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Abstract

The simultaneous effects of rotation and Hall current on the hy-
dromagnetic flow past an accelerated horizontal plate relative to
a rotating fluid is presented. It is found that for given values of m
(Hall parameter), M (Hartmann number) and an imposed rotation
parameter Ω satisfying Ω = M2m/(1+m2), the transverse motion
(transverse to the main flow) disappears and the fluid moves in the
direction of the plate only. The effects of the parameters m, M and
Ω on the axial and transverse velocity profiles are shown graph-
ically, whereas the effects of the parameters on the skin-friction
components are shown by tabular values.
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List of notations

A constant acceleration
Hzz component of magnetic field H
H0 applied magnetic field
Jzz component of current density J
µe magnetic permeability
m Hall parameter
M Hartmann number
ν kinematic viscosity
Ωzz component of angular velocity
Ω non-dimensional angular velocity
ρ fluid density
σ electric conductivity
t time
T non-dimensional time
(u, v, w) components of velocity field q
(U, V,W ) non-dimensional velocity components
(x, y, z) Cartesian co-ordinates
Z non-dimensional coordinate normal to the plate

1 Introduction

Stokes [1] first investigated the incompressible viscous flow past an infi-
nite flat plate, which is being impulsively started from rest into motion
in its own plane with a constant velocity, on the motion of pendulums.
Rossow [2] studied the MHD flow due to an impulsive start of an infinite
flat plate. It was shown by Cowling [3] that when the strength of the
magnetic field is very large Ohm’s law must be modified to include Hall
currents. The mechanism of conduction in ionized gases in the presence
of strong magnetic field is different from that in metallic substance. The
electric current in ionized gases is generally carried by electrons, which
undergo successive collisions with other charged or neutral particles. In
the ionized gases the current is not proportional to the applied potential
except when the field is very weak In an ionized gas where the density
is low and the magnetic field is very strong, the conductivity normal to
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the magnetic field is reduced due to the free spiraling of electrons and
ions about the magnetic lines of force before suffering collisions and a
current is induced in a direction normal to both electric and magnetic
fields. This phenomenon, well known in the literature, is called the Hall
effect. Watanbe and Pop [4] studied the effect of Hall current on the
steady MHD flow over a continuously moving flat plate, when the liquid
is permeated by a uniform transverse magnetic field, while Pop [5] con-
sidered the Hall effects on the MHD flow due to an impulsive start of
the plate, which is valid only for small time. Kinyanjui et al.[6] studied
the heat and mass transfer in unsteady free convection flow with radia-
tion absorption past an impulsively started infinite vertical porous plate
subjected to strong magnetic field including the Hall effect. Maleque and
Sattar [7] investigated the steady laminar flow on a porous rotating disk
with variable fluid properties taking Hall effect into account.

The study of MHD viscous flows with Hall currents has important en-
gineering applications in problems of MHD generators, Hall accelerators
as well as in flight magnetohydrodynamics. The rotating flow of an elec-
trically conducting fluid in the presence of a magnetic field is encountered
in cosmical and geophysical fluid dynamics. It is also important in the
solar physics involved in the sunspot development, the solar cycle and the
structure of rotating magnetic stars. It is well known that a number of
astronomical bodies posses fluid interiors and magnetic fields. Changes
in the rotation rate of such objects suggest the possible importance of hy-
dromagnetic spin-up. This problem of spin-up in magnetohydrodynamic
rotating fluids has been discussed under varied conditions by many re-
searchers, for example Takhar et al.[8], Debnath [9], Takhar and Nath
[10], and Singh [11]. In all these studies, the effect of Hall current is
not considered. Recently, Hayat and Abbas [12] studied the fluctuat-
ing rotating flow of a second-grade fluid past a porous heated plate with
variable suction and Hall current, while Takhar et al.[13] investigated
the simultaneous effects of Hall current and free stream velocity on the
magnetohydrodynamic flow over a moving plate in a rotating fluid.

In this study we have considered the magnetohydrodynamic flow past
an accelerated horizontal plate in a rotating fluid in the presence of Hall
current. It is well known that the effect of Coriolis force due to the
Earth’s rotation is found to be significant as compared to the inertia
and viscous forces in the equations motion. The Coriolis force exerts
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a strong influence on the hydromagnetic flow in the earth’s liquid core,
which plays an important role in the mean geomagnetic field. It may
be noted that the flow situations studied in the present problem occur
in tornadoes, or flows past rotor hubs and rotating blades in a modern
helicopter used for defence purpose. In this analysis, the axial velocity
(along the direction of the plate) and transverse velocity (transverse to
the main flow) components are presented graphically to show the effects of
the Hall parameter m, Hartmann number M and the rotation parameter
Ω (representing rotational speed with which the plate and the fluid rotates
in unison), while the values of skin-friction are presented in a table.

Table 1: Variation of the skin-friction components with T , M , m and Ω
T M m Ω τx τy

0.2 0.0 0.0 0.4 0.50506 0.02690
0.2 0.5 0.5 0.4 0.51821 0.01986
0.2 0.5 0.5 0.1 0.51798 0.00000
0.2 0.5 1.0 0.4 0.51319 0.01832
0.2 0.5 5.0 0.4 0.50561 0.02365
0.2 1.0 0.5 0.4 0.55681 0.00000
0.2 5.0 0.5 0.4 1.11628 -0.84541
0.4 0.5 0.5 0.4 0.75239 0.05528
0.6 0.5 0.5 0.4 0.94574 0.09993

2 Mathematical analysis and solution

We consider an unsteady flow of an electrically conducting fluid past an
infinite flat plate occupying the plane z = 0. Initially the fluid and the
plate rotate in unison with a uniform angular velocity Ωz about the z-axis
normal to the plate. The x-axis is taken in the direction of the motion
of the plate and y-axis lying on the plate normal to both x and z-axes.
Relative to the rotating fluid, the plate is impulsively started from rest
and set into motion with uniform acceleration in its own plane along the
x-axis. A uniform magnetic field Ho, parallel to z-axis is imposed and the
plate is electrically non-conducting. Due to the horizontal homogeneity
of the problem, the flow quantities depend on z and t only, t being the
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time variable. If (u, v, w) be the components of the velocity vector q,
then the equation of continuity ∇.q = 0, gives w = 0 everywhere in the
flow such that the boundary condition w = 0 is satisfied at the plate.
The solenoidal relation for magnetic field ∇.H = 0, gives Hz = constant
= Ho everywhere in the flow. Also, the pressure is uniform in the flow
field. Similarly the equation of conservation of electric charge, ∇.J = 0
gives Jz = constant, and this constant is zero since the plate is considered
to be nonconducting. Also, the fluid far away from the plate is assumed
undisturbed. Under these assumptions, in a rotating frame of reference
and modification of Ohm’s law ( see Cowling [2] the momentum equations
for the unsteady flow are now given by

∂u

∂t
= ν

∂2u

∂z2
+ 2Ωzv− σµ2

eH
2
o

ρ(1 + m2)
(u + mv) (1)

∂v

∂t
= ν

∂2v

∂z2
− 2Ωzu +

σµ2
eH

2
o

ρ(1 + m2)
(mu− v) (2)

where the second term on the right of the equations (1) and (2) are due
to Coriolis force assumed small. Here u is the axial velocity (along the
direction of the plate) and v is the transverse velocity (transverse to the
main flow). The initial and boundary conditions are given by

u = 0, v = 0 at t ≤ 0 for all z (3)

u = At, v = 0 at z = 0
u → 0, v → 0 as z →∞

}
t > 0 (4)

where A(> 0) is a constant.
Now introducing the dimensionless quantities

U = u
(Aν)1/3 , V = v

(Aν)1/3 , Z = z(A/ν2)1/3

T = t(A2/ν)1/3, Ω = Ωz(ν/A2)1/3, M2 = σµ2
eH2

oν1/3

2ρA2/3

}
(5)

in Eqs. (1)-(2) and boundary conditions (3)-(4) we have,

∂U

∂T
=

∂2U

∂Z2
+ 2V

(
Ω− M2m

1 + m2

)
− 2

M2U

1 + m2
(6)
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∂V

∂T
=

∂2V

∂Z2
− 2U

(
Ω− M2m

1 + m2

)
− 2

M2V

1 + m2
(7)

together with the boundary conditions

U = 0, V = 0 at T ≤ 0 for all Z (8)

U = T, V = 0 at Z = 0
U → 0, V → 0 as Z →∞

}
T > 0 (9)

Now equations (6)-(7) and boundary conditions (8)-(9) can be com-
bined to give

∂F

∂T
=

∂2F

∂Z2
− 2F

{
M2

1 + m2
+ i

(
Ω− M2m

1 + m2

)}
(10)

with boundary conditions

F = 0 at T ≤ 0 for all Z (11)

F = T at Z = 0
F → 0 as Z →∞

}
T > 0 (12)

where F = U + iV .
Taking Laplace transform of (10) along with the initial and boundary

conditions (11) and (12) give rise to

F =
1

s2
exp(−Z

√
s + a) (13)

where

a = 2
M2

1 + m2
+ 2i

(
Ω− M2m

1 + m2

)
(14)

and (Z, s) is the Laplace transform of F (Z, T ).
Applying Hetnarski’s [15] algorithm, we have obtained the inverse

Laplace transform of F from (13) to obtain F = U + iV as

F =
[{

T
2
− Z

4
√

a

}
exp(−Z

√
a)erfc

(
Z

2
√

T
−√aT

)
+

+
{

T
2

+ Z
4
√

a

}
exp(Z

√
a)erfc

(
Z

2
√

T
+
√

aT
)] (15)

Interestingly from Eq. (10) it is observed that when Ω = M2m/(1 +
m2), the contribution of V into F = U + iV disappears, so that the
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transverse component of velocity, V = 0 everywhere in the flow field and
thus the flow is reduced to unidirectional flow which is along the direction
of the plate only.

In order to get a clear understanding of the flow field, we have carried
out numerical calculation of Eq. (15) by separating F into real and
imaginary parts to obtain the axial and transverse velocity components
U and V . Since the arguments of the complementary error functions
erfc are complex we have separated the functions into real and imaginary
parts (see Abramowitz and Stegun [16].

The dimensionless skin friction at the plate Z = 0 is derived from Eq.
(15) as

−
(

dF

dZ

)

Z=0

=

√
T

π
exp(−aT ) +

erf(
√

aT )

2
√

a
(1 + 2aT ) (16)

Separating −(dW/dZ)Z=0 into real and imaginary parts, the dimen-
sionless skin-friction components τx(=−(dU/dZ)Z=0) and τy(= − (dV/dZ)Z=0)
can be computed. It is observed from (16) that, the components of skin-
friction are oscillating one and increase unboundedly for an increase in
time, which is due to the plate being an accelerated one in contrast to a
stationary plate.

3 Results

First, the effects of rotation parameter Ω on the variation of axial velocity
U and transverse velocity V in the presence of Hall parameter (m =
0.5) and Hartmann number (M = 0.5) are presented in Figures 1 and 2
respectively for time T = 2.0 against the Z axis.

It is observed that the axial velocity decreases as Ω increases from 0.1
to 0.8, while the transverse velocity V increases. The negative sign for V
in this figure 2 indicates that this component is transverse to the main
flow direction in the clockwise sense. The curve corresponding to Ω = 0.1
in Figure 2 merges with the axis of Z, which means that for this given
value of Ω the transverse component vanishes indicating a unidirectional
flow and the flow is in the direction of the plate only. As referred earlier
for m = 0.5, M = 0.5, Ω = M2m/(1 + m2) = 0.1, and thus for this
imposed rotational value, the transverse velocity is zero everywhere in
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Figure 1: Axial velocity profiles for several values of Ω with M = 0.5,m =
0.5, T = 2.0

the flow field. Thus we conclude that for Ω = M2m/(1 + m2), for given
m and M , the axial velocity is maximum, and decreases as Ω increases.
But reverse trend is seen for transverse velocity with minimum for Ω =
M2m/(1 + m2) and increases as Ω increases. Therefore, the introduction
of Hall current on the MHD flow past an accelerated plate reduces the
flow to a unidirectional flow when Ω = M2m/(1 + m2) which is an added
realism over the study made by Deka et al.[14].

Figures 3 and 4 are drawn to show the effect of Hall parameter on the
fluid velocities with the assigned values of M = 0.5, Ω = 0.1 and T = 2.0.

Here also, the curve for m = 0.5 in case of transverse velocity shown in
Figure 4 coincides with the Z axis, indicating the absence of transverse
component of velocity. It is observed that due to an increase in the
Hall parameter there is rise in both the axial and transverse velocity
components. The effects of Magnetic field parameter on the velocity
components U and V are shown in Figures 5 and 6 respectively.
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Figure 2: Transverse velocity profiles for several values of Ω with M =
0.5,m = 0.5, T = 2.0. The graph corresponding to Ω = 0.1 satisfying the
identity Ω = M2m/(1+m2) for M = 0.5andm = 0.5, showing a vanishing
component.

Due to an increase in the Hartmann number M , the transient axial
velocity decreases while the transverse velocity increases. Interestingly
as M increases beyond M > 5, there is sudden fall in the axial velocity,
while the peak value of the transverse velocity remain same.

The effect of various parameters T , M , m and Ω on the skin-friction
components τx, τy are presented in Table I. It is observed that for T = 0.2,
M = 0.5, m = 0.5, both τx and τy increase with an increase in Ω, while the
transverse component (τy ) disappears when the identity Ω = M2m/(1 +
m2) is satisfied referred earlier as can be seen from the third and sixth
sets of row in the Table. On the other hand due to an increase in m,
keeping other values fixed, τx increases steadily, while τy first decreases
reaches a minimum and thereafter increases for further increase in m. It is
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Figure 3: Axial velocity profiles for several values of m with M = 0.5, T =
2.0, Ω = 0.1
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Figure 4: Transverse velocity profiles for several values of m with M =
0.5, T = 2.0, Ω = 0.1. The graph corresponding to m = 0.5 satisfying the
identity Ω = M2m/(1+m2) for M = 0.5, showing a vanishing component.



Hall effects on MHD flow past an accelerated... 343

0

0,5

1

1,5

2

0 1 2 3 4 5

M = 0.5

M = 2.0

M = 5.0

M = 10.0

Z

U

Figure 5: Axial velocity profiles for several values of M with m = 0.5, T =
2.0, Ω = 0.1
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Figure 6: Transverse velocity profiles for several values of M with m =
0.5, T = 2.0, Ω = 0.1. The graph corresponding to M = 0.5 satisfying the
identity Ω = M2m/(1+m2) for m = 0.5, showing a vanishing component.
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interesting to see that as M increases the axial component of skin-friction
increases, while the transverse component decreases from a positive value
to negative value, keeping other parametric values fixed. This result
admits a physical interpretation. At a fixed instant, an increase in Ω
causes a gradual thinning of the boundary layer develops on the plate.
This results in an increase of the shear stress at the plate with increasing
value of Ω. On the other hand, for fixed values of M , m and Ω, an increase
in time results in an increase in the plate velocity which in turn implies a
gradual thinning of the boundary layer on the plate. In addition, another
prime observation in this study reveals that due to the inclusion of the
magnetohydrodynamic effect (M) and Hall parameter (m), the transverse
component of skin friction decreases as compared to the study made by
Deka et al.[14] in absence of M and m.

4 Conclusions

The study of rotating flow of an electrically conducting fluid in the pres-
ence of Hall effect reveals the novel phenomenon of reducing the two-
dimensional flow to a one-dimensional one, which do not occur in the
absence of rotation. Thus, in our study it has been found that when the
rotation parameter Ω with which the plate rotates in unison with the fluid
equals the value M2m/(1+m2), for given Hartmann number M and Hall
parameter m, the transverse component of velocity V = 0 everywhere in
the flow field so that the fluid moves in the direction of the plate only
and thus attain a maximum axial velocity due to the absence of the flow
in the transverse direction. The skin-friction component along the plate
decreases steadily, while the transverse component of the skin-friction de-
creases, reaches a minimum for an increase in m and thereafter increases
for further increase in m. Both the skin-friction components along and
transverse direction of the plate increases with an increase in Ω and T
which leads to the gradual thinning of the boundary layer develops on
the plate. Further, it has been found that due to an increase in M , the
axial skin-friction component increases, while the transverse component
decreases from a positive value to a negative value.
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Hall-ovi efekti na MHD tečenje preko ubrzavajuće
ploče

Prikazani su istovremeni uticaji obrtanja i Hall-ove struje na hidromag-
netsko tečenje preko ploče ubrzavajuće u odnosu na obrtni fluid. Pokazuje
se da za date vrednosti Hall-ovog parametra m, Hartmann-ovog broja M
i parametra nametnutog obrtanja Ω (odredjenog sa Ω = M2m/(1 + m2))
kretanje, poprečno u odnosu na glavni tok, isčezava te se fluid kreće samo
u pravcu ploče. Uticaji parametara m, M and Ω na profile uzdužne i
poprečne brzine su prikazani grafički, dok su uticaji ovih parametara na
trenje na zidu dati tabelarnim vrednostima.
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