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Abstract

This paper presents an analytical study of the transient hydromag-
netic natural convection flow past a vertical plate embedded in a
porous medium, taking account of the presence of mass diffusion
and fluctuating temperature about time at the plate. The govern-
ing equations are solved in closed form by the Laplace-transform
technique. The results are obtained for temperature, velocity, pen-
etration distance, Nusselt number and skin-friction. The effects of
various parameters are discussed on the flow variables and pre-
sented by graphs.
Keywords: Natural convection, heat and mass transfer, magne-
tohydrodynamic flow, porous medium.

1 Introduction

The buoyancy force induced by density differences in a fluid causes nat-
ural convection. Natural convection flows are frequently encountered in
physical and engineering problems such as chemical catalytic reactors,
nuclear waste materials etc. Transient free convection is important in
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many practical applications, such as furnaces, electronic components, so-
lar collectors, thermal regulation process, security of energy systems etc.
When a conductive fluid moves through a magnetic field, an ionized gas
is electrically conductive, the fluid may be influenced by the magnetic
field. Magnetohydrodynamic free convection heat transfer flow is of con-
siderable interest in the technical field due to its frequent occurrence in
industrial technology and geothermal application, liquid metal fluids and
MHD power generation systems etc. Transport processes in porous media
are encountered in a broad range of scientific and engineering problems
associated with the fibre and granular insulation materials, packed-bed
chemical reactors and transpiration cooling. Simultaneous heat and mass
transfer from different geometries embedded in porous media has many
engineering and geophysical applications such as geothermal reservoirs,
drying of porous solids, thermal insulation and underground energy trans-
port. The change in wall temperature causing the free convection flow,
could be a sudden or a periodic one, leading to a variation in the flow.
In nuclear engineering, cooling of medium is more important from safety
point of view and during this cooling process the plate temperature starts
oscillating about a non-zero constant mean temperature. Further, oscil-
latory flow has applications in industrial and aerospace engineering. In
the literature, extensive research work performed to examine the effect
of natural convection on flow past a plate. Examples of this include,
Vedhanayagam et. al. [1], Martynenko et. al. [2], Kolar et. al. [3],
Ramanaiah et. al. [4], Camargo et. al. [5] and Li et. al. [6]. Transient
free convection flow past an isothermal vertical plate was first reported
by Siegel [7] using an integral method. The experimental confirmation
of these results discussed by Goldstein et. al. [8]. Another review of
transient natural convection presented by Raithby et. al. [9] wherein a
large number of papers on this topic were referred. In this review, the
meaning of transient convection has been explained systematically. They
have defined the conduction regime and the steady-state regime and that
which lies between these two regimes as the transient regime. In reference
to transient convection Gebhart et. al. [10] introduced the idea of lead-
ing edge effect in their book. Other studies deal with transient natural
convection are by Harris et. al. [11], Das et. al. [12] and Saeid [13]. Si-
multaneous heat and mass transfer in laminar free convection boundary
layer flows over surface can be found in monograph by Gebhart et. al.
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[10] and in papers by Khair et. al. [14], Lin et. al. [15] and Mongruel e.t
al. [16].

Fewer studies have been carried out to investigate the magnetohydro-
dynamic free convection flow. The transient natural convection flow from
a plate in the presence of magnetic current first studied by Gupta [17].
Recently, Aldoss et. al. [18] investigated MHD transient free convection
flow over a surface by finite difference method.

The studies of convective heat transfer in porous media have been
more concerned in the past, with steady state conditions [19,20]. Mean-
while, recent engineering developments have led also to an increasing in-
terest in accurate investigations of the transient processes in these media.
Transient free convection flow past a plate embedded in a porous medium
pioneered by Cheng et. al. [21]. Mass diffusion effect on transient con-
vection flow past a surface eludicated by Jang et. al. [22], Cheng et.
al. [23] and Pop et. al. [24]. A detailed review of the subject including
exhaustive list of references can be found in the papers by Bradean et. al.
[25] and Pop et. al. [26]. Recently, Chaudhary et. al. [27,28] analyzed
free convection effects on flow past a moving vertical plate embedded in
porous medium by Laplace-transform technique.

Hence, Based on the above mentioned investigations and applications,
the objective of this paper is to study magnetohydrodynamic transient
heat and mass transfer flow by free convection past a vertical plate, when
the temperature of the plate oscillates in time about a constant mean
temperature and the plate is embedded in a porous medium. The present
analysis may be regarded as an extension of the work of Das et.al. [12] to
include the effects of mass transfer, magnetic field and porous medium.
The present investigation may be useful for the study of movement of oil
or gas and water through the reservoir of an oil or gas field, underground
water in river beds, filteration and water purification processes. This
study of flow past a vertical surface can be utilized as the basis of many
scientific and engineering applications, including earth science, nuclear
engineering and metallurgy.In nuclear engineering ,it finds its applications
for the design of the blanket of liquid metal around a thermonuclear
fusion-fission hybrid reactor.In metallurgy, it can be applied during the
solidification process.The results of the problem are also of great interest
in geophysics, in the study of interaction of geomagnetic field with the
fluid in the geothermal region.
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2 Mathematical analysis

We consider a two-dimensional flow of an incompressible and electrically
conducting viscous fluid along an infinite vertical plate that is embedded
in a porous medium. The x’-axis is taken along the infinite plate and
y’-axis normal to it. Initially, the plate and the fluid are at same tem-
perature T ′

∞ with concentration level C ′
∞ at all points. At time t′ > 0,

the plate temperature is raised to T ′
w and a periodic temperature is as-

sumed to be superimposed on this mean constant temperature of the
plate and the concentration level at the plate is raised to C ′

w. A magnetic
field of uniform strength is applied perpendicular to the plate and the
magnetic Reynolds number is assumed to be small so that the induced
magnetic field is neglected (Cowling [29]). There is no applied electric
field. Viscous and Darcy resistance term is taken into account with the
constant permeability porous medium.The MHD term is derived from an
order-of-magnitude analysis of the full Navier-Stokes equations.We regard
the porous medium as an assembled of small identical spherical particles
fixed in space, following Yamamoto et.al. [30] .Under these conditions
and assuming variation of density in the body force term (Boussinesq’s
approximation), the problem can be governed by the following set of
equations:

∂T ′

∂t′
=

κ

ρCp

∂2T ′

∂y′2
(1)

∂C ′

∂t′
= D

∂2C ′

∂y′2
(2)

∂u′

∂t′
= ν

∂2u′

∂y′2
+ gβ(T ′ − T ′∞) + gβc(T

′ − T ′∞)− σB2
0u

′

ρ
− νu′

K ′ (3)

with following initial and boundary conditions:

u′ = 0, T ′ = T ′∞, C ′ = C ′∞ for all y′, t′ ≤ 0

u′ = 0, T ′ = T ′
w+ ∈ (T ′

w − T ′∞) cosω′t′, C ′ = C ′
w at y′ = 0, t′ > 0

u′ → 0, T ′ → T ′∞, C ′ → C ′∞ as y′ →∞, t′ > 0, (4)

where B0 is magnetic field component along y′-axis, C ′ is concentration
at any point in the flow field, C ′

w is concentration at the plate, C ′
∞ is

concentration at the free stream, D is mass diffusivity, Cp is specific heat
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at constant pressure, g is gravitational acceleration, T ′ is temperature of
the fluid near the plate, T ′

w is the plate temperature, T ′
∞ is temperature

of the fluid far away from the plate, β is coefficient of volume expansion,
βc is concentration expansion coefficient, ρ is density, ∈ is amplitude
(constant), κ is thermal conductivity of fluid, ν is kinematic viscosity.

The second term of R.H.S. of the momentum equation (3) denotes
buoyancy effects, the third term is the MHD term, the fourth term is
bulk matrix linear resistance, that is Darcy term. The heat due to viscous
dissipation is neglected for small velocities in equation (1). Also, Darcy
dissipation term is neglected because it is the same order-of- magnitude
as the viscous dissipation term.

The temperature distribution is independent of the flow and heat
transfer is by conduction alone. This is true for fluids in initial stage
due to the absence of convective heat transfer or at small Grashof num-
ber flow (Gr ≤ 1).

We introduce the non-dimensional variables

t =
t′

tR
, y =

y′

LR

, u =
u′

UR

, ω = ω′tR, K =
UR

2K ′

ν2

Pr =
µCp

κ
, M =

σB2
0ν

ρU2
R

, Sc =
ν

D
, θ =

T ′ − T ′
∞

T ′
w − T ′∞

,

φ =
C ′ − C ′∞
C ′

w − C ′∞
, Gm =

νgβc(C
′
w − C ′∞)

U3
R

, ∆T = T ′
w − T ′∞,

UR = (νgβ∆t)1/3, LR =

(
gβ∆T

ν2

)−1/3

, tR = (gβ∆T )−2/3ν1/3, (5)

where K is permeability parameter, Pr is Prandtl number, Gm is modified
Grashof number, M is magnetic parameter, Sc is Schmidt number, t is
time in dimensionless coordinate, LR is reference length, tR is reference
time, u is dimensionless velocity component, UR is reference velocity, µ
is viscosity of fluid, θ is dimensionless temperature, φ is dimensionless
concentration, ω is frequency of oscillation.

The Equations (1) – (4) reduce to following non-dimensional form:

Pr
∂θ

∂t
=

∂2θ

∂y2
(6)
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Sc
∂φ

∂t
=

∂2φ

∂y2
(7)

∂u

∂t
=

∂2u

∂y2
+ θ + Gmφ−

(
M +

1

K

)
u (8)

with the following initial and boundary conditions:

u = 0, θ = 0, φ = 0 for all y, t ≤ 0 (9)

u = 0,θ = 1+ ∈ cos ωt, φ = 1 at y = 0, t > 0
u → 0, θ → 0, φ → 0 as y → ∞, t > 0

}
(10)

where ωt is phase angle.
On taking Laplace-transform of Eqs. (6) to (8) and Eq.(10), we get

d2θ̄

dy2 − pPr θ̄ = 0 (11)

d2φ̄

dy2 − pSc φ̄ = 0 (12)

d2ū

dy2 − (p + M ′)ū = −θ̄(y, p) (13)

ū = 0, θ̄ =
1

p
+ ∈p

p2+ω2 at y = 0, t > 0

ū → 0, θ̄ → 0 as y →∞, t > 0



 , (14)

where p is the Laplace transformation parameter and M ′ = M + 1
K

On Solving Eqs.(11-13) with the help of Eq.(14),we get

θ̄(y, p) =
exp(−y

√
pPr)

p
+
∈ pexp(−y

√
pPr)

p2 + ω2
(15)

φ̄(y, p) =
exp(−y

√
pSc)

p
(16)

ū(y, p) =
exp(−y

√
p + M ′)

p(Pr − 1)(p− c)
− exp(−y

√
pPr)

p(Pr − 1)(p− c)

+
∈ p exp(−y

√
p + M ′)

(Pr − 1)(p2 + ω2)(p− c)
− ∈ p exp(−y

√
pPr)

(Pr − 1)(p2 + ω2)(p− c)
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+
Gm

p(Sc− 1)

(
p− M ′

Sc− 1

)
{

exp(−y
√

(p + M ′))− exp(−y
√

pSc)
}

(17)
Inverting Eqs. (15) to (17), we get

θ = erfc(η
√

Pr) +
∈
2

g(η
√

Pr, iω) + g(η
√

Pr,−iω) (18)

φ = erfc(η
√

Sc) (19)

For Pr 6= 1 and Sc 6= 1

u = −
(

1 + Gm

M ′

)
exp(−M ′t)g(η, M ′) +

1

M ′ erfc(η
√

Pr)

− ∈ exp(−M ′t)
2(Pr − 1)(c2 + ω2)

(c− iω)g(η, M ′ − iω) + (c + iω)g(η,M ′ + iω)

+
∈

2(Pr − 1)(c2 + ω2)
(c− iω)g(η

√
Pr,−iω) + (c + iω)g(η

√
Pr, iω)

+

{
1

M ′ +
c ∈

(Pr − 1)(c2 + ω2)

}
exp(−M ′t)g(η, e)− g(η

√
Pr, c)

+
Gm

M ′ erfc(η
√

Sc)

+
Gm

M ′

{
exp(−M ′t)g

(
η,

M ′Sc

Sc− 1

)
− g

(
η
√

Sc,
M ′

Sc− 1

)}
(20)

where η = y

2
√

t
, c = M ′

Pr−1
, e = M ′Pr

Pr−1
, for Pr = 1 and Sc = 1

u = −
(

1 + Gm

M ′

)
exp(−M ′t)g(η,M ′) +

(
1 + Gm

M ′

)
erfc(η) (21)

Initially, the heat is transferred through the plate by conduction. But
a little later stage, convection currents start flowing near the plate. Hence,
it is essential to know the position of a point on the plate where conduction
mechanism changes to convection mechanism. The distance of this point
of transition from conduction to convection is given by

Xp =

∫ t

0

u(y, t)dt
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or in terms of the Laplace transform and its inverse,

Xp = L−1

[
1

p
L{u(y, t)}

]
,

where p is Laplace transform parameter.

Xp = L−1

[{ū(y, p)}
p

]

Xp = L−1

{
exp(−y

√
p + M ′)

p2(Pr − 1)(p− c)

}
+ L−1

{
exp(−y

√
pPr)

p2(Pr − 1)(p− c)

}

+L−1

{ ∈ exp(−y
√

p + M ′)
(Pr − 1)(p2 + ω2)(p− c)

}
− L−1

{ ∈ exp(−y
√

pPr)

(Pr − 1)(p2 + ω2)(p− c)

}

+L−1




Gm

p2(Sc− 1)

(
p− M ′

Sc− 1

)
{

exp(−y
√

(p + M ′))− exp(−y
√

pSc)
}




(22)
On solving Eq.(22), we have or Pr 6= 1 and Sc 6= 1

Xp =
η(1 + Gm)

2M ′

√
t

M ′

{
exp(−2η

√
M ′t)erfc(η −

√
M ′t)

−exp(2η
√

M ′t)erfc(η +
√

M ′t)
}

+
t

M ′

{
(1 + 2η2Pr)erfc(η

√
Pr)

−2η

√
Pr

π
exp(−η2Pr)

}

+
Gmt

M ′

{
(1 + 2η2Sc)erfc(η

√
Sc)− 2η

√
Sc

π
exp(−η2Sc)

}

+
1

M ′c
erfc(η

√
Pr) +

(Sc− 1)Gm

M ′2 erfc(η
√

Sc)

−
(

(Gm + 1)t

M ′ +
1

M ′c
+

Gm(Sc− 1)

M ′2

)
exp(−M ′t)g(η, M ′)
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− i ∈ exp(−M ′t)
2ω(Pr − 1)(c2 + ω2)

{(c− iω)g(η, M ′ − iω)− (c + iω)g(η, M ′ + iω)}

+
i ∈

2ω(Pr − 1)(c2 + ω2)
{(c− iω)g(η

√
Pr,−iω)− (c + iω)g(η

√
Pr, iω)}

+

{
1

M ′c
+

∈
(Pr − 1)(c2 + ω2)

}
{exp(−M ′t)g(η, e)− g(η

√
Pr, c)}

+
Gm(Sc− 1)

M ′2

{
exp(−M ′t)g

(
η,

M ′

Sc
Sc− 1

)
− g

(
η
√

Sc,
M ′

Sc− 1

)}

(23)
for Pr = 1 and Sc = 1

Xp =
η(1 + Gm)

2M ′

√
t

M ′

{
exp(−2η

√
M ′t)erfc(η −

√
M ′t)

−exp(2η
√

M ′t)erfc(η +
√

M ′t)
}

+

{
(1 + Gm)t

M ′

} {
(1 + 2η2)erfc(η)

−2η

√
1

π
exp(−η2)

}
−

{
(1 + Gm)t

M ′

}
exp(−M ′t)g(η, M ′), (24)

where

g(a, b) =
exp(bt)

2
{exp(2a

√
bt)erfc(a+

√
bt)+exp(−2a

√
bt)erfc(a−

√
bt)},

where

a = η or η
√

Pr or η
√

Sc or and b = M ′ or iω or −iω or M ′+iω or M ′−iω

e or c or
M ′Sc

Sc− 1
or

M ′

Sc− 1
.

We have extend the problem of Das et. al.[12].Now,on setting M=0,
K → ∞, Gm=0 and taking the limit M’→0 our expressions for the
velocity and the penetration distance are comparable with those of Das
et. al. [12]. Further, our graphs for the velocity and the penetration
distance are not comparable with those of Das et. al. [12]. Since in the
numerical calculations for the velocity and the penetration distance they
assigned the values to ωt, t, and ω separately, and the value given to ω
does not match with the values of ωt and t, taken altogether, which is not
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the appropriate way to fix these material parameters. In our analysis, we
assigned the values to ωt and t, after that from these values, the value of
ω is set. Hence, our numerical results are not comparable with those of
Das et.al.[12].

In expressions, erfc (x1 + iy1) is complementary error function of com-
plex argument which can be calculated in terms of tabulated functions
(Abramowitz et.al. [31]). The table given in Abramowitz et.al. [31] do
not give erfc (x1 + iy1) directly but an auxiliary function W1(x1 + iy1)
which is defined as

erfc(x1 + iy1) = W1(−y1 + ix1)exp{−(x1 + iy1)
2}

Some properties of W1(x1 + iy1) are

W1(−x1 + iy1) = W2(x1 + iy1)

W1(x1 − iy1) = 2exp{−(x1 − iy1)
2} −W2(x1 + iy1)

where W2(x1 + iy1)is complex conjugate of W1(x1 + iy1).
SKIN-FRICTION: In non-dimensional form, the skin-friction is

given by

τ = − ∂u

∂y

∣∣∣∣
y=0

(25)

For Pr 6= 1 and Sc 6= 1

τ =
1

M ′

√
Pr

πt
− 1

M ′ f(M
′
) − Gm√

M ′ erf
√

M ′t

+
∈ exp(− iωt) (c− iω)

2(Pr − 1) (c2 + ω2)
{
√

Pr f(− iω)

− f(M
′ − iω)}+

∈ exp(iωt) (c + iω)

2(Pr − 1) (c2 + ω2)
{
√

Pr f(iω) − f(M
′
+ iω)}

+

{
1

M ′ +
c ∈

(Pr − 1) (c2 + ω2)

}

{
exp(−M

′
t)√

πt
−

√
Pr

πt
+

√
M ′Pr

Pr − 1
exp

(
M

′
t

Pr − 1

)



MHD heat and mass diffusion flow... 11

(
erf

√
M ′Prt

Pr − 1
− erf

√
M ′t

Pr − 1

)}
(26)

for Pr = 1 and Sc = 1

τ = −
(

1

M ′

)
f(M

′
)− Gm√

M ′ erf
√

M ′t +

{
1

M ′

}{
exp(−M

′
t)√

πt

}
(27)

NUSSELT NUMBER: From temperature field, the rate of heat
transfer in non-dimensional form is expressed as

Nu = − ∂θ

∂y

∣∣∣∣
y=0

Nu =

√
Pr

πt
+
∈ √

Pr

2
{exp(− iωt)f(− iω) + exp(iωt)f(iω)} (28)

where

f(d) =
√

d erf
√

dt +
exp(− dt)√

πt

d = M
′
or − iω or iω or M

′ − iω or M
′
+ iω.

3 Discussion

The convection flows driven by combinations of diffusion effects are very
important in many applications.The foregoing formulations may be an-
alyzed to indicate the nature of interaction of the various contributions
to buoyancy.In order to gain physical insight into the problem, the value
of ∈ is chosen 1.0. The values of Prandtl number are chosen 0.71,1,7
which represent air, electrolytic solution and water respectively at 20oC
temperature and 1 atmospheric pressure and the values of Schmidt num-
ber are chosen to represent the presence of species by hydrogen (0.22),
water vapour (0.60), ammonia (0.78) and carbon dioxide (0.96) at 25oC
temperature and 1 atmospheric pressure. Figure 1 reveals the transient
temperature profiles against η (distance from the plate). The magnitude
of temperature is maximum at the plate and then decays to zero asymp-
totically. The magnitude of temperature for air (Pr = 0.71) is greater
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than that of water (Pr = 7). This is due to the fact that thermal conduc-
tivity of fluid decreases with increasing Pr, resulting a decrease in thermal
boundary layer thickness. The temperature falls with an increase in the
phase angle ωt for both air and water, also it is noted that it falls slowly
when the plate is isothermal

(
ωt = π

2

)
in comparison to the other values

of ωt. Figure 2 concerns with the effect of Sc on the concentration. It is
noted that the concentration at all points in the flow field decreases expo-
nentially with η and tends to zero as η →∞. A comparison of curves in
the figure shows a decrease in concentration with an increase in Schmidt
number. Physically it is true, since the increase of Sc means decrease of
molecular diffusivity . That results in decrease of concentration boundary
layer. Hence, the concentration of species is higher for small values of Sc
and lower for large values of Sc.

Figure 3 represents the velocity profiles due to the variations in ωt,
Sc and Pr. It is evident from the figure that the velocity increases and
attains its maximum value in the vicinity of the plate and then tends to
zero as η → ∞. The velocity for Pr = 0.71 is higher than that of Pr =
7. Physically, it is possible because fluids with high Prandtl number have
high viscosity and hence move slowly. Further,the velocity decreases with
an increase in ωt for both air and water when hydrogen gas is presented
in the flow.Moreover,the velocity is marginally affected by the variations
in the phase angle. The velocity decreases owing to an increase in the
value of Sc when the plate is isothermal for both Pr = 0.71 and Pr =
7. Figure 4 reveals the effects of M, K, Pr on the velocity profiles. It is
obvious from the figure that the velocity near the plate exceeds at the
plate i.e. the velocity overshoot occurs. It is observed that an increase
in the value of M leads to fall in the velocity. It is because that the
application of transverse magnetic field will result a resistitive type force
(Lorentz force) similar to drag force which tends to resist the flow and
thus reducing its velocity. The presence of a porous medium increases
the resistance to flow resulting in decrease in the flow velocity. This
behaviour is depicted by the decrease in the velocity as K decreases for
both air and water. The magnitude of velocity for air is higher than
that of water. Figure 5 illustrates the influences of t, Gm and Pr on the
velocity. It is obvious from the figure that the maximum velocity attains
in the vicinity of the plate then decreases to zero as η → ∞. It is noted
that the velocity increases with increasing time t for both air and water.
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Further, the magnitude of velocity leads to an increase with an increase
in Gm. It is due to the fact that an increase in the value of modified
Grashof number has the tendency to increase the mass buoyancy effect.
It is also found that the effect of time on the velocity is more dominant
than other parameters.

Effects of variations in ωt, Sc and Pr on the penetration distance are
presented in figure 6. It is clear from the figure that the penetration
near the plate increases owing to the presence of the foreign gases such
as hydrogen and water vapour. Further,we noticed that it decreases with
an increase in the value of Sc for an isothermal plate. The penetration
distance decreases on increasing ωt when hydrogen gas is presented in the
flow for both Pr = 0.71 and Pr = 7. Like the velocity, the penetration is
marginally affected by the variations in the phase angle. Figure 7 shows
the effects of the variations in M, K, Pr on the penetration .It is noted
that the penetration falls owing to an increase in the magnetic parameter
for both air and water. On the contrary, it increases with an increase
in K. The reason for them is same as that of explained for the velocity.
Figure 8 concerns with the penetration against η for the various values
of t ,Gm and Pr. It is concluded from the figure that it increases with
increase in t and Gm.On the other hand, it decreases with an increase in
Pr.Again, the reason for it is same as that of explained for the velocity.

Figure 9 depicts the Nusselt number against time. It is found that the
rate of heat transfer falls with increasing ωt. Nusselt number for Pr = 7 is
higher than that of Pr = 0.71. The reason is that smaller values of Pr are
equivalent to increasing thermal conductivities and therefore heat is able
to diffuse away from the plate more rapidly than higher values of Prandtl
number. Hence, the rate of heat transfer is reduced. Figure 10 reveals the
skin-friction against time t for various values of parameters M, K, Gm, Sc
and Pr. It is noticed that the skin friction decreases with an increase in
permeability parameter, modified Grashof number and Schmidt number
while it increases with an increase in magnetic parameter for both air and
water. The magnitude of the skin-friction for water is greater than air.
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MHD toplotno i difuzno maseno tečenje prirodnom
konvekcijom po površi unutar porozne sredine

Predstavljena je analitička studija prelazne hidromagnetske prirodne kon-
vekcije po površi unutar porozne sredine uzimajući u obzir difuziju mase
i vremensku fluktuaciju temperature na ploči. Dobijene jednačine su
rešene u zatvorenom obliku tehnikom Laplasove transformacije. Dobijeni
su rezultati za temperaturu, brzinu, rastojanje prodiranja, Nuseltov broj
i trenje na zidu. Uticaji različitih parametara na promenljive tečenja su
diskutovani igrafički prikazani.
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