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Abstract
Incorporating the interfacial damage and thermal residual stresses, an elasto-
plastic damage formulation is proposed to predict the overall transverse
mechanical behavior of continuous elliptical-fiber reinforced ductile matrix
composites within the framework of micromechanics and homogenization.
Based on the concept of equivalent inclusion and taking the progressive in-
terfacial debonding angle into consideration, partially debonded fibers are
replaced by equivalent orthotropic, perfectly bonded fibers. Three inter-
facial damage modes are considered. The Weibull’s probabilistic function
is adopted to describe the varying probability of progressive partial fiber
debonding. The effective elastic moduli of four-phase composites, composed
of a ductile matrix and randomly located yet unidirectionally aligned fibers
are derived by a micromechanical formulation.

Thermal residual stresses are taken into account through the concept of
thermal eigenstrain to investigate the effects of the manufacturing process-
induced residual stresses. Employing the micromechanical approximation,
the overall stress-strain responses and the effective yield function are for-
mulated with the thermal eigenstrain. When comparing with the avail-
able experimental data, significant effects of thermal residual stresses are
discussed. Moreover, the effects of the interfacial strengths and the cross-
sectional shapes of fibers on the mechanical behaviors of composites are
systematically investigated.
Keywords: Elliptical fiber reinforced composites, metal matrix compos-
ites, probabilistic micromechanics, damage mechanics, interfacial debond-
ing, residual stress, homogenization
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1 Introduction

The requirement for higher structural efficiency (a combination of stiffness and
strength normalized by density) provides a significant motivation for the develop-
ment of improved materials for a multitude of engineering applications. Composite
materials have been widely studied and employed in diverse fields of science and
engineering disciplines. In comparison with many conventional materials (such as
steel and aluminum), fiber- or particle-reinforced composites offer salient features
such as low density, high strength-to-weight ratio, high stiffness, high toughness,
improved creep resistance, enhanced wear resistance, superior environmental dura-
bility, custom microstructure-morphology, and preferred directionality, etc. The
matrix material may consist of metal, ceramic or polymer. The inclusions encom-
pass unidirectionally aligned, bi-directional, or randomly dispersed in a matrix
material. Among various types, continuous fiber reinforced composites often serve
as the basic building block. Moreover, continuous fiber reinforced composites are
attractive as they offer outstanding longitudinal mechanical properties compared
with composites reinforced by particulates or whiskers.

Structurally efficient metallic materials provide a direct path for reducing mass,
thus improving the performance of structural components (Tamirisakandala et al.,
2004). Metal matrix composites (MMCs) are a class of materials in which stiffer
(ceramic) reinforcements are embedded in a ductile metal or alloy matrix. By
taking advantages of metallic properties (ductility and toughness) and ceramic
characteristics (high strength and modulus), MMCs can provide greater strength
and higher service temperature capabilities. The attractive physical and mechani-
cal properties of MMCs, have lead to extensive use in the aerospace and automotive
industries, and in other structural applications over the past two decades.

The mechanical behavior of MMCs is sensitive to temperature changes. Firstly,
the material properties of MMCs are dependent upon temperatures. Secondly,
thermal residual stresses normally exist in the composites due to the high temper-
ature fabrication/annealing and subsequent cooling process. Although the intro-
duction of rigid inhomogeneity improves the material properties of matrix, simul-
taneously, their existence induces the thermal residual stresses in MMCs due to
the mismatch of the coefficients of thermal expansions (CTEs) between the matrix
and inhomogeneity. Since the CTE of the matrix is usually greater than that of
inhomogeneity, the differential thermal contraction results in the internal tensile
stress in the matrix and compressive stress in the inhomogeneity. Residual stress
can be detrimental when it reduces the tolerance of material to an external loading.
Beneficial residual stresses can also be introduced deliberately; a good example of
this is the toughened glass (Withers and Bhadeshia, 2001a,b). In advanced com-
posite systems, the residual stress states at the room temperature can be large and
may damage the composites even prior to the first external mechanical loading.
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In the literature, extensive research has been implemented to understand the
effects of thermal residual stresses on the effective thermomechanical behaviors of
MMCs. The majority of analytical models are based on the Eshelby’s (1957) equiv-
alence principle, aiming at the analysis of a representative volume element (RVE)
or area element (RAE) in which the reinforcements are randomly distributed. The
main advantage of Eshelby’s approach is that it enables us to predict the full multi-
axial properties and responses of heterogeneous materials, which are often difficult
to measure experimentally. The Eshelby’s approach has been extensively used to
predict the effective mechanical properties of composites (e.g., Hill, 1965; Mori and
Tanaka, 1973; MacLaughlin, 1977; Christensen and Lo; 1979, Weng, 1984; Nor-
ris, 1985; Ju and Chen, 1994a,b,c; Ju and Zhang, 1998, 2001; Ju and Sun, 2001;
Sun and Ju, 2001, 2004). Regarding the thermal effects, the asymmetry in ten-
sile/compressive yield strengths due to residual stresses were studied for whisker
(Withers et al., 1989), particle (Povirk et al., 1991; Hu and Weng, 1998; Liu and
Sun, 2004) and long-fiber (Arsenault and Taya, 1987) reinforced composites. The
use of finite element method (unit cell) to investigate the thermomechanical be-
haviors of MMCs is also popular. Levy and Papazian (1991) and Davis and Allison
(1993) discussed the residual stresses in MMCs after cooling, and Levy and Pa-
pazian (1993) investigated the effects of thermal cycling. Aghdam and Falahatgar
(2004) studied the effects of residual stress, fiber coating, and interface bonding
on the transverse behavior of unidirectional SiC/Ti-6Al-4V MMCs.

The interfacial debonding is a predominant damage mode for the composites;
the evolution of interfacial damage is dictated by the local stress and strain fields
at the interfaces between the reinforcing phase and matrix. In the literature,
the influences of thermal residual stresses upon the interfacial debonding were
investigated theoretically and experimentally, for the whisker reinforced (Zhou et
al., 2000) and fiber reinforced composites (Nimmer et al., 1991; Gundel et al.,
1995, 1999; Warrier et al., 1999; Naboulsi, 2003). In Eshelby’s celebrated work,
it is assumed that inclusion or inhomogeneity is perfectly bonded to the matrix.
However, in many engineering applications, the interfaces in a composite material
may not be perfectly bonded. Inhomogeneities in high strength steel are easily
debonded after some cycles of loading. Grain boundary sliding in polycrystals and
granular materials are common phenomena. Defects and damage may develop on
the interfaces of composites, resulting in imperfect interfaces.

The transverse properties of continuous-fiber reinforced composites depend
upon the ability of the interfaces to transfer the loads from the matrix to fibers.
The weak interfaces lead to the fiber/matrix debonding under transverse loading,
which in turn severely reduces the transverse strengths. The strength in the trans-
verse direction with significant interfacial fiber debonding is often less than that of
the matrix material. It is often the transverse mechanical properties and strengths
that limit the use of such composite materials in practical applications.
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In order to tackle the problems related to the interfacial damage, micromechan-
ics has been extensively used, and various models have been proposed. The first
type of models can be referred to as the interface models, in which the presence of
displacement and traction discontinuities are assumed at the interface, such as the
free-sliding model and linear-spring model. The free-sliding model allows the rel-
ative slip in the tangential direction of the inhomogeneity but does not admit the
displacement jump in the normal direction at the interface. Physically, the free-
sliding model may represent the grain boundary sliding in polycrystals, behavior of
precipitates at high temperature, or imperfectly bonded interfaces in composites.
The free-sliding model was employed to analyze the local elastic fields and effec-
tive properties by Ghahremani (1980), Mura and Furuhashi (1984), and Jasiuk et
al. (1987). In the linear-spring model, the imperfection of interface is reflected
mainly by the discontinuity of displacement field across the interface. The linear-
spring model postulates that the traction is continuous across the interface but the
displacement field is discontinuous; the related eigenstrain problem is called the
modified Eshelby inclusion problem (Qu and Cherkaoui, 2006). The linear-spring
model was used to study the stress fields in composites by many researchers (e.g.,
Aboudi, 1987; Hashin, 1991; Qu, 1993a,b; Gao, 1995; Zhong and Meguid, 1997;
Shen at al., 2000; Duan et al., 2005).

The second type of models is called the interphase models, which describes the
interface region as a layer between the inhomogeneity and matrix. This interphase
layer has a given thickness and distinct elastic moduli from the inhomogeneity
and matrix; perfect bonding is usually assumed at both the matrix/interphase
and inhomogeneity/interphase, enabling the modeling of composites with coated
inhomogeneities (cf., Li et al., 1999; Hashin, 2002; Hashin and Monteiro, 2003;
Heukamp et al., 2005).

The interface damage/failure is primarily responsible for the stiffness reduction
of certain metal and polymer matrix composites under static or cyclic loading due
to the loss of load transfer ability of reinforcements. Accordingly, in the third
type of models, known as the method of equivalent inclusion, the debonded par-
ticles/fibers in various stages of partial debonding modes are treated as a distinct
phase of perfectly bonded yet anisotropic particles/fibers with reduced moduli.
Zhao and Weng (1997, 2002) investigated the effects of partial debonding and
the associated debonding angle on effective properties of composites. By combin-
ing with probability function (Weibull, 1951; Rinaldi et al., 2007), the method of
equivalent inclusion was further adopted to study the behaviors of particle rein-
forced (Liu et al., 2004, 2006) and fiber reinforced MMCs (Ju and Lee, 2000, 2001;
Ju et al., 2006; Ju and Yanase, 2007).

The main objective of present paper is to develop a multi-stage elastoplastic-
damage micromechanical formulation with progressive interfacial partial debond-
ing and prescribed thermal eigenstrain, for elliptical-fiber reinforced ductile matrix



Elastoplastic damage micromechanics for elliptical fiber composites with... 141

composites under transverse loading. The fibers are assumed to be elastic, ran-
domly located in the matrix and unidirectionally aligned. The ductile matrix
behaves elastoplastically under arbitrary transverse loading. Once the composites
are loaded to a certain level, interfacial fiber debonding may develop. The effec-
tive properties of the four-phase composites are statistically homogeneous and or-
thotropic, via the equivalent inclusion method and three interfacial damage modes.
The Weibull’s probability is adopted to characterize the varying probability of pro-
gressive partial fiber debonding. An effective yield function is micromechanically
derived under the presence of residual stresses to capture the overall elastoplastic
damage behavior of composites.

2 Effective elastic moduli of multi-phase com-

posites

2.1 The concept of equivalent inclusion approach

The progressive interfacial debonding process gradually reduces the overall elastic
properties of composites. This is mainly due to the progressive loss of load trans-
fer capability between the matrix and fibers, caused by damaged interfaces. The
extent of reduction depends on the debonding geometry. To tackle the issues re-
lated to the interfacial damage, some theories were developed in the literature. For
instance, Zhao and Weng (1997, 2002) developed a concept of equivalent inclusion
to simulate the behavior of partially debonded inclusions. Under the assumption
of perfectly-bonded inclusions, the Eshelby’s equivalence principle can be directly
implemented without re-deriving the Eshelby tensor. Further, Zheng et al. (2003)
demonstrated that the debonding angle is a dominant damage parameter in esti-
mating the effective moduli of composites and that equivalent inclusion can repro-
duce good results for the composite stiffness and behavior in comparison with the
finite element analysis.

Emanating from the notion that the tensile radial stress at the interface controls
the interfacial debonding initiation and as the tensile radial stress reaches a critical
interfacial debonding stress σcri, the local debonding criterion can be characterized
as

σInterface > σcri , then the interface is partially debonded.
σInterface < σcri , then the interface is perfectly bonded.

(1)

Since thermal residual stresses are induced before mechanical loading due to
the manufacturing process, the presence of residual stresses plays an important role
for the interfacial damage evolution in addition to mechanical loading in Eq.(1).

Eigenstrain is introduced in micromechanics to represent inelastic strains such
as thermal strain, phase transformation stain, plastic strain, and misfit strain
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(Mura, 1987; Qu and Cherkaoui, 2006). The temperature change of composite
during manufacturing process generates a misfit between the natural shape of the
inclusion and the corresponding matrix. By subtracting the strain of matrix from
that of inclusion, the effect of temperature change ∆T can be simulated by the
differential thermal contraction misfit (Withers et al., 1989; Clyne and Withers,
1993) as:

∗
εTh = (α1 − α0)∆Tδij (2)

Here, α0 and α1 signify the coefficients of thermal expansion (CTE) of the
matrix and inclusion, respectively, and δij is the Kronecker delta. Since the ther-
mal eigenstrain is the stress-free strain in the inclusion, the Eshelby’s equivalence
principle leads to the total eigenstrain ε∗Total:

C(1) : (εo + ε
′ − ε∗Th) = C0 : (εo + ε

′ − ε∗Total) (3)

ε∗Total = (A1 + S)−1 : (B1 : ε∗Th − εo) (4)

where
A1 = (C(1) −C0)

−1 •C0

B1 = (C(1) −C0)
−1 •C(1)

(5)

where C0, C(1) represent the stiffness tensors of the matrix and the perfectly
bonded fiber, respectively. Furthermore, εo, ε′ signify the far field and perturbed
strain fields; S represents the interior-point Eshelby’s tensor for an elliptical fiber
(cf. Mura, 1987; Nemat-Nasser and Hori, 1993; Ju and Sun, 2001). In addition,
“•” denotes the 4th-order tensor multiplication. The elastic stiffness of the perfectly
bonded fiber can be written as

C
(1)
ijkl = λ(1)δijδkl + µ(1)(δikδjl + δilδjk), i, j, k, l = 1, 2, 3 (6)

where λ(1) and µ(1) denote the isotropic Lamé constants of the perfectly bonded
fibers. The components of the Eshelby’s tensor S for an elliptical fiber are given
as follows:

Sijkl =
1

4(1− ν0)
{S(1)

IKδijδkl + S
(2)
IJ (δikδjl + δilδjk)}, i, j, k, l = 1, 2, 3 (7)

S
(1)
11 = 2

{
−(1− 2ν0)α

1 + α
+

1

3

[
1− 1

(1 + α)2

]}
,

S
(1)
22 = 2

{
−1− 2ν0

1 + α
+

1

3

[
1− α2

(1 + α)2

]}
(8)

S
(1)
33 = 0,

S
(1)
12 = 2

{
α2

(1 + α)2
− (1− 2ν0)α

α + 1

}
, S

(1)
21 = 2

{
1

(1 + α)2
− (1− 2ν0)

α + 1

}
(9)
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S
(1)
23 =

4 ν0

1 + α
, S

(1)
32 = 0, S

(1)
13 =

4 ν0α

1 + α
, S

(1)
31 = 0 (10)

S
(2)
11 = 2

{
(1− 2ν0)α

1 + α
+

1

3

[
1− 1

(1 + α)2

]}
,

S
(2)
22 = 2

{
1− 2ν0

1 + α
+

1

3

[
1− α2

(1 + α)2

]}
(11)

S
(2)
33 = 0, S

(2)
12 = 2

{
(1− ν0)− α

(α + 1)2

}
, S

(2)
21 = S

(2)
12 (12)

S
(2)
23 =

2 (1− ν0)

1 + α
, S

(2)
32 = S

(2)
23 , S

(2)
13 =

2 (1− ν0) α

1 + α
, S

(2)
31 = S

(2)
13 (13)

where α = a2/a1 is the aspect ratio of an elliptical fiber and ν0 is the matrix
Poisson’s ratio.

By making use of the Eshelby’s theory associated with the total eigenstrain
without the near-field interactions among the inclusion-phase, the interfacial stress
of the perfectly bonded fiber (cf. Ju, Ko and Zhang, 2008) can be approximated
not only as a function of macrostress σ̄ but as a function of prescribed thermal
eigenstrain ε∗Th that is directly related to the temperature change:

σInterface = F : σ̄ + G : ε∗Th (14)

where
F = C0 •

{
(I+φA)−1+(I− S) • Ā • (I+φA)−1

}
•C−1

0 (15)

G = C0 •
{

φ(I + φA)
−1 •A− (I− S)•

[
Ā− φĀ • (I+φA)−1 •A

]}
•B1 (16)

Ā = (A1+S)−1 ; A = (I− S) • (A1+S)−1 (17)

Eq.(14) clearly demonstrates that the residual stress or the temperature change
affects the interfacial stress, thus interfacial damage evolution. Further, if the ther-
mal effect is neglected, Eq.(14) reduces to the formulation for interface stress with-
out thermal effects (Ju and Yanase, 2007). The fourth-rank tensor F represents
the stress concentration factor, and is obtained by assuming that the interface
sliding induced by tangential shear is absent. However, it is suggested that, in
composites with weak interface, the interface sliding precedes the interface sepa-
ration or debonding in the normal direction. Under such circumstances, the stress
concentration factor is increased by a multiplication factor β, which ranges from
unity (no sliding) to 1.34 (free interface sliding), Therefore, Eq.(14) becomes:

σInterface=β · F : σ̄ + G : ε∗Th (18)
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In order to calculate β, the coefficient of interfacial friction under tangential
shear need to be determined by experiment. In the present study, a value of 1.1 is
adopted for β to account for the effect of shear sliding; cf. Warrier et al.(1997).

Although failure may initiate by the shear sliding prior to the interface separa-
tion, the displacement associated with shear sliding is insignificant in a transverse
stress-strain relation. Moreover, based on the finite element analysis, Warrier et al.
(1997) demonstrated that initiation of nonlinearity in the transverse stress-strain
curve is associated with the interface separation. The significant effect of shear
sliding prior to interface separation is the stress-redistribution, which results in
the increase of the stress concentration factor.

Figure 1 shows the interfacial debonding geometry for an elliptical fiber, with
a1 and a2 denoting the principal semi-axes and r the radius; n̂1 and n̂2 are the com-
ponents of the unit outward normal vector n̂ located at the fiber/matrix interface.
Geometrically, we can write:

n̂1 =

x1

a2
1√(

x1

a2
1

)2

+

(
x2

a2
2

)2
; n̂2 =

x2

a2
2√(

x1

a2
1

)2

+

(
x2

a2
2

)2
;

r(θ) =
a1 a2√

a2
2 cos2 θ + a2

1 sin2 θ
(19)

The relation between the local radial stresses and the critical debonding stress
defines the local partial fiber debonding initiation criterion:

σInterface
11 · n̂2

1 + σInterface
22 · n̂2

2 = σcri (20)

Therefore, we arrive at the following three different types of interfacial debond-
ing modes.

Mode 1: σcri > σInterface
11 > σInterface

22

All elliptical fibers are perfectly bonded due to the fact that none of the lo-
cal radial stresses reaches the critical debonding stress. As a result, no partial
debonding process is activated.

Mode 2: σInterface
11 > σcri > σInterface

22

Only one local radial stress component exceeds the critical interfacial debonding
strength σcri. In this case, the interfacial partial debonding initiates from the 1-
direction and propagates toward the 2-direction. The debonding angle θ can be
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Figure 1: The interfacial debonding geometry and the damage parameters for an
elliptical fiber, with a1 and a2 denoting the principal semi-axes and r denoting the
radius.

derived as

θ = sin−1

√√√√√√
σInterface

11 − σcri

σInterface
11 − σInterface

22 ·
(

a1

a2

)4

− σcri

(
1−

(
a1

a2

)4
) (21)
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Mode 3: σInterface
11 > σInterface

22 > σcri

Both radial stresses in the 1- and 2-direction are greater than the critical
debonding stress. In this case, for simplicity, it is assumed that the fiber is totally
separated from the matrix. Accordingly, the elliptical fiber can be approximated
as an elliptical microvoid.

For the above three interfacial damage modes, the range of debonding angles
is between 0o and 90o. The lower and upper bounds of the debonding angles of a
certain radial direction correspond to the perfect bonding (θ = 0o) and complete
debonding (θ = 90o), respectively. To quantify the interfacial damage, the ratios of
the projected damaged areas in certain directions are considered for the directional
damage parameters. Figure 1 shows the interfacial debonding geometry and the
damage parameters for an elliptical fiber. The area of a quarter elliptical fiber is
Area = πa1a2/4; the projected damaged areas along the 1- and 2-direction are:

Area1 =
1

2
a1


r sin θ

√
1− r2 sin2 θ

a2
2

+ a2 sin−1

(
r sin θ

a2

)
 (22)

Area2 = Area1− r2 sin θ cos θ (23)

The damaged arc length and the perimeter length of the fiber read:

Damaged arc length = 2a1a2

∫ θ

0

√
a4

1 + a4
2 + (a4

2 − a4
1) cos 2θ

(a2
1 + a2

2 + (a2
2 − a2

1) cos 2θ)
3dθ (24)

Perimeter arc length = 2a1a2

∫ π/2

0

√
a4

1 + a4
2 + (a4

2 − a4
1) cos 2θ

(a2
1 + a2

2 + (a2
2 − a2

1) cos 2θ)
3dθ (25)

The three directional damage parameters take the form:

D1 =
Area1

Area
; D2 =

Area2

Area
; D3 =

Damaged Arc Length

Perimeter Length of F iber
(26)

On the basis of the above damage parameters and the concept of equivalent
inclusion, partially debonded isotropic fibers (Mode-2) can be replaced by perfectly
bonded, orthotropic fibers with reduced elastic moduli as follows:

C
(2)
ijkl = λ

(2)
IKδijδkl + µ

(2)
IJ (δikδjl + δilδjk), i, j, k, l = 1, 2, 3 and I, J,K = 1, 2, 3 (27)

where

λ
(2)
IK = λ1)(1−DI) · (1−DK); µ

(2)
IJ = µ(1)(1−DI) · (1−DJ) (28)

Here, Mura’s (1987) tensorial indicial notation is adopted; i.e., the repeated
lower-case indices are summed up from 1 to 3, whereas the upper-case indices
take on the same numbers as the corresponding lower-case ones but these are not
summed up.
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2.2 The multi-stage volume fraction evolution of debonded
fibers

To characterize the evolution of interfacial damage and the transition between the
three debonding modes, the volume fraction of each damage mode is expressed as
follows:

Mode 1 (no debonding) : φ(1) = φTotal(1− Ppartial)
Mode 2 (partial debonding) : φ(2) = φTotal(Ppartial − Pcomplete)
Mode 3 (complete debonding) : φ(3) = φTotal(Pcomplete)

(29)

where φTotal is the volume fraction of the original (perfectly bonded) fibers in the
metal matrix composite. The probabilistic functions Ppartial and Pcomplete control
the evolution of the volume fraction of perfectly-bonded fibers toward the 1- and
the 2-direction, respectively. A Weibull distribution function is adopted to describe
the partial interfacial damage evolution process:

Ppartial = 1− exp


−

(
σInterface

11 − σcri

S0

)M

 for σInterface

11 > σcri (30)

Here, the Weibull parameters M , S0 signify the evolution rate of the volume
fractions of debonded fibers and the average interfacial strength, respectively. The
parameter σcri represents the critical interfacial debonding strength between the
fiber and matrix.

In our previous study, we assume that when the radial interface-stress in
the 2-direction reaches the critical value, complete debonding occurs; namely,
σInterface

11 > σInterface
22 > σcri. However, in terms of probability, the larger the

debonding angle, the more likely partial debonding leads to complete debonding.
In addition, when the debonding angle is 90o, the probability for partial debonding
should be equal to that for complete debonding; namely Ppartial = Pcomplete. Con-
sidering the probable situation with respect to the debonding angle θ, we consider
that the probability function Pcomplete may be a function of the debonding angle θ
and Ppartial (cf. Figures 2 ). Therefore, it is assumed that the probability function
Pcomplete is given as

Pcomplete = Ppartial ·
[
1

2

(
1 + sin(2θ − π

2
)
)]

(31)
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Figure 2: The probability function Pcomplete.

3 Effective elastoplastic-damage behavior

3.1 Effective elastic-damage moduli of four-phase compos-
ites

By using the equivalent elastic stiffness of partially debonded fibers in Eq.(27) and
the evolutionary volume fractions associated with different phases of debonded
fibers, the effective elastic-damage moduli of fiber reinforced composites can be
predicted within the framework of micromechanics and homogenization. Since the
self-equilibrium residual stresses do not influence the elastic properties of compos-
ites, the first-order formulation for fiber interactions gives the effective tangent
stiffness tensor of four-phase composites:

σ̄ = C∗: ε̄e (32)

where

C∗= C0 •
[
I + (Ȳ

−1 − S)−1
]

Ȳ = φ(1)(A1+S)−1 + φ(2)(A2+S)−1 + φ(3)(A3+S)−1

Ar= (C(r) −C0)
−1 •C0 , r = 1, 2

A3=− I

(33)

The inversion and contraction of anisotropic 4th-rank tensors can be readily
performed using the generalized isotropic tensorial formulas proposed by Ju and
Sun (2001), and Sun and Ju (2001).
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3.2 The effective yield function of multi-phase elastoplastic
composites with damage and residual stress

The stress and strain fields in the matrix material vary substantially from one point
to another. For instance, around the interface between the matrix and inclusion,
high stress concentration occurs due to the mismatched stiffness of those materials
(Christman et al., 1989a,b). As a result, the matrix material tends to yield at a
relatively low stress around the interface. However, this local plastic yielding does
not control the onset of global yielding. The overall yield stress of metal matrix
composites is governed not so much by the premature local yielding of the matrix,
but rather by the attainment of an average stress in the matrix that is sufficient for
the global yielding (Clyne and Withers, 1993). Moreover, due to the similarity of
the yield criteria developed for monolithic materials which reflect the triaxial state
of stress, it seems reasonable to take this tri-axial state of the stress into account for
metal matrix composites. A number of models use the von Mises and Tresca type
yield criterion. They assume that when the average stress in the matrix exceeds
the threshold value, the overall plastic flow of the composite occurs. Therefore,
the matrix material plays a crucial role for the overall composite yielding (Nieh
and Chellman, 1984).

In our micromechanical framework, the local stress field in the matrix point x
is directly computed with the exterior-point Eshelby’s tensor Ḡ (cf. Mura, 1987;
Ju and Sun, 1999) and the first-order micromechanical approximation (Ju and
Chen, 1994a,b,c) as follows:

σ(x|xr) = M(x|xr) : σo + N(x|xr) : ε∗Th (34)

where xr denotes the center of a rth-phase fiber (r = 1, 2, 3), and the fourth-rank
tensors M(x|xr) and N(x|xr)read

M(x|xr) = I − C0 • Ḡ(x|xr) • (Ar + S)−1 •C−1
0 (35)

N(x|xr) = C0 • Ḡ(x|xr) • (Ar+S)−1 •Br (36)

where
Br = (Cr −C−1

0 •Cr, r = 1, 2
B3 = 0

(37)

Here, σo signifies the far-field (uniform) stress field. It is noted that, similar to
the interface stress given by Eq.(14), the temperature change or thermal eigenstrain
affects the stress field in the matrix phase. If the thermal effect is neglected, Eq.(34)
reduces to the local stress field in the matrix as expected. Further, Ḡ in Eqs.(35)-
(36) signifies the exterior-point Eshelby tensor which has been explicitly derived
in tensor form by Ju and Yanase (2007) for an elliptical fiber.

On the basis of Eq.(34), the ensemble-area-averaging method can be directly
employed to obtain the effective yield function for fiber reinforced metal matrix
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composites with evolutionary multi-level damage. We adopt the commonly used
von Mises yield criterion with an isotropic hardening law for illustration. Ex-
tension to more general yield criterion and general hardening law can be derived
similarly with added effort. Furthermore, we consider small strain and hence the
statistical microstructure of fibers embedded in a ductile matrix remains essentially
unchanged. As mentioned before, the premature local matrix yielding does not
necessarily govern the composite yielding. Instead, the stress field in the matrix
as a whole needs to satisfy the yield criterion for the overall composite yielding.

The effective yield function for the composites proposed by Ju and Chen
(1994c), and Ju, Ko and Ruan (2006, 2008) accounts for this phenomenon:

F̄ =
√
〈H〉m (x)−K(ēP ) 6 0 (38)

The ensemble-area-averaged stress norm 〈H〉m (x) for the composites with three
distinct phases of fibers can be approximately obtained by neglecting the near-field
interactions among neighboring elliptical fibers under the generalized plane-strain
condition (ε̄33 = 0):

〈H〉m (x) ∼= Ho+

3∑
r=1

∫

|x−xr|/∈Ωr

{H(x|xr)−Ho}P (xr)dx (39)

where x1, x2 and x3 represent a material point in the perfectly bonded, partially
debonded and completely debonded elliptical fibers, respectively; cf. Ju and Lee
(2000), and Ju and Zhang (1998, 2001). Here, H(σ) ≡ σ : Id : σ denotes
the square of the deviatoric stress form, where Id signifies the deviatoric part of
the fourth-rank identity tensor I; Ho = σo : Id : σo is the square of the far-
field stress norm in the matrix. Further, P (xr) defines the probability density
function for finding an elliptical fiber centered at xr, and Ωr is the domain of the
rth-mode elliptical fibers (r = 1, 2, 3). In the absence of actual microstructural
evidences, P (xr) is assumed to be statistically homogeneous, isotropic and uniform,

thus taking the form P (xr) = Nr

A
= φ(r)

πa1a2
, where Nr is the total number of the

rth-mode fibers dispersed in a representative area element A. If detailed spatial
distribution of fibers can be provided, suitable probability distribution function
can be implemented. In contrast to the effective medium theories (e.g., the self-
consistent method, the generalized self-consistent method, the differential scheme,
and the Mori-Tanaka method), where neither inclusion locations nor their relative
configurations are taken into account, the present framework considers randomly
located elliptical fibers.

In addition, in Eq.(39), the first and second terms represent the deviatoric
stress norm by the far-field stress σo and by the perturbed stress fields in the
matrix domain, respectively. Once the stress field within a matrix material point
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is rendered by Eq.(34) , within a representative area element, the relationship
among the normal stress components is dictated by the following equation on the
basis of generalized plane strain condition for the composite (ε̄33 = 0):

σ33 = η1 σ11 + η2 σ22 (40)

where

η1 =
C∗

1133 · C∗
2222 − C∗

1122 · C∗
2233

C∗
1111 · C∗

2222 − (C∗
1122)

2
, η2 =

C∗
1111 · C∗

2233 − C∗
1133 · C∗

1122

C∗
1111 · C∗

2222 − (C∗
1122)

2
(41)

By making use of Eqs.(34)-(35) and (40)-(41), the ensemble-area averaged cur-
rent stress norm at any matrix point can be obtained as follows:

〈H〉m (x) ∼= σo: TA: σo + 2 · σo: TB: ε∗Th + ε∗Th: T
C : ε∗Th (42)

where the components of the fourth-rank tensors TA,TB, and TC can be expressed
as

TA
ijkl = Kijkl+

3∑
r=1

{∫ ∞

xr /∈Ωr

(
M(x|xr)mnijKmnpq M(x|xr)pqkl −Kijkl

)
P (xr)xr

}
(43)

TB
ijkl =

3∑
r=1

{∫ ∞

xr /∈Ωr

(M(x|xr)mnij Kmnpq N(x|xr)pqkl) P (xr)dxr

}
(44)

TC
ijkl =

3∑
r=1

{∫ ∞

xr /∈Ωr

(N(x|xr)mnij Kmnpq N(x|xr)pqkl) P (xr)dxr

}
(45)

where i, j, k, l, m, n, p, q = 1, 2, and

K1111 =
2

3
(η2

1 − η1 + 1); K2222 =
2

3
(η2

2 − η2 + 1) (46)

K1122 = K2211 = −1

3
(η1 + η2 − 2η1 η2 + 1);

K1212 = K2121 = 1; Otherwise Kijkl = 0 (47)

Here, unlike the “equivalent circular exclusion zone” proposed in Ju and Sun
(2001), and Ju, Ko and Zhang (2008), the exact elliptical exclusion zone Ωr and
the exact exterior-point Eshelby’s tensor Ḡ(x) for the elliptical fiber are employed
in Eqs.(43), (44), and (45).

In addition, the far-field stress σo can be expressed in terms of the macroscopic
stress σ̄ and thermal eigenstrain as:

σo = P : σ̄ + Q : ε∗Th (48)
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where the fourth-rank tensors P and Q read

P = C0 •
{
I + (I− S) • Ȳ

}−1 •C −1
0 (49)

Q = C0 •
{
I + (I− S) • Ȳ

}−1 • (I− S) •Y (50)

with

Y = φ(1)(A1+S)−1 •B1 + φ(2)(A2+S)−1 •B2 + φ(3)(A3+S)−1 •B3 (51)

When fibers are closely packed in composites, the effect of fiber-interactions
becomes significant. For example, two circular fibers separated by a center-to-
center distance of less than 3a (φ ∼= 34%, a= radius of the circular fiber) produce
significant interaction. Therefore, stress concentrations and distributions in com-
posites depend not only on the elastic properties of fibers and matrix, but also
on the volume fraction and distribution of fibers. The complete state of stresses
in the matrix phase may be obtained by numerical solutions such as the finite
element methods (e.g., Agarwal and Broutman, 1990). Further, Ju and Chen
(1994a,b) and Ju and Zhang (1998, 2001) developed higher-order micromechanical
ensemble-averaged field equations. However, in the foregoing derivations, primarily
to minimize mathematical complexity, the first-order micromechanical formulation
is adopted. The first-order formulation provides better estimates for the effective
properties of composites than the dilute solution such as the Eshelby method.
Here, by virtue of mathematical simplification, a coefficient γ is introduced to
account for effects of direct fiber-interactions. Accordingly, by following Eq.(18),
Eq.(48) becomes:

σo = γ ·P : σ̄ + Q : ε∗Th (52)

In this study, γ is taken as 1.1 for illustration. Hence, Eqs.(42) and (52) lead
to the expression:

〈H〉m (x) = σ̄ : T̄
A
: σ̄ + 2 · σ̄ : T̄

B
: ε∗Th + ε∗Th: T̄

C
: ε∗Th (53)

where

T̄A
ijkl = γ2Pmnij TA

mnpq Ppqkl (54)

T̄B
ijkl = γPmnij TA

mnpq Qpqkl + γPmnij TB
mnkl (55)

T̄C
ijkl = 2 Qmnij TB

mnkl + TC
ijkl; (i, j, k, l, m, n, p, q = 1, 2) (56)

It is noted that, in Eq.(53), the fourth-rank tensor T̄A ≡ PT : TA : P will
reduce to the classical J2-invariant for φ(1) = φ(2) = φ(3) = 0, and γ = 1.0 (i.e.,
the matrix-only material).
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Finally, the ensemble-area-averaged current stress norm for a four-phase com-
posite is defined as:

√
〈H〉 (x) = (1− φ(1))

√
σ̄ : T̄

A
: σ̄ + 2 · σ̄ : T̄

B
: ε∗Th+ε∗Th: T̄

C
: ε∗Th (57)

where φ(1) is the perfectly bonded fiber volume fraction at the current loading. The
effective yield function for the four-phase fiber reinforced ductile matrix composite
can be written as

F̄ = (1− φ(1))

√
σ̄ : T̄

A
: σ̄ + 2 · σ̄ : T̄

B
: ε∗Th+ε∗Th: T̄

C
: ε∗Th −K(ēP ) (58)

with the isotropic hardening function K(ēp) for the four-phase composites. For
simplicity, we assume that the overall flow rule for the composite is associative. In
general, the overall flow rule of the composite may become non-associative when
fibers exist according to dislocation dynamics. Extension to the non-associative
flow rule can be constructed in a similar manner, but involving the normal and
tangential flow directions. The effective yield function in Eq.(58) is pressure de-
pendent and not of the von Mises type anymore.

Following Ju and Chen (1994c), and Ju and Zhang (2001), the effective ensemble-

area averaged plastic strain rate ˙̄ε
P

and the effective plastic strain rate ˙̄eP are
defined as

˙̄ε
P

= λ̇
∂F̄

∂σ̄
= (1− φ(1)) λ̇


 T̄A: σ̄ + T̄

B
: ε∗Th√

σ̄ : T̄
A
: σ̄ + 2 · σ̄ : T̄

B
: ε∗Th+ε∗Th: T̄

C
: ε∗Th


 (59)

˙̄eP =

√
2

3
˙̄εP
ij

˙̄εP
ij (60)

For illustration, the isotropic hardening function is considered here:

K(ēP ) =

√
2

3

{
σy + h(ēP )q

}
(61)

where h and q define the linear and exponential isotropic hardening parameters,
respectively, for the four-phase composite. It is straightforward to extend the
proposed model to accommodate the kinematic hardening. Moreover, σy is taken
as the initial matrix yield stress.

4 Overall elastoplastic-damage stress-strain re-

sponses

To illustrate the proposed micromechanical elastoplastic-damage model for ellip-
tical fiber MMCs, we consider the examples of biaxial tensile loading under the
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plane-strain condition. The applied macroscopic stress σ̄ and prescribed thermal
eigenstrain ε∗Th can be expressed as

σ̄11 > 0, σ̄22 = R σ̄11, σ̄33 = (η1 + R η2) σ̄11, all other σ̄ij = 0. (62)

ε∗Th(11) = ε∗Th(22) = εT

Here, R is a parameter of loading stress ratio. Specifically, if R = 0, the biaxial
tensile loading will reduce to the uniaxial tensile loading. With the isotropic
hardening law described by Eq.(61), the overall yield function becomes

F̄ (σ̄11, ēp) = (1− φ(1))

√
σ̄ : T̄

A
: σ̄ + 2 · σ̄ : T̄

B
: ε∗Th+ε∗Th: T̄

C
: ε∗Th−

√
2

3
{σy + h(ēp)q} (63)

Substituting Eq.(62) into (63), the effective yield function for the case of biaxial
loading reads

F̄ (σ̄11, ēp) = (1− φ(1)) Ψ(σ̄11)−
√

2

3
{σy + h(ēp)q} (64)

where
Ψ(σ̄11) =

√
ΨA + ΨB + ΨC (65)

with
ΨA =

{
T̄A

1111 + R(T̄A
1122 + T̄A

2211) + R2T̄A
2222

}
σ̄2

11 (66)

ΨB =
{
2T̄B

1111 + 2T̄B
1122 + 2R(T̄B

2211 + T̄B
2222)

}
(σ̄11 · εT ) (67)

ΨC =
{
T̄C

1111 + T̄C
1122 + T̄C

2211 + T̄C
2222

}
ε2

T (68)

The macroscopic incremental plastic strain rate defined by Eq.(59) becomes

∆ε̄p =

[
∆ε̄p

11

∆ε̄p
22

]
= (1− φ(1))

∆λ

Ψ(σ̄11)
(69)

{[
(T̄A

1111 + RT̄A
1111)

(T̄A
2211 + RT̄A

2222)

]
σ̄11 +

[
T̄B

1111 + T̄B
1122

T̄B
2211 + T̄B

2222

]
εT

}

for any stress beyond the initial yielding. The macroscopic incremental elastic
strain is

∆ε̄e =

[
∆ε̄e

11

∆ε̄e
22

]
=

[
D∗

11 + RD∗
12 + (η1 + Rη2)D

∗
13

D∗
12 + RD∗

22 + (η1 + Rη2)D
∗
23

]
∆σ̄11 (70)

where [D∗
ij] = [C∗

ij]
−1 is the effective elastic compliance matrix in Voigt notation.
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For the monotonic plane-strain biaxial tensile loading, the overall incremental
macroscopic stress-strain relation can be obtained by summing Eqs.(69) and (70):

∆ε̄ =

[
∆ε̄11

∆ε̄22

]
=

[
D∗

11 + R D∗
12 + (η1 + R η2) D∗

13

D∗
12 + R D∗

22 + (η1 + R η2) D∗
23

]
∆σ̄11

+(1− φ(1))
∆λ

Ψ(σ̄11)

{[
(T̄A

1111 + RT̄A
1111)

(T̄A
2211 + RT̄A

2222)

]
σ̄11 +

[
T̄B

1111 + T̄B
1122

T̄B
2211 + T̄B

2222

]
εT

}
(71)

where the positive parameter ∆λ is solved from the nonlinear equation obtained
by enforcing the plastic consistency condition F̄ = 0:

(1− φ(1)) Ψ(σ̄11)n+1 =

√
2

3

{
σy + h

[
ēP

n + M ēP
n+1

]q}
(72)

Under biaxial loading, Eq.(59) reduces to

˙̄ε
P

= (1− φ(1))λ̇


 T̄A: σ̄ + T̄B: ε∗Th√

σ̄ : T̄A: σ̄ + 2 · σ̄ : T̄B: ε∗Th+ε∗Th: T̄C : ε∗Th


 = (73)

(1− φ(1))λ̇

[
a
b

]

Eqs.(72) and (73) then result in

(1− φ(1))Ψ(σ̄11)n+1 =

√
2

3

{
σy + h

[
ēP

n + (1− φ(1)) M λ

√
2

3
(a2 + b2)

]q}
(74)

Therefore, the expression for M λ becomes

M λ =
1

(1− φ(1))
√

2
3
(a2 + b2)








√
3
2
(1− φ(1)) ·Ψ(σ̄11)n+1 − σy

h




1/q

− ēp
n





(75)

5 Numerical simulations

To demonstrate the potential of proposed formulations, comparisons are made
between the present theoretical predictions and the experimental data as cited by
Nimmer et al. (1991). The experimental data were observed for Ti-6Al-4V matrix
composites reinforced by unidirectionally aligned silicon-carbide (SiC) fibers under
uniaxial transverse tensile loading. As pointed out in the literature, it is well known
that the titanium composites have negligibly small interface strength (cf. Marshall
et al., 1994; Gundel et al., 1995). Moreover, numerical and analytical studies of
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the stress state at the interfaces indicate that interface debonding occurs at the
stress levels where the applied stresses just overcome the thermal residual (radial
compressive) stresses at the interface, thereby indicating the interface strength
is nearly zero. Accordingly, following Warrier et al. (1997) and Naboulsi et al.
(2003), the interfacial debonding criteria for the titanium composites are given
under the assumption of zero interface strength as follows:

σInterface > σcri = 0, then the interface is debonded.
σInterface < σcri = 0, then the interface is perfectly bonded.

(76)

Furthermore, the study on SiC fiber reinforced titanium-matrix composites
shows that an elastoplastic model can predict similar residual stress as a viscoelas-
tic/viscoplastic model if the reference temperature is selected as 0.7-0.8 times the
absolute processing temperature (Kroupa et al., 1994; Warrier et al., 1997). More-
over, during the early cool-down period following the fabrication, thermal residual
stresses generated in the composites may be quickly relaxed out (Saigal et al.,
1992). Therefore, since the viscoelastic/viscoplastic analysis is not performed in
the present analysis, the temperature changes are taken as 700 oC (T = 23oC)
and 480 oC (T = 315oC), which are lower than the actual temperature changes.

Matrix: E0 = 113.7 ∗ 103 MPa, ν0 = 0.3; Fiber: E1 = 113.7 ∗ 103 MPa,
ν1 = 0.25; σy = 900 MPa, h = 600 MPa, q = 0.35, M = 1.0, So = 10 MPa;

φ = 0.34, T = 23oC, ∆Tref = −700oC, α0 = 9.44 ∗ 10−6/oC, α1 = 4.86 ∗ 10−6/oC.

Figure 3: Comparison of present theoretical stress-strain prediction with experi-
mental data (T = 23oC) by Nimmer et al. (1991).
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Matrix: E0 = 97.9 ∗ 103 MPa, ν0 = 0.3; Fiber: E1 = 414.0 ∗ 103 MPa,
ν1 = 0.25;σy = 517 MPa, h = 600 MPa, q = 0.35, M = 1.0, So = 10 MPa;

φ = 0.34, T = 315oC, ∆Tref = −480oC, α0 = 9.78 ∗ 10−6/oC, α1 = 4.86 ∗ 10−6/oC.

Figure 4: Comparison of present theoretical stress-strain prediction with experi-
mental data (T= 315oC) by Nimmer et al. (1991).

As shown in Figures 3 and 4, even though zero interface strength is assumed in
the theoretical prediction, the interfacial debonding cannot be observed instantly
after the mechanical loading is applied; cf. Figures 5 and 6. Instead, the pro-
gressive interfacial debonding process is activated around the stress level of 200
MPa (T= 23oC) and 100 MPa (T= 315oC), exhibiting a characteristic knee in the
transverse stress-strain curve. In fact, if the weak interface strength is considered,
the only strong bond between the fibers and matrix is the “locking effect” due to
the differential thermal contraction misfit (the cramping residual stresses) between
the fibers and matrix (Hu, 1996). Further, instead of using the initial composite
yield stress (Ju, Ko and Zhang., 2008), the present effective yield function in Eqs.
(58)-(61) makes use of the initial matrix yield stress (900 MPa), and our theoret-
ical predictions are in good agreement with experimental data by incorporating
the thermal residual stresses at the room (T= 23oC) and elevated temperature
(T= 315oC), respectively. Moreover, when φ = 0 (the matrix-only material), the
effective yield function can easily recover that for the matrix material.

Though thermal residual stresses can be beneficial, they can also be detrimental
in terms of lowering the tensile composite yield strength. Prior to mechanical
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Figure 5: The theoretical predictions on the debonding angles and the volume
fraction evolutions at room temperature (T= 23oC).

Figure 6: The theoretical predictions on the debonding angles and the volume
fraction evolutions at elevated temperature (T= 315oC).

loading, the matrix is pre-stressed under tension due to residual stresses, which
superficially lower the tensile matrix yield strength. Since the matrix material has
substantial effect on the composite yielding, the lower-tensile matrix yield strength
leads to the lower-tensile composite yield strength as well. As rendered in Figure
7, the coupled effects by the interfacial damage and thermal residual stresses are
significant, leading to high anisotropy in the tensile/compressive relation; e.g., the
tensile composite yield strength is much lower than the compressive composite
yield strength.
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Figure 7: The tensile/compressive transverse stress-strain behavior.

Figure 8: The effects of fiber volume fractions upon the overall stress-strain be-
haviors.
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Figure 9: The effects of fiber interface strengths upon the overall stress-strain
behaviors.

For a composite with weak interfaces, the fibers serve as the source of interfacial
damage at the relatively low external load instead of acting as reinforcements.
As Figure 8 shows, the higher fiber volume fraction initially results in higher
composite stiffness.

However, the interfacial damage gradually reduces the load transfer ability be-
tween the fibers and the matrix. Consequently, a higher volume fraction results in
increased amount of damage as well as lower composite yield strength under the
transverse loading. This clearly illustrates the deficiency of MMCs with weak in-
terfaces. Even though we may improve the transverse properties of the composites
using a low volume fraction of fibers, we nonetheless lose the advantage of using
fiber reinforced composites. On the other hand, if we can enhance the interface
strength by considering fiber coating, improved processing method or choosing
different fibers/matrix, higher interface strength will lead to higher stiffness and
higher composite yield strength as demonstrated by Figure 9.

In addition, the fiber aspect ratios have significant effects on the responses of
composites under uniaxial transverse loading; cf. Figures 10 and 11. In contrast
to the uniaxial loading case, the use of elliptical fibers does not lead to better
performance of composites in the case of biaxial loading; cf. Figures 12. Since
the interfacial debonding easily propagates under the biaxial tensile loading, the
elliptical-fibers can easily debond at the relatively low applied load. For instance,
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Figure 10: The effects of fiber aspect ratios upon the overall stress-strain behaviors
under the uniaxial transverse tensile loading.

the overall stress-strain responses in the 2-direction exhibit lower responses with
decreasing α for R = 0.7; cf. Figure 12(b).
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Figure 11: The effects of fiber aspect ratios upon the interfacial debonding angles
and the volume fraction evolutions under the uniaxial transverse tensile loading.
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Figure 12: The effects of fiber aspect ratios upon the stress-strain behaviors under
the biaxial transverse tensile loading, featuring R = 0.7. (a) σ11vs. ε11; (b) σ22vs.
ε22.

6 Conclusions

To investigate the effects of thermal residual stresses upon the mechanical re-
sponses of continuous-fiber reinforced MMCs under the transverse loading condi-
tion, a multi-stage micromechanical elastoplastic damage formulation is proposed
by incorporating the thermal eigenstrain concept and evolutionary interfacial fiber
debonding. It is demonstrated that the stress fields of interfaces and matrix are
composed of the mechanical and thermal components. The predicted thermome-
chanical behaviors of composites are consistent with the experimental observations
in the literature. Moreover, the effects of elliptical fiber aspect ratios, volume frac-
tions, interfacial strengths and biaxial stress ratios are also systematically studied.
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Elastoplastična mikromehanika oštećenja kompozita sa
vlaknima eliptičnog poprečnog preseka i progresivnim
delimičnim odvajanjem vlakana i termičkim zaostalim

naponima

U cilju predvidjanja ukupnog transverzalnog mehaničkog ponašanja kompozita
sa kontinualnim vlaknima eliptičnog poprečnog preseka i duktilnom matricom
predložena je, u okviru mikromehanike i homogenizacije, formulacija na osnovi
elastoplastičnog ošteenja uzimanjem u obzir oštećenja interfejsa i termičkih za-
ostalih napona. Pristup se zasniva na konceptu ekvivalentne inkluzije i uzima
u obzir ugao progresivnog odvajanje interfejsa, pri čemu su delimično odvojena
vlakna zamenjena sa ekvivalentnim, ortotropskim, idealno vezanim vlaknima. Raz-
matrana su tri modela oštećenja interfejsa. Veibulova funkcija gustine raspodele
verovatnoće je usvojena radi opisivanja promenljivosti verovatnoće progresivnog,
delimičnog odvajanja vlakana. Efektivni moduo elastičnosti četvorofaznog kom-
pozita, koji se sastoji od duktilne matrice i nasumično rasporedjenih, ali jednoosno
upravljenih, vlakana je izveden korǐsćenjem mikromehanike.

Zaostali termički naponi su uzeti u obzir kroz koncept termičke sopstvene
specifične deformacije (eigenstrain) u cilju ispitivanja efekata napona zaostalih iz
proizvodnog procesa. Korǐsćenjem mikromehaničke aproksimacije, ukupni naponsko-
deformacioni odziv i efektivna funkcija tečenja su formulisani sa termičkom sop-
stvenom specifičnom deformacijom (eigenstrain). Prilikom poredjenja rezultata
sa dostupnim eksperimentalnim podacima diskutovani su značajni efekti zaostalih
termičkih napona. Takodje su sistematski ispitani efekti čvrstoće interfejsa i oblika
poprečnog preseka vlakna na mehaničko ponašanje kompozita.
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