
Nanoparticles and the influence of
interface elasticity

Changwen Mi Demitris Kouris ∗

Theoret. Appl. Mech., Vol.35, No.1-3, pp. 267–286, Belgrade 2008

Abstract

In this manuscript, we discuss the influence of surface and interface
stress on the elastic field of a nanoparticle, embedded in a finite spher-
ical substrate. We consider an axially symmetric traction field acting
along the outer boundary of the substrate and a non-shear uniform
eigenstrain field inside the particle. As a result of axial symmetry,
two Papkovitch-Neuber displacement potential functions are sufficient
to represent the elastic solution. The surface and interface stress effects
are fully represented utilizing Gurtin and Murdoch’s theory of surface
and interface elasticity. These effects modify the traction-continuity
boundary conditions associated with the classical continuum elasticity
theory. A complete methodology is presented resulting in the solution
of the elastostatic Navier’s equations. In contrast to the classical so-
lution, the modified version introduces additional dependencies on the
size of the nanoparticles as well as the surface and interface material
properties.
Keywords: Surface and interface effects, nanoparticles, eigenstrains,
finite domain, micromechanics

1 Introduction

Crystal defects such as vacancies, interstitials, dislocations, grain boundaries
and stacking faults are introduced when periodic arrangements of atoms or
ions are not maintained. In the micromechanical study of solids, these defects
have been often modeled as inclusions and inhomogeneities [1, 2]. Eshelby’s
inclusion and inhomogeneity theory [3, 4, 5] has been widely used to address
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such problems and has served as the foundation of micromechanics. The va-
lidity of Eshelby’s solution relies on the size of the ellipsoidal inclusion and
inhomogeneity, i.e. the relative length scale of the semi-axes of the embedded
ellipsoid, compared to the surrounding medium. The theory is appropriate
when it models an unbounded substrate and the absolute size of the ellip-
soidal inhomogeneity is relatively large (typically larger than 100 nanometers
(nm)). In many practical applications, however, these two conditions are not
satisfied, which necessitates the development of alternative methodologies.

In engineering applications such as the fabrication of ordered two- and
three-dimensional quantum dots [6] and nano-composite materials [7, 8] the
substrate phase has a finite size and the corresponding edge effects become con-
siderable. As a result, modifications must be made to Eshelby’s inhomogeneity
theory to accommodate these boundary effects. In the last few decades, a num-
ber of researchers have contributed their efforts in investigating inclusion and
inhomogeneity problems beyond the full-space geometry. Mindlin and Cheng
[9] first studied the thermoelastic stress in a semi-infinite solid. Tsuchida et al.
[10, 11, 12] derived three dimensional solutions for displacements and stresses
in a thick plate with a spherical cavity under various loading conditions. The
eigenstrain problems associated with finite domains have also been addressed
by several authors [13, 14, 15, 16].

Inclusions and inhomogeneities with at least one dimension measured in
nanometers are commonly referred to as nanoparticles. At such a small length
scale, the elastic fields for both the nanoparticle and the encompassing medium
depend on the absolute size of the particle [17, 18, 19]. The discovery origi-
nated from the distinct properties of the substrate/nanoparticle interface, com-
pared to its associated bulk interior, which is then further strengthened by the
convex-curvature effect of the interface. Actually, this phenomenon is not
new and has been identified for a fluidic interface long time ago [20]; it is
called Laplace-Young Effect therein. The associated Laplace-Young equation,
∆P = 2f/a, describes the force balance condition across a spherical interface,
separating two fluid phases. The pressure difference ∆P across the interface
is equilibrated by twice the ratio of the fluid/fluid interface stress f over the
fluid inclusion radius. A generalized version of the Laplace-Young Equation for
interfaces separating two solid bodies, along with a constitutive equation re-
lating the interface stress and interface strain tensors have been established by
Gurtin, Murdoch and their co-authors [21, 22, 23]. These basic equations gov-
erning the mechanical behavior of solid surfaces and interfaces are referred to
as the theories of surface and interface elasticity. The applications in nanome-
chanics include studies of inclusions and inhomogeneities embedded in infinite
solids [17, 18, 19, 24, 25], semi-infinite elastic media [26, 27] and film substrates
[28].
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The objective of the present manuscript is to further extend this theoreti-
cal framework for a nanoparticle embedded in a finite spherical domain. Axi-
ally symmetric tension and eigenstrain loading are considered simultaneously.
The Papkovitch-Neuber displacement potentials formulation [29], coupled with
Gurtin and Murdoch’s theory of surface and interface elasticity [21, 22, 23] yield
an analytical solution. Compared to classical elasticity, Gurtin and Murdoch’s
formulation of elasticity has substantially increased the mathematical com-
plexity and a curvilinear analysis for a Euclidean spherical interface becomes
essential. The necessary mathematical background is addressed in the next
section, along with a brief presentation of the method of displacement poten-
tials. Gurtin and Murdoch’s interface stress boundary conditions are utilized
in Section 3 to derive the elastic states for the nanoparticle and the finite
matrix. The closed-form solution for the case of centro-symmetric loading is
given together with its classical version (without the influence of the interface
stresses). A few numerical examples are presented in Section 4 to illustrate the
effects of both the matrix/nanoparticle interface and the matrix outer surface.
The last section presents the conclusions resulting from the analytical solution
and the related numerical examples.

2 Displacement formulation and interface elas-

ticity

We consider the inhomogeneity problem in a finite spherical domain. The ge-
ometry, definition of the coordinate system, material properties, and loading
conditions are described in Fig. 1. A spherical nanoparticle of radius a is
embedded at the center of a spherical substrate with radius b. For simplicity,
both domains are treated as isotropic and linearly elastic solids. Their mate-
rial properties are represented by the shear modulus G and Poisson’s ratio ν,
where the quantities denoted by an overbar refer to the inhomogeneity. Due
to the symmetry of the problem, spherical coordinates (R, θ, ϕ) are preferred.
Geometric relations associated with Cartesian coordinates (x, y, z) and the
cylindrical system (r, θ, z) are also illustrated in Fig. 1. An axially symmetric
tension field (Tx = Ty, Tz) is applied along the outer boundary of the ma-
trix. For the eigenstrain loading sustained by the inhomogeneity we consider
a non-shear thermal expansion (ε∗x = ε∗y, ε

∗
z). The z-axis serves as the axis of

symmetry for the applied loads. Following Gurtin and Murdoch’s theory of
linear surface and interface elasticity, both the matrix/nanoparticle interface
(R = a) and the outer boundary (R = b) are treated as two-dimensional curvi-
linear thin films with an infinitesimal thickness. Three material constants, the
residual interface stress (τ0) and the Lamé constants (λ0 and µ0), represent
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(Ḡ, ν̄)

(τ0, λ0, µ0)

(τf 0, λ f 0, µf 0)

Tx

Tx

TxTx

Tz

Tz

Figure 1: A spherical particle embedded in a finite spherical domain.

the properties of the interface. For the spherical outer boundary we use the
same symbols, but with an additional subscript f .

In the absence of body forces, equations of equilibrium in terms of displace-
ments for linearly elastic and isotropic materials are expressed as [29]:

1

1− 2ν
uj,ji + ui,jj = 0, (1)

where ui represent the components of the displacement field and commas in
subscripts denote partial differentiation. Einstein’s summation rule over re-
peated indices is applicable unless otherwise stated. By convention, the Ro-
man indices denote variables belonging to bulk domains and assume values
from 1 to 3. The present problem is characterized by torsionless axisymmetry
with respect to the z-axis. In such a simplified case, the displacement vector
in equation (1) admits only two harmonic potential functions (φ0 and φ3) [29].
In terms of spherical coordinates (R, θ, ϕ), the displacement field assumes the
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form:

2GuR =
∂φ0

∂R
− (3− 4ν) µφ3 + Rµ

∂φ3

∂R
,

2Guϕ = −
√

1− µ2

R

∂φ0

∂µ
+

√
1− µ2

(
−µ

∂φ3

∂µ
+ (3− 4ν) φ3

)
,

(2)

where µ = cos ϕ. Note that the azimuthal component of the displacements
vanishes, since neither of the potentials is a function of the coordinate vari-
able θ. Both φ0 and φ3 are harmonic functions and thus satisfy the three-
dimensional Laplace equation. The most general spherical harmonics which
are independent of θ are of the form [30]:

∞∑
n=0

(
AnRn +

Bn

Rn+1

)
Pn (µ), (3)

where An and Bn are coefficients and Pn (µ) denotes the Legendre polynomial
of degree n.
In terms of the displacement field, the strain tensor is given by:

εRR =
∂uR

∂R
, εθθ =

µuϕ

R
√

1− µ2
+

uR

R
,

εϕϕ = −
√

1− µ2

R

∂uϕ

∂µ
+

uR

R
, 2εRϕ =

∂uϕ

∂R
− uϕ

R
−

√
1− µ2

R

∂uR

∂µ
.

(4)

Hooke’s law is expressed through:

σij

2G
=

ν

1− 2ν
εkkδij + εij, i, j = R, θ, ϕ, (5)

where δij denote the Kronecker delta operator.
Based on the basic solutions for spherical harmonics (3) and in view of the

axial-symmetry properties of both the domain and the loading conditions (Fig.
1), we construct the general solution of the present problem via three sets of
displacement potentials

φ0 =
ν (Tx + Tz)− Tx

(1 + ν)
R2P2 (µ) , φ3 = −2Tx + Tz

2 (1 + ν)
RP1 (µ) , (6)

φ0 = G

∞∑
n=0

An
a2n+3

R2n+1
P2n (µ) , φ3 = G

∞∑
n=0

Bn
a2n+3

R2n+2
P2n+1 (µ) , (7)

φ0 = G

∞∑
n=0

Cn
R2n+2

a2n
P2n+2 (µ), φ3 = G

∞∑
n=0

Dn
R2n+1

a2n
P2n+1 (µ), (8)
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for the finite spherical matrix (a < R < b), and an additional set

φ0 = Ḡ

∞∑
n=0

Ān
R2n+2

a2n
P2n+2 (µ), φ3 = Ḡ

∞∑
n=0

B̄n
R2n+1

a2n
P2n+1 (µ), (9)

for the nanoparticle (R < a). Here all the spherical harmonic coefficients
An, Bn, Cn, Dn, Ān and B̄n have been normalized to be dimensionless through
the shear moduli and the spherical nanoparticle size. These coefficients are to
be determined using the boundary conditions. Equation (6) represents the
axially symmetric tension field applied at the outer boundary of the spherical
matrix (Fig. 1). The remaining three potential sets represent the disturbance
due to the presence of the inhomogeneous particle and the eigenstrain field it
sustains. Potential set (7) is a valid solution for an infinite domain containing
a spherical cavity, while (8) and (9) correspond to finite spherical domains
without any singularities. We need both (7) and (8) for the matrix, since a
spherical layer may be viewed as a common region of the two domains just
mentioned.

On the other hand, it is well recognized that surfaces and interfaces in solids
exhibit a behavior different from the bulk phases. Different material constants
are utilized to describe their thermodynamic and mechanical behavior. A
surface can be viewed as a special case of an interface dividing an elastic
solid and a vacuum phase. The theory of surface and interface elasticity was
systematically established by Gurtin, Murdoch and their coauthors [21, 22, 23].
The basic equations include the definition for the interface strain tensor, the
interface constitutive relation and the traction-discontinuity condition across
the interface:

Eαβ = 〈εαβ〉 =
1

2

(
(∇Su)αβ + (∇Su)βα

)
, (10)

Σαβ = τ0δαβ + 2 (µ0 − τ0) Eαβ + (λ0 + τ0) Eκκδαβ + τ0 (∇Su)αβ , (11)

[σij] nj = − (∇S ·Σ)i . (12)

In this formulation, the interface strain (Eαβ) is defined as the average value
(〈〉) of the two bulk stains projected onto the interface. In a manner analogous
to its bulk counterpart (5), the interface constitutive equation (11) assumes a
linear relationship between the interface strain and interface stress tensor, in
terms of three interface constants (τ0, λ0 and µ0). In contrast to the classical
continuum elasticity, the traction field becomes discontinuous across the inter-
face. The discontinuity (denoted by []) is mechanically balanced by the inter-
face stress effects. As discussed in the introduction, equation (12) is basically
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a generalized version of the Laplace-Young equation [20]. As the condition
is extended to solid interfaces, shear components emerges due to the ability
of solids to sustain shear stresses. The Greek indices indicate field quantities
defined on surfaces and assume values from 1 to 2.

In coupling the interface elasticity with the classical theory of elasticity,
the primary challenges come from the evaluation of the interface gradient of
the displacement vector (∇Su) and the interface divergence of the interface
stress tensor (∇S · Σ ). According to Gurtin et al. [23], ∇Su is a superficial
tensor field. Upon operating on a vector field, the vector’s components that
are normal to the interface are annihilated. ∇S · Σ balances the traction
discontinuity across the interface defined by the unit normal ni. Its explicit
expression in terms of the interface stress tensor is given as:

(∇S ·Σ)R = −Σθθ + Σϕϕ

R
,

(∇S ·Σ)ϕ =
1

R

(
1

sin ϕ

∂Σϕθ

∂θ
+

∂Σϕϕ

∂ϕ
+ cot ϕ (Σϕϕ − Σθθ)

)
.

(13)

The evaluation may be implemented as necessary at either the matrix/particle
interface (R = a) or the matrix outer boundary (R = b). The elastic part of
∇S ·Σ is due to potentials φ0 and φ3 in (6)-(9) and can be expressed in terms
of them by substituting equations (2),(4),(10) and (11) into equation (13).

The boundary conditions at the matrix/particle interface include displace-
ment continuity condition and the interface stress boundary condition (12).
From equation (11), the interface stress depends on the interface strain and
hence it depends on the bulk strain field through equation (10). Therefore,
both the elastic strains and the non-elastic strains contribute to the interface
divergence vector. As a result, the boundary conditions along the spherical
interface (R = a) can be written in the following form:

(ui)R=a = (ūi + u∗i )R=a , (σRi − σ̄Ri)R=a = − (∇S ·Σ +∇S ·Σ∗)i , i = R, ϕ,
(14)

where the vector components of the interface divergence are given implicitly
by (13). The non-elastic part of the interface divergence vector (∇S ·Σ∗) can
be obtained by substituting the eigenstrain field (ε∗x = ε∗y and ε∗z), (10) and
(11) into equation (13):

(∇S ·Σ∗)R = −4Gχ3

3a
((2ε∗x + ε∗z) P0 (µ) + (ε∗x − ε∗z) P2 (µ)) ,

(∇S ·Σ∗)ϕ = −2G (3χ0 − χ1)

3a
(ε∗x − ε∗z)

√
1− µ2P ′

2 (µ) ,

(15)
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where P ′
n (µ) denotes the derivative of Pn (µ) with respect to its argument and

the three interface length scale parameters are defined as:

χ0 =
1

4G
(λ0 + 2µ0) , χ1 =

1

4G
(λ0 + τ0) , χ3 = χ0 + χ1. (16)

The corresponding non-elastic displacement components inside the nanoparti-
cle are given by:

u∗R =
1

3
R ((2ε∗x + ε∗z) P0 (µ)− 2 (ε∗x − ε∗z) P2 (µ)) , u∗ϕ = (17)

1

3
R (ε∗x − ε∗z)

√
1− µ2P ′

2 (µ) .

The boundary condition at the matrix outer boundary (R = b) is represented
by the traction discontinuity equation (12):

(σRR)R=b −
2Tx + Tz

3
P0 (µ) +

2 (Tx − Tz)

3
P2 (µ) = (∇S ·Σ)fR ,

(σRϕ)R=b −
Tx − Tz

3

√
1− µ2P ′

2 (µ) = (∇S ·Σ)fϕ .

(18)

The additional subscript f in the divergence vector (∇S ·Σ) suggests that the
evaluation of equations (13) should be made at the spherical surface (R = b).

3 Solution of the problem

The total displacements and stresses in the finite matrix are obtained by su-
perposing equations (6)-(8), while those in the nanoparticle are given by equa-
tion (9) and the non-elastic displacement components (17). The total inter-
face divergence vector at R = a includes the contributions from equations
(6)-(9) and the non-elastic part (15). The surface divergence vector at the
matrix outer boundary R = b is relatively simple and only due to potential
sets (6)-(8). The geometric and loading symmetry result in the coefficients
(An, Bn, Cn, Dn, Ān and B̄n) vanishing for n > 2. Therefore, only the first
two terms (n = 0, 1) of the six series representations in equations (7)-(9) are
needed for the final solution. Numerical calculations implemented for large n
(> 10) confirm this conclusion.

Upon evaluating the displacements and stresses, enforcing the boundary
conditions (14) and (18), and equating the coefficients preceding the Leg-
endre polynomials (P0 (µ) and P2 (µ)) and their derivatives (P ′

2 (µ)) we ob-
tain twelve independent linear algebraic equations leading to the unknown di-
mensionless coefficients (A0, A1, B0, B1, C0, C1, D0, D1, Ā0, Ā1, B̄0 and
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B̄1). Solving these twelve linear equations yields the complete solution of the
three-dimensional elastic problem under consideration. The displacements and
stresses for the matrix and the particle are readily obtained by substitution
of the dimensionless parameters. The explicit expressions for the solution,
however, are quite lengthy and thus not included here. Instead, we choose
to explore a few numerical examples for the case in Section 4. For the time
being, we proceed to develop a closed-form solution for a special case corre-
sponding to the centro-symmetric loading condition, i.e. (Tx = Ty = Tz = T
and ε∗x = ε∗y = ε∗z = ε∗). Under this assumption, the solutions assume a
much simpler form involving only six independent equations for six unknowns
(A0, B0, C0, D0, Ā0 and B̄0), which yield:

A0 = ρ0
τ0

aG
+ ρf0

τf0

bG
+ α0

T

G
+ ξ0ε

∗, B0 = 0,

C0 =
2 (1− 2ν)

3
D0, D0 = ρ1

τ0

aG
+ ρf1

τf0

bG
+ α1

T

G
+ ξ1ε

∗,

Ā0 =
2 (1− 2ν̄)

3
B̄0, B̄0 = ρ2

τ0

aG
+ ρf2

τf0

bG
+ α2

T

G
+ ξ2ε

∗.

(19)

where ρ0, ρ1, ρ2, ρf0, ρf1, ρf2, α0, α1, α2, ξ0, ξ1 and ξ2 are dimensionless
parameters. Their explicit expressions are given in the Appendix. A care-
ful examination of equations (31)-(34) reveals that the surface and interface
effects are not likely to influence the order of magnitude of these dimension-
less constants. According to the atomistic calculations by Shenoy [31] and
Mi et al. [32], the surface and interface material constants (τ0, λ0 and µ0)
are generally of the order of Newton per meter. Considering that the shear
modulus of metal species is about a few tens of Gigapascal, then the length
scale parameters in (16) and (35) are about the order of one-tenth nanometer.
Therefore, the dimensionless (χ3/a and χf3/b) are at least one order less than
unity, provided that the embedded particle has a radius > nm. To conclude,
the surface and interface elastic constants have negligible impact on the magni-
tude of these constants. However, the surface and interface stress effects enter
the final solution through terms involving τ0 and τf0 in equation (19). These
terms would otherwise vanish in the absence of surface and interface elasticity.
The significance of the surface and interface effects can be measured by four
dimensionless factors: τ0/aT , τf0/bT , τ0/aGε∗ and τf0/bGε∗. The first two are
for the case of tension applied at R = b while the latter two refer to eigen-
strains inside the nanoparticle. As any of these significance factors approaches
to unity, the surface and/or interface stress effects cannot be neglected and
must be included in the final solution. It can be easily seen that the smaller
the domain size, the more significant the surface and interface elasticity will
become. From the above analysis, it is also apparent that the most important
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contribution of the surface and interface elasticity comes from the residual
surface (τ0) and interface stress (τf0).

With the solution of the dimensionless unknowns, as presented in equation
(19), the non-zero components of the displacements and the stresses in the
finite spherical matrix domain are given by:

uR

R
=

(
−1

2

a3

R3
ρ0 − (1− 2ν)

3
ρ1

)
τ0

aG
+

(
−1

2

a3

R3
ρf0 − (1− 2ν)

3
ρf1

)
τf0

bG

+

(
−1

2

a3

R3
α0 − (1− 2ν)

3
α1 +

(1− 2ν)

2 (1 + ν)

)
T

G
+

(
−1

2

a3

R3
ξ0 − (1− 2ν)

3
ξ1

)
ε∗,

(20)

σRR

G
=

(
2a3

R3
ρ0 − 2 (1 + ν)

3
ρ1

)
τ0

aG
+

(
2a3

R3
ρf0 − 2 (1 + ν)

3
ρf1

)
τf0

bG

+

(
2a3

R3
α0 − 2 (1 + ν)

3
α1 + 1

)
T

G
+

(
2a3

R3
ξ0 − 2 (1 + ν)

3
ξ1

)
ε∗,

(21)

σθθ

G
=

σϕϕ

G
=

(
− a3

R3
ρ0 − 2 (1 + ν)

3
ρ1

)
τ0

aG
+

(
− a3

R3
ρf0 − 2 (1 + ν)

3
ρf1

)
τf0

bG

+

(
− a3

R3
α0 − 2 (1 + ν)

3
α1 + 1

)
T

G
+

(
− a3

R3
ξ0 − 2 (1 + ν)

3
ξ1

)
ε∗.

(22)
The corresponding displacements and stresses inside the spherical nanoparticle
read:

ūR + u∗R
R

= −(1− 2ν̄)

3
ρ2

τ0

aG
− (1− 2ν̄)

3
ρf2

τf0

bG
−

(1− 2ν̄)

3
α2

T

G
−

(
(1− 2ν̄)

3
ξ2 − 1

)
ε∗, (23)

σ̄RR

Ḡ
=

σ̄θθ

Ḡ
=

σ̄ϕϕ

Ḡ
= −2 (1 + ν̄)

3
ρ2

τ0

aG
− (24)

2 (1 + ν̄)

3
ρf2

τf0

bG
− 2 (1 + ν̄)

3
α2

T

G
− 2 (1 + ν̄)

3
ξ2ε

∗.

As expected, when the surface and interface stress effects are neglected, the
solutions in equations (20)-(24) converge to the classical solutions of a spherical
inhomogeneity, embedded concentrically inside a finite spherical domain:
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uR

R
=

(
1

2

N

M

a3

R3
+

(1− 2ν)

(1 + ν)

N

M

a3

b3
+

(1− 2ν)

2 (1 + ν)

)
T

G
+ (25)

Γ (1 + ν̄)

M

(
(1 + ν)

a3

R3
+ 2 (1− 2ν)

a3

b3

)
ε∗,

σRR

G
=

(
−2

N

M

a3

R3
+ 2

N

M

a3

b3
+ 1

)
T

G
+

4Γ

M
(1 + ν) (1 + ν̄)

(
− a3

R3
+

a3

b3

)
ε∗,

(26)

σθθ

G
=

σϕϕ

G
=

(
N

M

a3

R3
+ 2

N

M

a3

b3
+ 1

)
T

G
+

4Γ

M
(1 + ν) (1 + ν̄)

(
1

2

a3

R3
+

a3

b3

)
ε∗,

(27)

ūR + u∗R
R

=
(1− 2ν̄)

2M

(
3 (1− ν)

T

G
− 4 (1 + ν)

(
1− a3

b3

)
ε∗

)
+ ε∗, (28)

σ̄RR

Ḡ
=

σ̄θθ

Ḡ
=

σ̄ϕϕ

Ḡ
=

3 (1− ν) (1 + ν̄)

M

T

G
+

4 (1 + ν) (1 + ν̄)

M

(
−1 +

a3

b3

)
ε∗,

(29)
where the common parameters M and N are given by:

M = (1 + ν) (2 (1− 2ν̄) + Γ (1 + ν̄))− 2N
a3

b3
,

N = (1 + ν) (1− 2ν̄)− Γ (1− 2ν) (1 + ν̄) . (30)

The solutions for other special cases can be derived in a straightforward
manner. For example, the corresponding inclusion problem is solved by equat-
ing the material properties of the matrix to those of the inhomogeneity (Γ = 1
and ν̄ = ν) in equation (19) for the hydrostatic loading condition. In addition,
the solutions for the inclusion and inhomogeneity problems associated with
an infinite substrate, as studied in [17, 18, 19, 25], can be readily derived by
extending the radius of the spherical matrix to infinity (b →∞).

4 Results and discussion

Numerical results were obtained to demonstrate the influence of the surface
stress effects at the matrix outer boundary and the interface stress effects at the
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matrix/particle interface. In addition to the loading conditions, the governing
parameters are the shear modulus of the matrix (G), shear moduli ratio (Γ),
particle size (a), radius of the spherical matrix (b) and the material constants of
the surface and interface (λ0, µ0, τ0, λf0, µf0 and τf0). Until recently, there
has been a limited availability of these constants. Based on the embedded atom
method (EAM), Shenoy [31] calculated the surface elastic tensor for seven fcc
metals. The surface Lamé constants used in the constitutive equation (11) may
be approximated from this tensor. More recently, Mi et al. [32] has extended
this study to noncoherent metallic bilayers. Naturally, the interface Lamé con-
stants are better described by the calculated interface elastic tensor. We chose
to take advantage of this and simulate the present problem as a finite spherical
silver matrix containing a nickel nanoparticle. The Ag/Ni interface material
constants are derived from the interface elastic tensor for a close-packed {111}
Ag/Ni interface [32]: λ0 = 1.82 N/m, µ0 = −0.54 N/m, τ0 = 0.40 N/m. In a
similar way, the silver matrix outer boundary is modeled as a free Ag surface
oriented along {111} direction. The corresponding surface elastic constants
are: λf0 = −2.07 N/m, µf0 = −0.96 N/m, τf0 = 0.95 N/m. The shear mod-
uli of both bulk domains are obtained from the stiffness constants for silver
and nickel under room temperature [33]: G = 15.15 GPa, Ḡ = 50.4 GPa.
The nickel particle is actually a very hard inhomogeneity with Γ ≈ 3.33.
Without loss of generality, we keep Poisson’s ratios of both domains equal,
i.e. ν = ν̄ = 0.3.

Under the framework of the classical continuum theory of elasticity, the
normalized solution of the inclusion and inhomogeneity problem is indepen-
dent of the particle size. However, the surface and interface stress effects
introduce dependencies on parameters in addition to the shear moduli ratio
and the size ratio b/a, as presented in equations (20)-(24). Fig. 2 shows the
distribution of the radial stress along the Ag/Ni spherical interface for four
radii ratios. The loading condition corresponds to an axially symmetric ten-
sion field (Tx = Ty = 50 MPa and Tz = 100 MPa) applied at R = b and a
dilatational eigenstrain field (ε∗x = ε∗y = ε∗z = 1%). The size of the nickel parti-
cle has been fixed at a = 10 nm. Under these assumptions, the interface effects
significance factors take values that are comparable to unity: τ0/aTz = 0.4 and
τ0/aGε∗ = 0.26. These numbers suggest that under the same loading condi-
tions the disturbance due to surface and interface effects is significant only for
nanosized particles. From Fig. 2, it is obvious that the effects of the surface
(R = b) on the radial stress component are primarily a function of the matrix
size (b). The most significant influence on the classical solution comes from
the smallest matrix size (b = 2a). The same conclusion can be made for the
radial stress sustained by the nickel particle, as shown in Fig. 3. It is worth
noting from Figs. 2 and 3 that the traction continuity condition across the
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Figure 2: Distribution of radial stress along the matrix interface for a = 10
nm.

Ag/Ni interface, which is valid for the classical solution, is violated due to the
influence of the surface and interface stress effects. To examine the stress
distribution in the vicinity of the nanoparticle, calculations were carried out
along three particular radial directions (ϕ = 0, π/4, π/2) for a nickel particle
of radius 10 nm embedded in a silver matrix with b = 40 nm (Fig. 4). The
same loading condition is assumed. As expected, stresses corresponding to
the classical solutions are constant inside the nickel particle and converge to
the applied tension field (Tz, (Tz + Tx)/2, Tx) toward the free surface along
ϕ = 0, π/4, π/2 respectively. The traction discontinuity for the modified
solutions is apparent at the Ag/Ni interface. The jump is balanced by the
interface divergence of the interface stress. The three directions seem to have
an equivalent dependence on the surface and interface elasticity.

One of the difficulties associated with the present problem is the large
number of parameters. As seen from the expressions for surface and inter-
face effects significance factors, the loading conditions may also strengthen or
weaken the effects of surface and interface elasticity. For example, the stress
concentration factor around a nanovoid embedded in an infinite substrate was
found to depend significantly on the far-field tension [25, 34].
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Figure 3: Distribution of radial stress along the particle interface for a = 10
nm.

5 Concluding Remarks

In this manuscript, the axisymmetric problem of a spherical nanoparticle em-
bedded in a finite spherical elastic body is solved. The surface stress effects
at the finite matrix outer boundary and the interface stress effects at the ma-
trix/particle interface are fully represented by coupling Gurtin and Murdoch’s
surface and interface elasticity theory with the classical Papkovitch-Neuber
displacement potentials methodology. The outer boundary of the matrix and
the matrix/particle interface are simulated as two dimensional spherical thin
films bordered with the bulk phases. These surfaces and interfaces have spe-
cialized material constants describing their mechanical response. When inte-
grated with curvature effects, the surface and interface stresses substantially
modify the elastic field predicted by the classical theory of elasticity. The sig-
nificance of surface and interface effects can be principally described by the
four significance factors: τ0/aT , τf0/bT , τ0/aGε∗ and τf0/bGε∗.

In addition to the closed form solutions for the case of centro-symmetric
loading, several numerical examples are presented for an Ag/Ni system under
axial symmetric tension applied at the outer boundary of the silver matrix and
a dilatational eigenstrain field specified inside the nickel particle. Following the
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Figure 4: Stresses along three radial directions for b = 4a = 40 nm.

analytical and numerical studies, a few important observations can be made.
The size-dependent property of the inclusion and inhomogeneity problem is
verified. The solution depends not only on the radii ratio (b/a) but more
importantly on the absolute size of the particle and matrix. If their sizes
are measured in nanometers, the impact of surface and interface stress effects
becomes significant. This conclusion may have implications on the fabrication
of ordered nanostructures, since most of the associated structural elements are
nanoparticles and quantum dots. The large surface-to-volume ratio yields a
significant surface stress, which is in turn strengthened by the high curvature
of the surface. Furthermore, the effect of the surface and interface elasticity
strongly depends on the stiffness of the nanoparticle as well as the magnitude
of the external loading.
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Appendix Dimensionless parameters in equation (19)

The various dimensionless parameters in equation (19) are defined by:

ρ0 =
2

M
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1 + ν + 2 (1− 2ν)

χf3
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)
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(31)

ρf0 =
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)
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M
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(32)
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α0 = − 1
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ξ0 = −2Γ
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where

Γ = Ḡ/G, χf0 =
1

4G
(λf0 + 2µf0) , χf1 =

1

4G
(λf0 + τf0) , χf3 = χf0 + χf1,

(35)
and

M =
{(

1 + ν + 2 (1− 2ν)
χf3

b

)(
2
(
1 + 2

χ3

a

)
(1− 2ν̄) + Γ (1 + ν̄)

)

−2
(
1− χf3

b

)((
1 + ν − 4 (1− 2ν)

χ3

a

)
(1− 2ν̄)− Γ (1− 2ν) (1 + ν̄)

) a3

b3

}
.

(36)

Submitted on December 2007, revised on April 2008.



286 Changwen Mi & Demitris Kouris

Nanočestice i uticaj elastičnosti na interfejsu

Razmatra se uticaj napona na površi i interfejsu na elastično polje nanočestice
potopljene u konačni sferni substrat. Ovde se ima u vidu aksijalno zatezno
polje koje deluje na spoljnu granicu supstrata i nesmičuće uniformno polje
usadne deformacije unutar čestice. Kao rezultat osne simetrije dve potenci-
jalne funkcije pomeranja Papkovič-Nojbera su dovoljne da reprezentuju rešenje
elastičnosti. Naponski efekti na površi i interfejsu su potpuno reprezentovani
Gurtinovom i Mardokovom teorijom elastičnosti površi i interfejsa. Ovi efekti
modifikuju granične uslove pridružene klasičnoj kontinualnoj teoriji elastičnosti.
Kompletna metodologija rezultuje u elastostatičkom rešenju Navijeovih jednačina.
U suprotnosti od klasičnog rešenja, modifikovana verzija uvodi dodatne zavis-
nosti od veličine nanočestica kao i materijalne osobine površi i interfejsa.

doi:10.2298/TAM0803267M Math.Subj.Class.: 74A50, 74A60, 74M25, 74B99


