation focuses on an observation regarding the initial
elastic response of a triangular geometrically and structurally disordered
lattice during medium-to-high strain rate loading. Namely: a transition
from the short-time modulus of elasticity to the long-time one, which
is not accompanied by the corresponding change of the stiffness tensor.
It is demonstrated that the difference between the two moduli is, in
the case of the homogeneous biaxial test simulations performed herein,
a consequence of the geometrical and structural disorder “quenched”
within the lattice. The investigation is performed on the triangular lat-
tice with the first-neighbor central interactions under practically iden-
tical in-plane conditions over eight decades of strain rate.
Keywords: Lattice, Discrete Models, Modulus of elasticity, Disorder,
Short-time response, Long-time response, Plane strain

1 Introduction

The disordered two-dimensional (2D) triangular lattice is used extensively to
study damage evolution and fracture of inhomogeneous or multi-phase systems
(e.g., [1, 4, 5, 6, 9, 10]). The objective of this study is to elucidate a perplexing
change of modulus of elasticity that accompanies dynamic response of said
lattice in the medium-to-high strain rate domain [5, 6].

The dynamic simulations of a uniaxial homogeneous tension test presented
herein are performed under practically identical in-plane stress/strain condi-
tions, although they span the strain rate range of eight orders of magnitude.
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The lattice simulations are performed at twelve different loading rates within
the range [1 s−1, 1 · 108 s−1] in such a way that the normal stress in the load-
ing (longitudinal) direction is the only non-zero in-plane stress component.
Hence, normal stress and strain components in the longitudinal direction are,
for brevity, called stress and strain, unless specified otherwise.

The plot of the stress (divided by the modulus of elasticity of the pristine
material) versus the strain is presented in Fig. 1, for three typical strain rates.1

The curves in Fig. 1 correspond intentionally to the largest level of geometrical

Figure 1: Three typical stress-strain curves for the tension test for geometri-
cally and structurally disordered sample (α = 0.02, β = 0.5).

disorder, α ≈ 0, possible for this model (Section 3), which results in the most
extreme difference between the two slopes (Table 1).

The slopes of the dashed stress-strain curves, corresponding to ε̇ = 1 ×
108 s−1 and ε̇ = 1 × 103 s−1, appear to be typical of the higher (from 3 ×
105 s−1 to 1 × 108 s−1) and the moderate loading rates (from 1 s−1 to 1 ×
104 s−1), respectively. The solid stress-strain curve at ε̇ = 1×105 s−1, with the
characteristic “hump”, marks the transition between the two groups.

A closer examination reveals that the described behavior is not sensi-
tive to the choice of the computational time step, the sample aspect ratio,
or the specifics of either the loading procedure or details of the constitutive

1The stress is the sample-average quantity obtained in the usual molecular dynamics
manner [11].
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Table 1: Ratio of the short-time and long-time moduli of elas-
ticity for various combinations of geometrical and structural dis-
order.

E
(ε)
st

/
E

(ε)
lt

α
0.02 0.2 0.5 1

β

0.2 1.59 1.45 1.30 1.22
0.5 1.35 1.25 1.13 1.06
1 1.27 1.17 1.06 1.00

law. Needless to say, the behavior is also insensitive to the particular realiza-
tions of the geometrical and structural disorder (reflected by the choice of the
pseudorandom-number-generator seed).2

2 Elastic properties of two-dimensional sys-

tems

The Hooke’s law for a three-dimensional isotropic material can be written as

ε11 =
1

E
[σ11 − υ (σ22 + σ33)] and ε12 =

1 + υ

E
σ12 (1)

along with four other similar expressions. In Eq. (1) E and υ are the me-
chanical properties of the material, namely, the modulus of elasticity and the
Poisson’s ratio, respectively.

It is often convenient, when dealing with 2D problems, to write the stress-
strain relationship in the similar form

ε11 =
1

E(2D)

[
σ11 − υ(2D) σ22

]
and ε12 =

1 + υ(2D)

E(2D)
σ12 (2)

where coefficients E(2D) and υ(2D) are, formally, 2D counterparts of the ma-
terial properties E and υ. Obviously, E(2D) and υ(2D) are nothing more then
coefficients which are obtained by combining the actual material properties
under the conditions of:

•the plane strain (2D = ε : ε33 = ε13 = ε23 = 0)

E(ε) =
E

1− υ2
(3)

2The identical initial elastic response is obtained by performing 30 statistical realizations
with different seed numbers.
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•the plane stress (2D = σ : σ33 = σ13 = σ23 = 0)

E(σ) = E (4)

Specifically, for the plane-strain problem with the imposed constraint

σ22 = 0 ⇔ ε22 = − υ

1− υ
ε11 (5)

the slope of the σ11 − ε11 curve is E(ε) = E
/
(1− υ2).

The plane-strain stiffness components are sample-average quantities ob-
tained in the usual molecular dynamics manner during simulations [11]. Hence,
it is convenient to express the modulus of elasticity, E, in terms of the plane-
strain stiffness components

E =
C

(ε)
12

(
3 C

(ε)
11 − 4 C

(ε)
12

)

C
(ε)
11 − C

(ε)
12

(6)

Eq.(6) follows from the stiffness coefficient matrix

[
C

(ε)
ab

]
=




C
(ε)
11 C

(ε)
12 C

(ε)
16

C
(ε)
21 C

(ε)
22 C

(ε)
26

C
(ε)
61 C

(ε)
62 C

(ε)
66


 =

E

(1 + υ ) (1− 2υ)




1− υ υ 0
υ 1− υ 0
0 0 (1− 2υ)/2




(7)
corresponding to the apparent plane-strain constitutive equations [8]. (Notice
the compacted notation in Eqs. (6) and (7): 11 → 1, 22 → 2, and 12 → 6.)

Also, notice that the isotropy condition C
(ε)
66 =

(
C

(ε)
11 − C

(ε)
12

)/
2 and the

symmetry condition C
(ε)
12 = C

(ε)
66 imply that

C
(ε)
12 =

C
(ε)
11

3
(8)

Since Eq.(8) is satisfied by 2D lattices with the central-force interaction,
Eq.(6) is reduced to

E =
5

6
C

(ε)
11 (9)

while from Eqs. (3) and (9) it follows that

E(ε) =
8

9
C

(ε)
11 (10)
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Finally, keeping in mind the relationship between the plane-strain modulus
of elasticity and the link stiffness of the triangular lattice with the nearest-
neighbor central-force interaction, E(ε) = 2 k

/√
3, [7], it is obvious, based on

Eqs. (3) and (9) that

E =
5
√

3

8
k (11)

Eq.(11) provides an important connection between the modulus of elastic-
ity and the link stiffness (or the average link stiffness, k̄, in the case of the
structurally disordered lattice, β < 1; see Section 3) of the said lattice.

3 Details of the simulation

The simulations of the dynamic uniaxial tension test presented herein are per-
formed under the homogeneous loading conditions, which implies that an ini-
tial velocity field is imposed on the lattice at t = 0 [5].3 The initial velocity
± ε̇ L/2 at the top (+) and bottom (−) surface of the specimen, is defined

in terms of the prescribed strain rate, ε̇ = L̇
/

L, where L is the length of

the sample, and dot is used to denote differentiation with respect to time. A
homogeneous velocity gradient is imposed to all other particles in the loading
direction according to the linear form ẏ = ε̇ y. Subsequently, at t > 0, only
velocities of the particles located at the top and bottom boundaries (±L/2)
are controlled, while the motion of the other particles is governed by equation
of motion. The lateral inertia is overcome in a similar manner by applying a
velocity ẋ = υ0 ε̇ x to all lattice particles at t = 0, where υ0 is the Poisson’s
ratio. As a direct consequence of the initial velocity field applied perpendic-
ular to the loading (y−) direction, the stress in the lateral (x−) direction is
approximately zero regardless of the strain rate of the external load applied in
the longitudinal direction (i.e., σx = σ2 ≈ 0 ∀ε̇).

The lattice link properties are a combination of a linear force-elongation
relation in tension (the Hookean potential), and a nonlinear force-deformation
relation in compression (inspired by the Born-Meyer potential [7]).

The lattice morphology is defined by the coordination number z and the
link length λ. The average distance between two neighboring particles (λ̄)

3Although the inhomogeneous tension simulation is a natural simulation setup in a sense
that it mimics the corresponding laboratory experiment, it is, unfortunately, limited to
moderate strain rates; at high strain rates the top- and bottom-boundary particles, to which
the prescribed displacement is applied, separate from the rest of the lattice since the fracture
criterion is defined in terms of a relatively small critical link extension and the loading power
is extremely high. This unavoidable shortcoming limits application of the inhomogeneous
loading models.
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is the model resolution length (lc). In the pristine state all lattices used in
this study are topologically ordered by selecting z = 6 for all bulk-particles.
The lattice is geometrically disordered since the equilibrium distances between
particles (initial link lengths ≡ λ0) are sampled from the normal distribution
within the range

[
αλ̄ 6 λ0 6 (2− α) λ̄

]
. The geometrical-order parameter α,

(0 6 α 6 1), is the model parameter that defines bandwidth of the geometrical
disorder of the material (Fig. 3). The lattice is also structurally (chemically)

Figure 2: Time history of the stress normalized by the corresponding strain
rate for the tension test at eight different loading rates.

disordered. The link stiffnesses are uniformly distributed within the range[
βk̄ 6 k 6 (2− β) k̄

]
, where β, (0 6 β 6 1), is the structural-order parameter

defining the stiffness distribution.

The uniaxial tension simulations are performed on the 192×227 triangular
lattice. The lattice size is chosen based on a size-effect analysis to ensure the
size-independency of the results.

The reduced-units geometric and structural parameters of the lattice are:
the mean link stiffness k̄ = 50, the mean equilibrium distance between particle
sites λ̄ = lc = 1, while the geometrical-order parameter, α, and the structural-
order parameter, β, are variables subject to this analysis.
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Figure 3: Time history of the stress normalized by the corresponding strain
rate for the homogeneous tension test at three different levels of geometrical
disorder.

4 Results

The history of the stress divided by the corresponding loading rate for eight
different strain rates (the four lowest loading rates are overlapped by the solid
line) is presented in Fig. 2. It is evident that the two characteristic slopes are
the short-time and long-time moduli, observed previously in Fig. 1, presented
herein in a more convenient graph. The solid curve is common for all loading
rates that remain elastic for the given graph limits; the departures from that
curve mark onsets of the inelastic deformation that is characterized by damage
nucleation and, depending on the loading rate, different levels of microcrack
cooperative phenomena. It may be inferred based on Fig. 2 that the char-
acteristic transition from the short-time modulus to the long-time modulus,
observed in Fig. 1, is common for all loading rates – the only difference is
that for the more rapid loading rates the specimen fails before the transition
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time is reached. This is consistent with the observation of the stiffness tensor
evolution: namely, the stiffness tensor components (for the same α) remain
unchanged as long as the deformation is elastic. Another observation is that
the ratio of the short-time and long-time moduli depends strongly on the ge-
ometrical and structural disorder, defined, respectively, by parameters α and
β (see also Fig. 3).4 This qualitative observation is quantified in Table 1 with
three significant digits.

Finally, two characteristic times, describing the E
(ε)
st → E

(ε)
lt transition, are

depicted in Fig. 3. The crossover time, defined by equal normalized stress
(σ/ε̇) regardless of the geometrical order parameter, is designated by tx. The
transition time at which the Est → Elt transition is completed is designated by
t©. The latter characteristic time is independent of the geometrical disorder
level (i.e., α-independent). Fortuitously or not, the simulation data suggest
that

to ≈ 2
lc
C0

≈ 2 t× (12)

where C0 is velocity of the elastic longitudinal wave propagation.
The stiffness components and apparent plane-strain elastic moduli for vari-

ous combinations of geometrical and structural disorder are presented in Tables
2 and 3.

Table 2: Stiffness components and elastic moduli for structurally
ideal (β = 1) and geometrically disordered triangular lattice.

α 0.02 0.4 0.6 1.0
C11 = C22 = 3C12 75.0 68.7 66.6 64.8

E
(ε)
st 65.3 60.5 58.8 57.6

E
(ε)
lt 49.6 54.8 56.3 57.6(
E

(ε)
st + E

(ε)
lt

)/
2 57.5 57.7 57.6 57.6

Note: For the triangular lattice with the first-neighbor central in-

teractions E(ε) = 2 k̄
/√

3 = 57.7 [7] and E(ε) = 8 C
(ε)
11

/
9

It is obvious from these results that the triangular lattice is equivalent to
the elastic solid under the plane strain conditions only in absence of disorder
(α = 1, β = 1). As long as the disorder is moderate (α > 0.5, β > 0.5) the
discrepancy between the lattice and solid E(ε) is within 10% for any combi-
nation of α and β (Tables 1 through 3). It is interesting to note that in the

4The emphasis is on the effect of disorder because of the homogeneous simulation setup
that, as previously mentioned, cancels out the lateral inertia effects. In absence of this
numerical artifice, at the onset of high strain rate loading ε2 (t = 0+) ≈ 0 and E(ε) ≈ C

(ε)
11 .
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Table 3: Stiffness components and elastic moduli for geometrically
ideal (α = 1; all grains are perfect hexagons) and structurally dis-
ordered triangular lattice under the homogeneous tension.

β 0.0 0.5 0.8 1.0
C11 = C22 = 3C12 64.8 64.8 64.8 64.8

E
(ε)
st 56.8 57.3 57.5 57.6

E
(ε)
lt 39.0 54.1 57.0 57.6(
E

(ε)
st + E

(ε)
lt

)/
2 47.9 55.7 57.3 57.6

case of structurally ideal lattice (β = 1) the average value of the short-term
and long-term lattice moduli remains practically unchanged and corresponds
to the analytically obtained value E(ε) = 2 k̄

/√
3 [7].5

5 Conclusion

Although the triangular lattice earned its place in modeling of the elastic
behavior, damage evolution, and fracture behavior of inhomogeneous or multi-
phase systems some issues concerning limits of their applicability and draw-
backs had been recognized in the past (e.g., [2, 3, 7]). It is important to
indicate that the lattice behavior is rigorously equivalent to the behavior of
a solid only as long as the lattice is ideal (that is, in absence of disorder).
As soon as the disorder is introduced, the behavior of a solid could only be
approximated by the behavior of the 2D systems, with the degree of accuracy
that decreases with the level of disorder “quenched” within the lattice. It is
demonstrated in this study that for a strongly disordered lattice the modulus
of elasticity disagrees noticeably from its solid body counterpart.
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O elastičnom odzivu neuredjene trougaone mreže tokom
dinamičkog opterećenja

Ovo ispitivanje se bavi opažanjem koje se odnosi na inicijalni elastični
odziv trougaone, geometriski i strukturno neuredjene, mreže tokom opterećenja
u opsegu od srednjih do visokih brzina deformisanja. Radi se o tranziciji
od kratkoročnog na dugoročni moduo elastičnosti, koja nije praćena odgo-
varajućom promenom tenzora čvrstoće. Pokazano je da je razlika izmedju dva
modula, u slučaju ovde korǐsćenih simulacija homogenih dvoosnih testova na
zatezanje, posledica geometrijske i strukturne neuredjenosti mreže. Ispitivanje
je izvršeno na trougaonoj mreži sa centralnim interakcijama sa prvim sused-
ima, pod praktično identičnim ravanskim uslovima u opsegu od osam dekada
brzina deformisanja.
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