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Abstract

The mechanical behavior of soils has been traditionally described us-
ing continuum-mechanics-based models. These are empirical relations
based on laboratory tests of soil specimens. The investigation of the
soils at the grain scale using discrete element models has become possi-
ble in recent years. These models have provided valuable understanding
of many micromechanical aspects of soil deformation. The aim of this
work is to draw together these two approaches in the investigation of
the plastic deformation of non-cohesive soils. A simple discrete element
model has been used to evaluate the effect of anisotropy, force chains,
and sliding contacts on different aspects of soil plasticity: dilatancy,
shear bands, ratcheting, etc. The discussion of these aspects raises im-
portant questions such as the width of shear bands, the origin of the
stress-dilatancy relation, and the existence of a purely elastic regime in
the deformation of granular materials.
Keywords: Granular materials, incremental response, ratcheting, fab-
ric, anisotropy.

1 Introduction

The 1960s was significant for the development of soil mechanics and, in partic-
ular, the constitutive models for soils. Prior to this decade, soil mechanics was
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confined to linear elastic theory and the Mohr-Coulomb failure criterion. An
important advance in the scope of soil plasticity occurred after the pioneering
work of Roscoe and his coworkers in Cambridge, which led to the basic princi-
ples of the Critical State Theory [1, 2]. In an attempt to cover further aspects
of cyclic soil behavior, subsequent developments have given rise to a great
number of constitutive models [3, 4]. These advances were consolidated in two
different trains of thought: The first one is the so-called black box approach,
in which the constitutive relation is derived exploiting mathematical symme-
tries and representation theorems [5, 6]. The main advantage of this approach
is that it offers a rigorous mathematical framework for the development of
the tensor structure of constitutive relationships. The other train of thought
is the micromechanical approach [7]. Micromechanical models are useful to
identify physically relevant tensorial relations, to gain insight into the signifi-
cance of material parameters, and to investigate the interconnection between
phenomena occurring at the grain scale and bulk behavior. The necessity of
micromechanical models was suggested from the discrete element simulations
performed by Krajcinovic and Vujosevic [8]. These simulations demonstrated
that although traditional continuum models provide a good estimate of the
localization onset, mean field and continuum theories often provide unreliable
estimates of the deformation in the softening regime.

The development of micromechanical constitutive models has been spe-
cially motivated by recent investigations on granular materials at grain scale
[9]. Numerical and laboratory experiments show that stress in granular ma-
terials is transmitted through a heterogeneous contact network with broad
force distribution [10]. This broadness leads in turns to a considerable number
of sliding contacts. Under small deviatoric loads, an initially isotropic pack-
ing develops an anisotropic contact network because new contacts are created
along the loading direction, while some contacts are lost perpendicular to it.
Anisotropy is also observed in the subnetwork of the sliding contacts, because
some contacts leave the sliding condition under slight deviatoric loading. Geo-
metrical anisotropy leads to an anisotropic response of the granular assembly.
The effect of anisotropy of the contact network on the anisotropic elasticity
and the plasticity has been investigated by the introduction of fabric tensors,
measuring the distribution of the orientation of the contacts [11, 12, 13].

This is a review of our recent work on the investigation of the dynam-
ics of contact network and it effect on the overall response of granular me-
dia. Granular samples are represented by assemblies of polygons generated by
Voronoi tessellation (see Figure 1). We clarify that periodic boundary condi-
tions (PBC) were used for the tessellation only. PBC were not used in these
simulations because they hinder strain localization. The interparticle forces
include elasticity, viscous damping and friction with sliding condition. The
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ratio between the tangential and normal contact stiffnesses is kt/kn = 033,
and the friction coefficient is µ = 025. Initially, the polygonal particles fill the
plane with no overlaps and no gaps. This kind of plain tessellation resembles in
some aspects the geometry of fragmented rocks, dry masonry walls or marble
[13]. The model resembled in many aspects the Delaunay lattice proposed by
Krajcinovic and Vujosevic [8]. The main difference is that in our model the
potential contacts between the Voronoi cells are removed or created during the
simulation.

In Sections 2 we investigate the micro-structure of the contact network at
the shear band formation. In Section 3 we discuss the incremental plastic
response of the contact network and it relation with the induced anisotropy
in the subnetwork of sliding contacts. In Section 4 we introduce the granular
ratcheting, as the response of the contact network when they are subjected to
load-unload stress cycles.

2 Shear band formation

Strain localization in form of shear bands is ubiquitous in geomaterials. They
appears as an emergent property in laboratory tests with soil specimens [15],
and in the boundaries between two tectonic plates [16]. The incorporation
of the characteristic width in shear bands in the continuum models has spe-
cial significance from the computational point of view, because it resolves the
mesh-dependency problems in the Finite Element simulations [8, 17, 18, 19]. In
laboratory tests, the presence of shear bands is very sensitive to the boundary
conditions. In our simulations we chose them in order to mimic the laboratory
tests under plane strain conditions: First, a confining pressure is applied to
the sample through a flexible membrane. Then, two horizontal walls at the
top and bottom of the packing are used to apply vertical loading with con-
stant velocity. The load velocity was chosen to be small enough to satisfy the
quasistatic load condition: Further reduction of the velocity by a half has little
affects on the numerical simulations. The details of the construction of such
floppy boundary can be found elsewhere [20]. The deformation of the assem-
bly involves creation and loss of contacts as well as restructuring by means
of rolling and sliding contacts. These changes imply a continuous variation of
the stress-strain relation and a change of the void ratio during load. From the
principal values of the average of the stress tensor, one can define the mean
normal stress p = (σ1 + σ2)/2 and the deviatoric stress q = (σ1 − σ2)/2. The
axial strain is calculated as ε1 = ∆H/H0, where H is the height of the sample.
The volumetric strain is given by e = ∆A/A0, where A = HW is the area of
enclosed by the floppy boundary, and W is the width of the loading plates
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(a)

(b)

Figure 1: (a) Voronoi construction used to generate the convex polygons. The
dots indicate the point used in the tessellation. Periodic boundary conditions
were used to construct the Voronoi tessellation. (b) Typical texture of marble.
(Courtesy of Royer-Carfagni [14])



Micromechanical investigation of soil plasticity using... 15

The dependence of the deviatoric stress and the volumetric strain on the
axial strain are shown in Fig. reffig2 for different confining pressures. A contin-
uous decrease of the initial slope of the stress-strain curve is observed. Loading
rearranges the contact network by means of sliding contacts, which in turn re-
duces the stiffness of the material. The initial compaction turns gradually to
dilatancy. This transition is caused by loss of contacts perpendicular to the
load direction, allowing the contact network to rearrange itself and inducing
large plastic deformations. Near failure, the amount of plastic deformation
is much larger than the elastic one. This considerably reduces the stiffness
with respect to its initial value and makes the sample potentially unstable.
Plastic deformation by means of sliding contacts turns out to be a precursor
mechanism of strain localizations. The frictional dissipation is uniformly dis-
tributed at the beginning of the load and it tends progressively to localize in
thin layers, which ends up with the shear band formation [21]. Near failure,
the orientational distribution of sliding contacts has its maximal value between
the Mohr-Coulomb angle and the Roscoe angle, but rather closer to the former
[13]. The shear band is given by a 6 - 8 grain diameters thick layer where the
frictional dissipation is more intense than on the average.

The characteristic width of the shear of the band can be associated to
the propagation of stress inside the grains. The principal components of the
stress tensor averaged over each particle are represented in Fig. reffig2 by a
cross. The length of the lines represents how large the components are. At the
beginning of the loading, the major principal stress is almost parallel to the
load direction, forming column-like structures which are called force chains. At
failure these chains start buckling. The buckled chains gradually create force
loops which concentrate as shear bands. The size of such loops corresponds to
the shear band width, and it depends only on the grain diameter. Buckling of
each force chain involves rolling between the grains belonging to it, a feature
that has been used to provide a theoretical explanation of the finite width of
shear bands [22].

3 Incremental response

An important future application of particle based models is to use them as a
virtual laboratory, where samples with relative large number of particles are
used to construct the constitutive relations. They are to be given in terms of
incremental relations, which can be used in the Finite Element Codes. The
method we use to calculate the strain response is the same as used in sand
experiments [23]. It was introduced by Bardet [24] in the calculation of the in-
cremental response using discrete element methods. We denote the incremental
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strain as dε = (de, dγ), being e and γ the volumetric and shear components.
The stress is represented by the vector σ =(p, q), where p and q are the pres-
sure and shear stress. Starting from σ, the sample is loaded to σ + dσ and
the strain increment dε is calculated. Then the sample is unloaded to σ and
one finds a remaining strain dεp, which corresponds to the plastic incremental
strain. This procedure is implemented on different clones of the same sam-
ple, choosing different stress directions and the same stress amplitude in each
one of them. We assume that the strain response after a reversal loading is
completely elastic. Numerical simulations show that this assumption is not
strictly true, because sliding contacts are always observed during the unload
path [25, 26]. However, for stress amplitudes of |d σ | ¡ 0001p the plastic de-
formation during the reversal stress path is less than 1% of the corresponding
value of the elastic response. Within this margin of error, the difference dεe=
dε - dεp can be taken as the elastic component of the strain. Fig. reffig3 shows
the load-unload stress paths and the corresponding strain response when an
initial stress state with σ1 = 125 × 10 − 3kn and σ3 = 075 × 10 − 3kn is cho-
sen. The end of the load paths in the stress space maps into a strain envelope
response dε (θ) in the strain space. Likewise, the end of the unload paths
maps into a plastic envelope response dεp(θ). This envelope consists of a very
thin ellipse, nearly a straight line, which confirms the unidirectional aspect
of the irreversible response predicted by the elastoplasticity theory [27]. The
yield direction φ can be found from this response, as the direction in the stress
space where the plastic response is maximal. In this example, this is around
φ = 872o. The flow direction ψ is given by the direction of the maximal plastic
response in the strain space, which is around 767o. The fact that these direc-
tions do not agree reflects a non-associated flow rule, which is also observed
in experiments on realistic soils [23]. From numerical simulations of packings
of disks, Bardet concluded also that a non-associated flow rule describes sat-
isfactorily the incremental response [24]. This conclusion is also supported by
several laboratory tests on plane strain deformation [2, 27, 28]. Both numerical
and experimental results show clearly deviations from the normality condition.
This is connected to the fact that any load involves sliding contacts so that
the elastic regime is vanishing small but not a finite domain as the Classical
Elastoplasticity establishes [29]. Recent numerical simulations of three dimen-
sional packings of spheres contradict not only the normality postulate [30],
but also the unidirectionality of the flow rule [3], leading also to the conclusion
that a profound modification of the elastoplasticity theory is required [32].

The elastic part of the incremental response is described using two Young
moduli and two Poisson ratios [13]. This response can be characterized by in-
troducing fabric coefficients, measuring the anisotropy of the contact network
[13, 11]. The evolution of the fabric coefficients during loading is different from
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the observed evolution in loose granular packings. This is due to the fact that
we start with a polygonal packing with zero porosity, where the force distri-
bution is unusually narrow [13]. This is not typical in most granular materials
where the force distribution is rather heterogeneous [10]. In dense polygonal
packings with finite porosity [33] and disks assemblies, [11, 34] small loads
open weak contacts and hence induce a smooth transition to the anisotropy
for small deviatoric loads. In all cases, the evolution equation of the fabric
coefficients in terms of the deformation history of the granular assembly is an
open issue [35]. Apart from the unidirectionality of the flow rule, we find that
dilatancy d = -dep/dγp and the stress ratio η = q/p are related by simple
linear relation d = c(η−M) (Fig. reffig4 ). This relation is not only supported
by experiments, but also it has been one of the fundamental issues in mod-
eling the stress-strain behavior of soils. However we have to notice that the
micromechanical explanation of such a simple stress-dilatancy relationship has
remained elusive. Although we cannot give a definitive answer to this ques-
tion, a physical explanation would be that the granular sample behaves like
a strange fluid that obeys this stress-dilatancy relation as an internal kine-
matical constraint [36]. This constraint becomes apparent near failure, where
the plastic deformation dominates, and it could be seen as the counterpart
of the well-known incompressibility condition of fluids. In this context we
should address to the existing correlation between the mean orientation of the
sliding contacts and the plastic flow direction [13]. This correlation suggests
that this internal constraint can be micromechanically interpreted from the
induced anisotropy of the subnetwork of the sliding contacts. In the limit
of small deviatoric load, the kinematic constrain is not longer valid because
elastic deformation dominates. However, we report some additional connec-
tions between stress-dilatancy relationship and the induced anisotropy in the
subnetwork of sliding contacts. Under extremely small deviatoric loads, some
contacts depart from the sliding condition, leading in turn to anisotropy in
the subnetwork of the sliding contacts. The effect of this anisotropy in the
plastic response becomes evident when we get the plastic envelope response of
an isotropically compressed sample, see Fig. reffig4. Unexpectedly, the unidi-
rectionality of the plastic deformations breaks down, because small deviatoric
loads lead to deviatoric plastic deformations. This surprising effect contradicts
the isotropic regimen postulated in several constitutive models [28].
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(a)

(b)

(c)

Figure 2: (a) Principal stress directions of the grains after failure (ε1 = 007);
the confining pressure is p0 = 0001k1. (b) Detail of the stress in the shear band.
(c) Deviatoric stress and volumetric strain versus axial strain for different
values of p/kn, where p is the lateral pressure. e > 0 represent compression of
the sample.
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(a) (b)

Figure 3: Stress - strain relation resulting from the load - unload test. Grey
solid lines are the paths in the stress and strain spaces. Grey dash-dotted lines
represent the yield direction (a) and the flow direction (b). Dashed line shows
the strain envelope response and the solid line is the plastic envelope response.

(a) (b)

Figure 4: (a) dilatancy versus the stress ratio. The solid curve represents a
linear fit; The dashed curve the relation given by the Nova & Wood model.
(b) plastic envelope response resulting from isotropically compressed samples
with a pressure p = 0001kn.
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4 Granular ratcheting

In this last section we introduce a long time response of granular materials un-
der cyclic loading, which is still under discussion in the scientific and engineer-
ing community. This effect is known as granular ratcheting, and it refers the
constant accumulation of permanent deformation per cycle, when the granular
sample is subjected to load-unload stress cycles with extremely small loading
amplitudes. Although there is wide experimental evidence about accumula-
tion of permanent deformation under cyclic loading [37], it is not clear whether
this effect remains for loading amplitudes below the critical state, or there is
a certain regime where the material behaves perfectly irreversible [28, 38, 39].
It is still also not clearly understood how sliding, crushing and wearing of the
grains affect the accumulation of plastic deformation with the number of cycles
[40, 41, 42, 37]. Here we present numerical evidence of this ratcheting effect
for small loading amplitudes on assemblies of densely packed polygons. This
can be detected at the micromechanical level by a ratchetlike behavior at the
contacts. This effect excludes the existence of the rather questionable finite
elastic regime of noncohesive granular materials.

We use samples with volume fractions lower than one. First, the polygons
are placed randomly inside a rectangular frame consisting of four walls. Then,
a gravitational field is applied and the sample is allowed to consolidate. The
external load is imposed by applying a force σ1H and σ2W on the horizontal
and vertical walls, respectively. Here σ1 and σ2 are the vertical and horizontal
stresses. H and W are the height and the width of the sample. Next, the
sample is isotropically compressed until the pressure p0 is reached. When the
velocity of the polygons vanishes gravity is switched off. Then, the vertical
stress σ1 = p0 is kept constant and horizontal stress is modulated as σ2 =
p0 + σ[1− cos(πt/t0)]/2. Part (a) of Fig. reffig11 shows the relation between
the stress q = (σ1 − σ2)/2 and the shear strain γ in the case of a loading
amplitude σ = 0424p0. This relation consists of open hysteresis loops which
narrow as consecutive load-unload cycles are applied. This hysteresis produces
an accumulation of strain with the number of cycles which is represented by
γN in the part (b) of Fig. reffig11. We observe that γN consists of short time
regimes, with rapid accumulation of plastic strain, and long time ratcheting
regimes, with a constant accumulation rate of plastic strain of around 24×10−6

per cycle. The relation between the stress and the volume fraction is shown
in part (c) of Fig. reffig11. This consists of asymmetric compaction-dilation
cycles leading to compact during the cyclic loading. This compaction is shown
in part (d) of the Fig. reffig11. We observe a slow variation of the volume
fraction during the ratcheting regime, and a rapid compaction during the the
transition between two ratcheting regimes, whereas the slope of γN shows
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no dependency on the compaction level of the sample. The evolution of the
volume ratio seems to be rather sensitive to the initial random structure of the
polygons. Even so we found that after 8× 103 cycles the volume fraction still
slowly increases in all the samples, without reaching the saturation level.

By following the evolution of the contact network one can explain this par-
ticular behavior. Even under isotropic compression, the strong heterogeneities
of the force network produce a considerable amount of contacts reaching the
sliding condition. Those sliding contacts carry most of the irreversible defor-
mation of the granular assembly during the cyclic loading. Opening and closure
of contacts are quite rare events, and the coordination number of the packing
keeps it approximately its initial value 42 ± 008 in all the simulations. After
certain loading cycles the contact forces reach the quasiperiodic behavior. In
this regime, a fraction of the contacts reaches almost periodically the sliding
condition. The load-unload asymmetry of the contact force loops makes the
contacts slip the same amount and in the same direction during each loading
cycle.

When the ratcheting regime is reached, each particle within the packing
has a certain displacement and accumulates the same rotation for each cycle.
It is of great interest to study the patterns created by the rotational and
displacement field of all the grains. Slip zones, rotational bearings and vertical
structures persist during the long time of a ratcheting regime[26, 43]. These
structures are concentrated in shear bands, as shown the Figure 5. Recently
it has been shown that these rotational patterns promote a strong reduction
of strength and frictional dissipation in shear cells [13]. They suggest also
a characteristic mesoscopic scale in granular materials, which is required to
connect their macroscopic behavior to the microscale. It is an open question
how to introduce such rotational modes in the continuum, which certainly
require an interconnection between the grain scale, the mesoscale of few grains,
and the macroscopic scale of the bulk material.
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Figure 5: Top: (a) Deviatoric stress versus shear strain in the first 40 cycles.
(b) permanent (plastic) strain γN after N cycles versus the number of cycles.
(c) stress against the volume fraction in the first 40 cycles. (d) volume fraction
ΦN after N cycles versus number of cycles. Bottom: displacement field after
one cycle in the ratcheting regime. Inset: Permanent deformation per cycle at
the contacts.
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5 Conclusions

A discrete element model of polygonal particles has been used to investigate
the plastic deformation in non-cohesive granular materials. The response of
the discrete model reproduces three important features of soil deformation:

1. The unidirectionally of the plastic strain response,

2. shear bands, and

3. the stress-dilatancy relation.

Comparing the strain response to the anisotropy induced by loading in the con-
tact network, we conclude that the elastoplastic response of granular materials
can be described by using two set of fabric variables. The first set connects
the elastic response to the anisotropy of the contact network. The second set
of coefficients, measuring the anisotropy induced by loading in the subnetwork
of sliding contacts, can be used to describe the micromechanics of the plastic
deformation of the granular materials. Anisotropy plays also an important
role in the shear band formation. Strain localization appears a mechanism of
buckling of stress columns which gradually concentrate in layers which end up
with the creation of the shear bands. The width of such shear bands is related
to the characteristic length of the buckled columns and it depends only on the
grain diameter.

Shear bands can be seen as the asymptotic response of granular materials
for large monotonic plastic deformations. In the case of cyclic loading we
have reported on the existence of an asymptotic response for large number of
cycles. This is the so-called granular ratcheting, which appears under cyclic
loading with extremely small loading amplitudes. Ratcheting is characterized
by a constant accumulation of plastic deformation with the number of cycles,
resulting from a ratchet-like deformation at the sliding contacts.

The spatial distribution of such ratchets is not random, but their appear
to be correlated in form of slip bands. The displacement and rotational field of
the individual particles are spatially correlated in terms of vorticity cells and
rotational bearings. Such rotational patterns promote a strong reduction of
frictional dissipation in shear cells, a feature that addresses important issues of
soils mechanics, such as the principle of minimal energy dissipation for shear
bands [44], the necessity of rotational degrees in the continuum description of
granular media [45], and the long standing heat flow paradox of earthquakes
mechanics [46]. With the recent advances in computational modelling, the
push to investigate these issues on the basis of simulation will represent an
important part of geotechnical and rock mechanics applications. One crucial
issue in such modeling involves the use of multiscale approach [47], where the
micromechanics of grain contact, along with the dynamics of mesoscopic pat-
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terns and the constitutive equations of the bulk materials, need to be treated
simultaneously.
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Mikromehanički osvrt na plastičnost tla korǐsćenjem
diskretnog modela poligonalnih čestica

Mehaničko ponašanje tla se tradicionalno opisuje pomoću modela zasnovanih
na mehanici kontinuuma. Ove empirijske relacije temelje se na laboratorijskim
testovima uzoraka tla. Poslednjih godina postalo je moguće ispitivanje tla na
nivou zrna korǐsćenjem modela diskretnih elemenata. Ovi modeli su omogućili
razumevanje mnogih važnih mikromehaničkih aspekata deformacije tla. Cilj
ovoga rada je da približiova dva pristupa istraživanju plastične deformacije
nekohezivnih tipova tla. Jednostavan model diskretnih elemenata je korǐsćen
u cilju ispitivanja efekata anizotropije, lanaca sile, i kontakata sa klizanjem
na razne aspekte plastičnosti tla dilatantnost, lokalizacija smicanja, račeting,
itd. Diskusija ovih aspekata vodi do vazhnih pitanja kao što su širina pojasa
smicanja, razlog za naponsko-dilatantnu relaciju, i postojanje čisto elastičnog
režima pri deformaciji zrnastih (granularnih) materijala.
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