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Abstract
An objective of this paper is to reconcile the ”symmetry” approach with
the ”symmetry groups” approach as these two different points of view
presently coexist in the literature. Here we will be concerned exclusively
with linearly elastic materials. The starting point for an analysis of
the inherent symmetry of elastic materials is the notion of a symmetry
transformation.Particularly, we paid attention to the compliance tensor
for cubic and hexagonal crystals.
Keywords: linearly elastic materials, symmetry, tensors of elasticity,
compliance tensor, cubic and hexagonal crystals.

1 Introduction

We say the body is linearly elastic if for each x ∈ B there exists a linear
transformation Cx from the space of all tensors into the space of all symmetric
tensors such that

T(x) = Cx[E(x)], (1)

where E is strain tensor. By definition

E =
1

2
(∇u +∇uT ), (2)
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where u and ∇u are the displacement vector and the displacement gra-
dient, respectively.

We call Cx the elasticity tensor for x and the function C on B with
values Cx the elasticity field. In general, Cx depends on x; if, however, Cx

and the density %(x) are independent of x, we say that B is homogeneous.
Since, T and E are symmetric, the elasticity tensor has the following prop-

erties:
Cijkl = Cjikl = Cijlk. (3)

We call the 36 numbers Cijkl elasticities.
Further, we say that C is symmetric if

A·C[B] = B·C[A]

for every pair of symmetric tensors A and B, positive semi-definite if

A·C[A] ≥ 0

for every symmetric tensor A, and positive definite if

A·C[A] > 0

for every non-zero symmetric tensor A. Of course, C is symmetric iff its com-
ponents obey

Cijkl = Cklij. (4)

Then C has 21 distinct elasticities, which corresponds to the most asymmetric
elastic solid, namely to triclinic crystals.

If the elasticity tensor is invertible, than its inverse

Kx = C−1
x (5)

is called the compliance tensor, defining the relation

E(x) = Kx[T(x)] (6)

between the strain E(x) and the stress T(x) at x.
Note that C is invertible whenever it is positive definite.

2 Material symmetry

For crystals with higher symmetry, the number of elasticities can be reduced
further, the exact number being dependent on the material symmetries present
in the crystal.
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Material symmetry is exhibited in the sense that particular changes of ref-
erence configuration exist which leave the stress at x arising from an arbitrary
deformation invariant. The larger the collection of such transformations the
greater the degree of symmetry possessed by the material.
Thus we have motivated the following definition:

The symmetry group gx for the material at x is the set of all orthog-
onal tensors Q that obey

QCx[E]QT = Cx[QEQT ] (7)

for every symmetric tensor E. We say that the material at x is isotropic
if the symmetry group gx equals the orthogonal group, anisotropic if
gx is a proper subgroup of the orthogonal group.

Clearly, gx always contains the two-element group {−I, I} as a subgroup.
It can be seen (Spencer [1971]) that gx is the direct product of this two-element
group and a group go which consists only of proper orthogonal transformations,
i.e. rotations. Consequently the type of anisotropy is characterized by the type
of the group go.

Although there is an infinite number of types of rotation groups go, twelve of
them seem to exhaust the kinds of symmetries occurring in theories proposed
up to now as being appropriate to describe the behavior of real anisotropic
solids. Particularly transverse isotropy is appropriate to real materials having
a laminated or a bounded structure.

These thirty-two crystal classes are grouped into following six systems:

(i) Triclinic system,

(ii) Monoclinic system,

(iii) Rhombic system,

(iv) Tetragonal system,

(v) Hexagonal system,

(vi) Cubic system.

2.1 Isotropy

There are no isotropic tensors of the first order. The isotropic tensors of second,
third and higher order can be constructed only by tensors δij, Kronecker delta,
and eijk, Ricci tensor of alternation. Obviously, tensors

δi1i2δi3i4 . . . δir−1ir
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and
ei1i2i3δi4i5 . . . δir−1ir

are of even and odd order, respectively. They are isotropic, as well as any of
their isomers, i.e. tensors which differ from original one by the arrangements
of its indices. Therefore, any linear combination of such isomers is an isotropic
tensor. It can also be proved that any isotropic tensor can be represented
by linear combination of some isomers (Gurevich [1948], Spencer [1971]). For
example,

cijkl = λδijδkl + µδikδjl + νδilδjk, (8)

and

cijklmn = λ1δijδklδmn + λ2δijδkmδln + λ3δijδknδlm+ (9)

+ λ4δikδjlδmn + λ5δikδjmδln + λ6δikδjnδlm + λ7δilδjkδmn+

+ λ8δilδjmδkn + +λ9δilδjnδkm + λ10δimδjkδln + λ11δimδjlδkn+

+ λ12δimδjnδkl + λ13δinδjkδlm + λ14δinδjlδkm + λ15δinδjmδkl

are general forms of isotropic tensors of fourth and sixth order, respectively.
Isotropic tensors of eight and higher even order can be constructed in the same
way. However, in these cases their isomers are not mutually independent. More
precisely, the number of independent isomers, Lr, is less then the number of
all their possible isomers

Nr =
r!

2nn!
,

where r = 2n. The following table illustrate it for some r

r = 2 4 6 8 10
Nr = 1 3 15 105 945
Lr = 1 3 15 91 603.

In order to calculate Lr the method of theory of group representation is
used (Ljubarskii [1957]). Because of huge number of Lr, for practical purposes
in continuum mechanics, we usually confine our attention to r = 2, 4, 6. Par-
ticularly, when dealing with elasticity tensors of second and third order we
make use of their symmetric properties, i.e. (3) and

cijklmn = cjiklmn = cklijmn = cijklnm = cijmnkl, (10)

so that their representation becomes quite simple:

cijkl = λδijδkl + µ (δikδjl + δilδjk) , (11)
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cijklmn = aδijδklδmn+ (12)

+ b (δijδkmδln + δijδknδlm + δimδklδjn

+ δinδklδjm + δikδjlδmn + δilδjkδmn) +

+ c (δikδjmδln + δikδjnδlm + δilδjmδkn

+ δilδjnδkm + δimδjkδln + δimδjlδkn+

+ δinδjkδlm + δinδjlδkm) .

It is easy to see that

λ = c1122, µ =
1

2
(c1111 − c1122)

and

a = c112233, b =
1

2
(c112222 − c112233),

c =
1

8
(c111111 + 2c112233 − 3c112222).

The constants λ, µ and a, b, c are invariant with respect to the choice of the
coordinate system. It is, therefore, appropriate to call them the universal
constants for the isotropic materials. Contrary to them, elastic constants
cijkl (or cijklmn) change their values under arbitrary orthogonal coordinate
transformations; also the number of constants, required to specify the elastic
property of a crystal changes from coordinate system to coordinate system.
These two aspects are a rather severe handicap in the treatment of various
problems and may explain, in part at least, why the theory of cubic crystals
in the elastic domain did not enjoy a development comparable to that of the
classical or isotropic theory of elasticity. Because of that we have been for a
long time in need to find universal constants for all crystal classes.

3 Invariant elastic constants for crystals

It was Thomas [1966] who obtained invariant constants λ, µ, α for cubic crys-
tals similar to Lames λ, µ for isotropic solids. He has proposed the following
expression

cijkl = λδijδkl + µ (δikδjl + δilδjk) + αnainajnaknal, (13)

where nai are the components of the unit vectors na (a = 1, 2, 3) which repre-
sent the crystallographic directions of cubic crystal in an arbitrary Carte-
sian system (The crystallographic axes represent in direction and magnitude
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the three non-parallel edges of the unit cell of a crystal. The unit vectors along
these axes are referred to as crystallographic directions (Nye [1960])). Srini-
vasan & Nigam [1969], proposed a procedure how to derive invariant constants
of Cijkl for all other crystal classes. The procedure is, as suggested by Synge &
Schild [1969], in some sense, based on the representation of tensors in anholo-
nomic coordinate systems. For simplicity, the unit vectors na (a = 1, 2, 3)
along crystallographic directions are chosen as anholonomic basis. Generally,
they are not orthogonal. In order to make this manuscript self-contained we
proceed in explaining this procedure.

Given a vector n. Then

n = niei = nana;

ei and na (i, a = 1, 2, 3) are two systems of basis vectors, respectively. Usually
we take ei orthonormal. Then

ni = naina, nai = na· ei,

where there is summation over a; a is not tensor index.
Let ma be reciprocal basis to the basis vectors na. Then

na·mb = δab ⇒ naimbi = δab.

Note that there is no distinction between contravariant and covariant in-
dices since we are working in Cartesian frames of references. Then we obtain

na = maini.

But na do not depend on the choice of coordinate system with respect to the
indices i. Therefore na are invariant and behave as scalars with respect to
any such coordinate transformation. The same approach can be applied to
any tensor. Srinivasan & Nigam [1969] stated that this idea can be useful
in finding the invariant dielectric constants, piezo-electric and photo-elastic
coefficients. Because of that they confine they application of the procedure to
the tensors of second, third and fourth order. See also Cowin & Mehrabadi
[1987], Jarić [1989], Ting [1996], Jarić [1998].

We are interested in the fourth rang tensor Cijkl. We write

Cijkl = nainbjnckndlAabcd.

Note that Aabcd possesses the same symmetric properties as Cijkl. In the above
form the scalars Aabcd are the 21 invariant elastic constants for the triclinic
crystal (no axes or plane of symmetry). But from this expression it is possible
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to obtain expressions in the case of crystals belonging to other systems by
imposing the various point group symmetries on Cijkl. This is done by keeping
the coordinates unchanged and transforming only the vectors na according to
the symmetries present in the crystal whereas in dealing with elastic symmetry
it has been customary to transform coordinates. We shall illustrate it in case
of cubic crystals.

Here and further we shall use the following notation and definitions:
Orth - the set of all orthogonal tensors,
Orth+ - the set of all rotations,
A, B, . . . - 4-tensors in three-dimensional Euclidean real space R3,
Q = Q × Q - the orthogonal 4-tensor; Q ∈ Orth+; ” × ” - Kronecker

product,
I - identity 4-tensor, Iijkl = 1

2
(δikδjl + δilδjk).

In the case of the cubic crystals crystallographic directions na are orthonor-
mal. The atomic array is unchanged

(1) by inversion about the plane defined by na. These will take na ⇒ −na.

(2) by π/2 rotations about each of na.

These symmetry conditions leads to the vanishing of 12 constants. The
remaining 9 constants are

A1111 = A2222 = A3333 = A,

A1122 = A2233 = A1133 = B,

A1212 = A2323 = A1313 = C.

Then

C = A

3∑
a=1

Na + B

3∑

a<b

Nab + C

3∑

a<b

Mab, (14)

where

Na ⇒ Naijkl
= nainajnaknal, (no sum over a),

Nab ⇒ Nabijkl
= nainajnbknbl + nbinbjnaknal, (no sum over a and b),

Mab ⇒ Mabijkl
= nainbjnaknbl + nainbjnbknal+

+ nbinajnaknbl + nbinajnbknal, (no sum over a and b).

We can simplify expressions and calculations making use of na ⇒ nainaj (no
sum over a) and nab ⇒ nainbj. Then

Na = na ⊗ na,

Nab = na ⊗ nb + nb ⊗ na,

Mab = nab ⊗ nab + nab ⊗ nba + nba ⊗ nab + nba ⊗ nba.
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Also

I =
∑

a

na ⇒ I⊗ I =
∑

a,b

na ⊗ nb =

=
∑

a

na ⊗ na +
∑

a<b

(na ⊗ nb + nb ⊗ na) ,

i.e.
I⊗ I =

∑
a

Na +
∑

a<b

Nab. (15)

Next, from

I ⇒ Iijkl =
1

2
(δikδjl + δilδjk)

we have

2Iijkl =

(∑
a

nainak

) (∑

b

nbjnbl

)
+

(∑
a

nainal

)(∑

b

nbjnbk

)
=

=
∑

a,b

(nainbjnaknbl + nainbjnbknal) =

= 2
∑

a

nainajnaknal+

+
∑

a<b

(nainbjnaknbl + nainbjnbknal + nbinajnaknbl + nbinajnbknal) =

= 2
∑

a

Naijkl
+

∑

a<b

Mabijkl
,

i.e.
2I = 2

∑
a

Na +
∑

a<b

Mab. (16)

¿From (14), (15) and (16) we finally obtain

C = λI⊗ I + 2µI+ αN, (17)

where
λ = B, µ = C, α = A−B − 2C

and
N =

∑
a

Na =
∑

a

na ⊗ na ⇒ Nijkl = nainajnaknal. (18)

Note that N is symmetric tensor with respect to all of its indices.
In the same way Srinivasan & Nigam [1969] obtained expressions in the

case of crystals belonging to other systems by imposing the various point group
symmetries on Cijkl.
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4 On compliance tensor

Here we state (7) in the restricted form:
We say that Q is symmetry transformation of C if

QC = CQ (19)

for some Q ∈ Orth+. It is easy to show that all such Q ∈ Orth+ define an
isotropy group of C. More precisely, we say that C is an isotropic tensor
if gC = Orth+; otherwise C is an anisotropic tensor and then gC ⊂ Orth+.

Let C be invertible. Let K be the corresponding compliance tensor,
i.e.

CK = KC = I. (20)

Then from (19) and (20) we have the following (Gurtin [1972])

Proposition 1 The isotropy group gC of tensor C is also the isotropy group
of its inverse (compliance) tensor K.

Corollary 1 The representation tensors forms of tensors C and K is the
same.

The above proposition and its corollary enable one to find the explicit form
of K if the form of C is known. The way to find it is an algebraic one: we simply
have to find the corresponding coefficients of representation of K making use of
(20) as unique functions of the coefficients of C. We proceed to demonstrate
it in the case when C represents the elasticity tensor for cubic crystals and
hexagonal crystals.

First, we start with cubic crystals, i.e. with (17)

C = λI⊗ I + 2µI+ αN.

Since AB = D, or in componental form Dijkl = (AB)ijkl = AijpqBpqkl, the
reader can easily verify that the following multiplication table holds:

I I⊗ I N
I I I⊗ I N

I⊗ I I⊗ I 3I⊗ I I⊗ I
N N I⊗ I N

(21)

Lemma 1 I⊗ I, I and N are linearly independent.

The proof is trivial.
Thus, the 4-tensors I⊗ I, I and N are the basis of the representation of C

and its compliance tensor K.
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Proposition 2
K = pI⊗ I + 2qI+ rN, (22)

where

p = − λ

(2µ + α)(3λ + 2µ + α)
, q =

1

4µ
, r = − α

2µ(2µ + α)
(23)

µ 6= 0, 2µ + α 6= 0, 3λ + 2µ + α 6= 0.

Proof. By Corollary, K must have the same form as C. Therefore we have only
to find the value of p, q and r from (20). Again, making use of the table and
after some arrangement of the terms we obtain

[(3λ + 2µ + α)p + 2λq + λr]I⊗ I + 4µqI+ [2αq + (2µ + α)r]N = I.

By Lemma 1 we have the set of linear equations

(3λ + 2µ + α)p + 2λq + λr = 0,

4µq = 1, (24)

2αq + (2µ + α)r = 0

and from them (23). ¥
Remark 1. Several symmetric relationships between constants λ, µ, α and p,
q, r can be derived.

I. Because of (20), (17) and (22) the set of equations (24) is symmetric with
respect to strict interchange of λ, µ, α and p, q, r (i.e. λ ⇔ p, µ ⇔ q,
α ⇔ r). Thus

(3λ + 2µ + α)p + 2λq + λr = 0,

4µq = 1,

2rµ + (2q + r)α = 0.

Then from (23) we have at once

λ = − p

(2q + r)(3p + 2q + r)
, µ =

1

4q
, α = − r

2q(2q + r)
, (25)

q 6= 0, 2q + r 6= 0, 3p + 2q + r 6= 0.

II. It is easy to verify the following symmetric relations

4µq = 1,

(2µ + α)(2q + r) = 1, (26)

(3λ + 2µ + α)(3p + 2q + r) = 1.
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III. In the linear theory of elasticity the stored energy Σ is defined by

Σ =
1

2
e·C[e],

where e is the infinitesimal strain. If we write ε for the traceless part of
e, i.e. Iε = tr ε = 0, then

ε =
1

3
IεI− e, Ie = tr e,

so that

tr e2 =
1

3
I2
e + tr ε2.

Then (see Appendix)

Σ =
1

6
(3λ + 2µ + α) I2

e +
1

2
(2µ + α)

∑
a

ε2
aa + 2µ

∑

a<b

ε2
ab. (27)

There is physical reason to require that Σ be a positive definite form, for
then in any given small strain from an unstressed state, the stress must
do positive work. Hence, from (27) we conclude that this will be the case
iff

µ > 0,

2µ + α > 0, (28)

3λ + 2µ + α > 0,

or, equivalently,

q > 0,

2q + r > 0, (29)

3p + 2q + r > 0,

which follows from (26). The same conclusion will follow from the posi-
tive definiteness of Σ = 1

2
t·K[t], where t is stress tensor.

Another, very important, conclusion follows from (29) and (23):

The existence of compliance tensor does not ensure the positive definit-
ness of the strain energy.

Remark 2. Jarić [1998] has shown that C is an isotropic tensor in En, n ≥ 2,
iff

C = λI⊗ I + 2µI. (30)
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By the same procedure it is easy to derive the compliance tensor K for this
general case. Then

I I⊗ I
I I I⊗ I

I⊗ I I⊗ I 3I⊗ I
N N I⊗ I

Proposition 3

K = σI⊗ I + 2τI, (31)

where

σ = − λ

2µ(nλ + 2µ)
, τ =

1

4µ
, (32)

µ 6= 0, nλ + 2µ 6= 0.

Proof. Again from (20) and the table in this case we obtain

4µτ = 1,

σ(nλ + 2µ) + 2λτ = 0,

and from this (32). ¥
In the theory of elasticity two cases are of importance:

n = 2:

τ =
1

4µ
, σ = − λ

4µ(λ + µ)
, (33)

and
n = 3:

τ =
1

4µ
, σ = − λ

2µ(3λ + 2µ)
. (34)

This follows also from (23) when α = 0.
We shall proceed one step further applying the same procedure for

4.1 Hexagonal system

In hexagonal crystals the angle between n1 and n2 is 120◦ and those between
n3 and n1, and n3 and n2 is 90◦. Also n3 will be a six-fold axes of rotation.
In this case the relation

n1in1j + n2in2j +
1

2
(n1in2j + n2in1j) +

3

4
n3in3j =

3

4
δij
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hold. Then

Cijkl = λ1δijδkl +
1

2
λ2 (δikδjl + δilδjk) + λ3n3in3jn3kn3l+

+ λ4 (n3in3jδkl + n3kn3lδij) +

+ λ5 (n3in3kδjl + n3in3lδjk + n3jn3kδil + n3jn3lδik) ,

or
C = λ1I⊗ I + λ2I+ λ3N3 + λ4 (n3 ⊗ I + I⊗ n3) + λ5M, (35)

M ⇒ Mijkl = n3in3kδjl + n3in3lδjk + n3jn3kδil + n3jn3lδik.

Obviously its compliance tensor K is given by the expression

K = p1I⊗ I + p2I+ p3N3 + p4 (n3 ⊗ I + I⊗ n3) + p5M. (36)

Before we proceed further here we give the multiplication table of I ⊗ I,
N3, n3 ⊗ I + I⊗ n3 and M:

I⊗ I N3

I⊗ I 3I⊗ I I⊗ n3

N3 n3 ⊗ I N3

n3 ⊗ I + I⊗ n3 3n3 ⊗ I + I⊗ I N3 + I⊗ n3

M 4n3 ⊗ I 4N3

n3 ⊗ I + I⊗ n3 M
I⊗ I 3I⊗ n3 + I⊗ I 4I⊗ n3

N3 N3 + n3 ⊗ I 4N3

n3 ⊗ I + I⊗ n3 3N3 + I⊗ I + n3 ⊗ I + I⊗ n3 4(N3 + I⊗ n3)
M 4(N3 + n3 ⊗ I) 2(4N3 +M)

Again from CK = I, we obtain, after some lengthy calculation and arrange-
ment of terms,

I⊗ I [p1(3λ1 + λ2 + λ4) + p2λ1 + p4(λ1 + λ4)] + (37)

+Ip2λ2+

+N3 [p2λ3 + p3(λ2 + λ3 + λ4 + 4λ5) + p4(λ3 + 3λ4 + 4λ5) + 4p5(λ3 + λ4 + 2λ5)] +

M [p2λ5 + p5(λ2 + 2λ5)] +

n3 ⊗ I [p1(λ3 + 3λ4 + 4λ5) + p2λ4 + p4(λ2 + λ3 + λ4 + 4λ5)] +

+I⊗ n3 [p2λ4 + p3(λ1 + λ4) + p4(3λ1 + λ2 + λ4) + 4p5(λ1 + λ4)] = I.

We note that the last term can be written as

I⊗ n3 [λ1(p3 + 3p4 + 4p5) + λ2p4 + λ4(p2 + p + 3 + p3 + p4 + 4p5)] ,
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i.e. the last two terms can be obtained from each other when we strictly
interchange the coefficients λσ ⇔ pσ (σ = 1, 2, 3, 4, 5). The same symmetric
property is satisfied by the other coefficients as can be very easily verified.
Thus from (37) we can write the expression for

KC = I,

when we strictly interchange the coefficients λσ ⇔ pσ (σ = 1, 2, 3, 4, 5). The
only difference appears in the coefficients n3 ⊗ I and I ⊗ n3, i.e. they are
mutually interchanged. Thus

I⊗ I[· · · ] + I[· · · ] + N3[· · · ] +M[· · · ]+
+n3 ⊗ I[λ1(p3 + 3p4 + 4p5) + λ2p4 + λ4(p2 + p3 + p4 + 4p5)]+

I⊗ n3 [λ2p4 + λ3(p1 + p4) + λ4(3p1 + p2 + p4) + 4λ5(p1 + p4)] = I.

Next, we can prove that linear operators

I⊗ I, I, N3, I⊗ n3, n3 ⊗ I, M

are linearly independent. Therefore from

I : p2λ2 = 1

we have at once

p2 =
1

λ2

, (38)

and from
M : p2λ5 + p5(λ2 + 2λ5) = 0,

p5 = − λ5

λ2(λ2 + 2λ5)
. (39)

Moreover, the following symmetric relations holds

(p2 + 2p5)(λ2 + 2λ5) = 1.

Further, the remaining set of equations

I⊗ I : p1(3λ1 + λ2 + λ4) + p2λ1 + p4(λ1 + λ4) = 0, (40)

N3 : p2λ3 + p3(λ2 + λ3 + λ4 + 4λ5)+

+ p4(λ3 + 3λ4 + 4λ5) + 4p5(λ3 + λ4 + 2λ5) = 0,

n3 ⊗ I : p1(λ3 + 3λ4 + 4λ5) + p2λ4 + p4(λ2 + λ3 + λ4 + 4λ5) = 0,

I⊗ n3 : p2λ4 + p3(λ1 + λ4) + p4(3λ1 + λ2 + λ4) + 4p5(λ1 + λ4) = 0,
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has to be solved for p1, p3 and p4. Again, we remind the reader that the last
equation can be written as

λ1(p3 + 3p4 + 4p5) + λ2p4 + λ4(p2 + p3 + p4 + 4p5) = 0,

which is obviously symmetric to the third one. From (401) and (403), making
use of (38), we obtain

p1 =
1

λ2∆

[
λ2

4 − λ1(λ2 + λ3 + 4λ5)
]
, (41)

p4 =
1

λ2∆
[λ1(λ3 + 4λ5)− λ4(λ2 + λ4)] , (42)

where

∆ = (2λ1 + λ2)(λ1 + λ2 + λ3 + 2λ4 + 4λ5)− 2(λ1 + λ4)
2.

Further, from (402) and (404), taking into account (38) and (39), we obtain
(42) and p3.

p3 =− λ4

λ2(λ1 + λ4)
+

4λ5

λ2(λ2 + 2λ5)
−

− (3λ1 + λ2 + λ4)[−λ4(λ2 + λ4) + λ1(λ3 + 4λ5)]

λ2(λ1 + λ4)[−2(λ1 + λ4)2 + (2λ1 + λ2)(λ1 + λ2 + λ3 + 4λ4 + 4λ5)]
.

We close this subsection with remark that different approach can be found
in Walpole [1984]. Also, we note that the determination of third-order elastic
coefficients (elastic tensor of six order) has be done by Fumi [1952], [1987] and
Brugger [1965]. In our opinion this topic deserves further investigation because
of it importance.

5 Conclusion

Here we present a new approach in order to derive compliance tensor for cubic
and hexagonal crystals. This new approach is an algebraic one and consists
of the set of linear equations with respect to the material coefficients of com-
pliance tensor. It appears that the relation between material constants for
elastic and compliance tensor is symmetric for crystal classes considered here.
So derived compliance tensor for isotropic materials can be regarded as a spe-
cial case. The compliance tensor for other crystal classes can be derived in
the same way. Then the procedure is lengthy one because of the number of
material coefficients for these crystal classes.
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Appendix

In deriving (27) we make use of

tr ε2 = εijεij =
∑

a

ε2
aa + 2

∑

a<b

ε2
ab,

and

eN[e] = e·
(

3∑
a=1

na ⊗ na

)
[e] =

3∑
a=1

(trnae)2.

But

nae =
1

3
Iena + naε ⇔ trnae =

1

3
Ie + trnaε → (trnae)2 =

=
1

9
I2
e +

2

3
Ietrnaε + (trnaε)

2

so that

e·N[e] =
3∑

a=1

(trnae)2 =
1

3
I2
e +

3∑
a=1

3∑
a=1

(trnaε)
2 =

1

3
I2
e +

3∑
a=1

ε2
aa.
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O tenzoru elastičnosti

U radu se, za analizu simetrije tenzora elastičnosti i njemu inverznog ten-
zora koristi Propozicija Grupa izotropije tenzora elasičnosti C je tako -de izotropna
grupa njemu inverznog tenzora popustivosti K. Kao posledica ove propozicije
sledi da su tenzori C i K istog funkcionalnog oblika. Ova dva fundamen-
talna stava se koriste u slučaju kubnog i heksagonalnog kristala za njihovo
odre -divanje. Isti postupak se može primeniti i za ostale kristalne klase.
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