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Abstract

Surface-breaking fatigue cracks are common defects in metal compo-
nents subjected to cyclic loads. Such cracks tend to propagate in stress
fields that are below the critical stress level for static loading. An im-
portant part of a damage tolerant design philosophy is the requirement
that surface-breaking cracks should be detectable before they reach a
critical depth. In this paper, we consider a surface-breaking crack in a
two-dimensional geometry, whose original depth is defined by a prob-
ability density function. The increase of the crack depth with number
of cycles is governed by Paris law, and the detectability depends on
a probability of crack detection (POD). Based on this information we
determine the probability that the crack depth will have exceeded a
prescribed critical value at a specified number of cycles.

1 Introduction

Fatigue cracks in cyclically loaded bodies are often generated at a free surface,
usually by nucleation from a pre-fracture defect such as a scratch, particularly
if the loading generates tensile stresses parallel to the free surface. Once they
have been generated, surface-breaking cracks propagate faster than internal
cracks, due to larger values of the stress-intensity factors. It is, therefore,
important to be able to detect a surface-breaking crack before it penetrates
too deep into the material.

From the point of view of a damage tolerant design philosophy, surface-
breaking cracks are not necessarily totally unacceptable, provided that infor-
mation is available on their growth and their detectability so that appropriate
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action can be taken when their dimensions have reached undesirable magni-
tudes.

Suppose for conceptual purposes we consider a two-dimensional geometry,
with a single crack normal to the free surface. If, ideally, its original depth
and a growth law, as well as a perfect detection technique would be available,
then the depth after any number of cycles could be determined with precision.
Unfortunately, such an ideal situation, which allows deterministic calculations,
does not exist. In reality, as shown in this paper, we can only obtain informa-
tion on the depth of surface-breaking cracks by probabilistic considerations.

In view of the preceding discussion, we focus our attention in this paper
on the growth of a macrocrack with a known probability density function for
the depth a, and on quantifying the effects of the probability of inspection on
the detection of a crack that has grown under continued cyclic loading. We
are especially interested in finding the probability that a crack with a critical
dimension greater than a predefined magnitude exists in the component after
an inspection at a specified number of cycles.

To proceed, we need to assume a suitable model for the crack growth, which
accounts for the variabilities observed in fatigue crack growth. Various such
models are available in the literature (see e.g. Sobczyk and Spencer [1]). In
the present case, for simplicity, we have represented the crack growth by a
nonlinear differential equation with fixed parameters and have introduced the
variabilities only through the random size of the macrocrack. We have mod-
eled the capability of a specified monitoring technique using the probability of
detection (POD) concept. A POD is a statistical representation of the prob-
ability that a given monitoring technique is able to detect a specific flaw in a
given material or structure.

The general approach we have described to account for the inspections is
similar to the one presented in Palmberg et. al [2]. In Ref. [2], the authors
presented expressions for the crack size distribution after inspections assuming
that a crack detected in an inspection is repaired. In contrast to the present
case where the parameters in the crack growth rate can be randomized, Ref. [2]
started with a power crack-growth rate, which is randomized by a stochastic
process with a lognormal distribution. The approach of the present paper
follows Ref. [3], where pre-crack fatigue damage and crack growth were placed
in the context of structural health monitoring.
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2 Two-dimensional surface-breaking crack

The geometry is a homogeneous and isotropic linearly elastic half-space, which
is in a state of time-harmonic tension parallel to the free surface defined by

σX = ∆σ sin (ωt) (1)

The half-space contains a surface-breaking crack of depth a. The case of a
crack in a half-space is a good approximation for a crack in a layer, when the
layer thickness is much larger than the crack depth.

For a half-space the Mode-I stress-intensity is of the well known form

K = 1.12σ
√

πa. (2)

Figure 1: Surface-breaking crack in a tensile field

For cyclic loading, the commonly used crack growth law is Paris law (see
Paris and Erdogen [4]), which is written as

da

dN
= A (∆K)m , (3)

where N is the number of cycles, da/dN is the rate of crack growth, A and
m are material parameters and ∆K is the amplitude of the stress intensity
factor. For constant amplitude loading and after substitution of Equation (2),
we can integrate Equation (3) (m 6= 2) to get

a
1−m/2
N = a

1−m/2
0 + N A

(
1− m

2

) (
1.12∆σ

√
π
)m

, (4)

where a0 and aN are the crack lengths at cycles N = 0 and N respectively.
To account for the inherent uncertainty in the fatigue behavior, some of the
quantities appearing in Equation (4) can be taken to be random with know
probability density functions. For simplicity, we restrict ourselves to the case in
which the only random quantity is the initial crack length a0 with density given
by f0(a0). This follows naturally since the initial crack length is assumed to
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have come forth from the damage evolution and macrocrack initiation process
described in Ref.[5].

The crack length after N cycles, aN , is given by Equation (4) which can be
rewritten as

aN =
(
aβ

0 + NC
)1/β

, (5)

where
C = Aβ

(
1.12∆σ

√
π
)m

(6)

β =
1

2
(2−m) . (7)

From Equation (5), we derive

a0 =
(
aβ

N −NC
)1/β

≡ h (aN) . (8)

The probability density function of aN is given by (see Hahn and Shapiro
[6])

fN (aN) = f0 [h (aN)]

∣∣∣∣
da0

daN

∣∣∣∣ , (9)

which may be written as

fN(aN) = f0

[(
aβ

N −NC
)1/β

] ∣∣∣∣aβ−1
N

(
aβ

N −NC
)(1−β)/β

∣∣∣∣ (10)

Note that the probability that there exists a crack with length aN > acr is
given by

Pr (aN > acr; N) =

∞∫

acr

fN (aN) daN (11)

The effect of inspections on the probability that there exists an undetected
crack with a > acr is now discussed. We assume that the POD curve of the
inspection technique is known. Typical POD curves are shown in Figure 2
where the letters ‘A’, ‘B’ and ‘C’ denote three different inspection techniques.
A convenient expression for the POD curves is shown in the insert of Figure
2. The probability that the crack is not detected is then given by

PND(a) = 1− α aγ

1 + α aγ
=

1

1 + α aγ
. (12)

It is evident that curve A represents the best technique and C the worst one.
Let us now consider the case of a first inspection at cycle N1. Just prior

to the inspection, the crack length density is given by fN1 (aN1), which follows
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Figure 2: POD curves. A: α = 1.00mm−γ, γ = 3.0; B: α = 0.05mm−γ, γ =
3.0; C: α = 0.005mm−γ, γ = 3.0

from Equation (10) by replacing all N ’s with N1’s. Just after the inspection,
the crack length density of the undetected crack is

f+
N1

(aN1 ; N1) =
f+

N1
(aN1 ; N1)

Pr (N1)
, (13)

where
f+

N1
(aN1 ; N1) = PND (aN1) fN1 (aN1) . (14)

In Equation (14), PND (aN1) follows from Equation (12), and

Pr(N1) =

∞∫

0

PND (aN1) fN1 (aN1) daN1 . (15)

It should be noted that Pr (N1) is the probability that there exists an
undetected crack after N1 cycles.

To determine the crack length density at N > N1, but before the second
inspection at N2 cycles, i.e. N < N2, we follow the same steps as the ones
leading to Equation (13). From Equations (12) and (13), we have

aN =
[
aβ

N1
+ (N −N1) C

]1/β

, (16)
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which can be solved for aN1 as

aN1 =
(
aβ

N − (N −N1) C
)1/β

≡ h1 (aN) . (17)

The crack length density of an undetected crack at cycle N > N1 with
N < N2 is then given by

fN (aN ; N > N1) =
fN (aN ; N > N1)

Pr (N1)
, (18)

where,

fN (aN ; N > N1) = f+
N1

[h1 (aN) ; N1]

∣∣∣∣
daN1

daN

∣∣∣∣ . (19)

Using

daN1

daN

=
[
aβ

N − (N −N1) C
](1−β)/β

aβ−1
N

= [h1 (aN)]1−β aβ−1
N ,

(20)

we simplify Equation (19) to

fN (aN ; N > N1) = PND [h1 (aN)] f0

{[
h1 (aN)β −N1C

]1/β
}
×

∣∣∣∣h1 (aN)β−1
[
h1 (aN)β −N1C

](1−β)/β
∣∣∣∣
∣∣∣h1 (aN)1−β aβ−1

N

∣∣∣
(21)

which can be further simplified to

fN (aN ; N > N1) =

PND [h1 (aN)] f0

[(
aβ

N −NC
)1/β

] ∣∣∣∣
(
aβ

N −NC
)(1−β)/β

aβ−1
N

∣∣∣∣ .
(22)

The probability that there exists a crack with aN > acr at cycle N , which
was undetected at the inspection at cycle N1 can then be written as

Pr(aN > acr, N > N1; ND) = Pr(N1)
∞∫

acr

fN(aN ; N > N1)daN

=
∞∫

acr

PND [h1 (aN)] f0

[(
aβ

N −NC
)1/β

] ∣∣∣∣
(
aβ

N −NC
)(1−β)/β

aβ−1
N

∣∣∣∣ daN

(23)
After N cycles, the crack length density follows from Equation (18) as

fN (aN ; N > N1) =
fN (aN ; N > N1)

Pr (N1)
, (24)
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where
fN (aN ; N > N1) (25)

is given by Equation (22).

3 Numerical results

For the numerical calculations, the parameters in Paris law were chosen as (see
Moran et. al. [7]): m = 2.67, A = 5.069× 10−12, ∆σ = 280 MPa and R = 0.
We also assume that the initial crack length a0 has a lognormal distribution
with density

f0 (a0) =
1

a0σ
√

2π
exp

[
− 1

2σ2
(ln (a0)− µ)2

]
. (26)

Here µ and σ are the mean and the standard deviation of the random
variable y = ln (a0). We assumed that the initial crack length a0 has mean
0.250 mm and standard deviation 0.1 mm. In this example acr was chosen as
acr = 3 mm. Results are given in Fig. 3 for the three monitoring techniques
with POD’s labeled ‘A’, ‘B’ and ‘C’ (see Figure 2). The probabilities of interest
are evaluated using numerical integration. We first transform the integral
defined over the infinite interval (acr,∞) to a finite interval (0, 1) using the
transformation x = e−(a−acr) and then use the adaptive quadrature routines
described in Espelid [8] to evaluate the integral.

Results for three values of acr have been computed. The unmarked curves
in Fig.3 plot Pr (a > acr; N) versus N , i.e., the probability that a crack with
length a > acr exists at cycle N . The curves have been calculated using
Eq.(11). As N increases the probability
of a crack a > acr increases. The curves, marked by symbols, represent
Pr (aN > acr, N > N1; ND), i.e., the probability that an undetected crack of
length aN > acr, exists at cycle N , which has not been detected at the inspec-
tion at N = N1=100,000 cycles. This probability has been calculated by using
Eq. (23). The different symbols refer to the three POD’s, as indicated in the
figures. Since for N > N1, the probability of an undetected crack aN > acr is
smaller than the probability that a crack aN > acr exists at all, the marked
curves are lower than the unmarked ones, with a step difference at N = N1.
Since there is a higher probability of aN > acr as N increases, there is also
a higher probability of an undetected crack aN > acr but the difference de-
creases as N increases. It is noted that an inspection with a poor POD, such
as represented by C, has very little positive influence. On the other hand, a
good inspection technique such as given by A, can reduce the probability of
an undetected crack aN > acr almost by an order of magnitude.
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acr = 2 mm, Single inspection acr = 4 mm, Single inspection
at 100,00 cycles. at 100,000 cycles

Figure 3: Pr (a > acr; N) - solid line, vertical axis, and Pr(aN > acr, N >
N1; ND)-symbols, versus N - horizontal axis; x: POD C, +: POD B, dot:
POD A.

4 Concluding comments

We have considered a surface-breaking crack in a cyclic tensile field. The
original crack depth is defined by a probability density function. The growth
of the crack with the number of cycles, N , is governed by Paris law. The
detectability of the crack depends on a probability of detection (POD) function.
Explicit formulas have been derived for the probability that there exists a crack
aN > acr, and for the probability that a crack aN > acr is not detected by an
inspection after N1 cycles. For two values of acr and three POD’s, numerical
results display the probability that a crack a > acr is not detected.
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O verovatnoći neuočene površinske prskotine

Površinske prskotine usled zamora materijala su uobičajeni defekti u metal-
nim komponentama izloženim cikličnim opterećenjima. Ovakve prskotine teže
da se šire u naponskim poljima koja su ispod kritičnog napona za statička
opterećenja. Važan deo filozofije dizajniranja sa tolerisanjem oštećenja je za-
htev da površinske prskotine moraju biti uočljive pre nego što dostignu kritičnu
dubinu. U ovome radu, razmatramo površinsku prskotinu u dve dimenzije,
čija je početna dubina definisana funkcijom gustine raspodele verovatnoće.
Povećenje dubine prskotine sa brojem ciklusa opterećenja je definisano Pariso-
vim zakonom, a uočljivost zavisi od verovatnoće uočavanja prskotine. Na os-
novu ovih podataka odredjujemo verovatnoću da će dubina prskotine preći
propisanu kritičnu vrednost pri odredjenom broju ciklusa opterećenja.
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