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Abstract

An analysis is presented to investigate the effect of thermophoresis
particle deposition and variable viscosity on Darcy mixed convec-
tive heat and mass transfer of a viscous, incompressible fluid past
a porous wedge in the presence of chemical reaction. The wall
of the wedge is embedded in a uniform Darcian porous medium
in order to allow for possible fluid wall suction or injection. The
viscosity of the fluid is assumed to be a inverse linear function of
temperature. The results are analyzed for the effect of different
physical parameters, such as variable viscosity, magnetic, chemical
reaction and thermophoresis parameters, on the flow, the heat and
mass transfer characteristics.
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1 Introduction

Thermophoresis is a phenomenon which causes small particles to be driven
away from a hot surface and towards a cold one. The force experienced
by a small aerosol particle in the presence of a temperature gradient is
known as the thermophoretic force. Motion of particles under such
a force is known as thermophoresis. Thermophoresis is an important
mechanism of micro-particle transport due to a temperature gradient in
the surrounding medium and has found numerous applications, especially
in the field of aerosol technology. The effects of thermophoresis particle
deposition with chemical reaction on the mixed convection flows are also
important in the context of space technology and processes involving high
temperatures.

In certain porous media applications such as those involving heat
removal from nuclear fuel debris, underground disposal of radioactive
waste material, storage of food stuffs, and exothermic and/or endother-
mic chemical reactions and dissociating fluids in packed-bed reactors, the
working fluid heat generation (source) or absorption (sink) effects are
important. In the application of pigments, or chemical coating of met-
als, or removal of particles from a gas stream by filtration, there can
be distinct advantages in exploiting deposition mechanisms to improve
efficiency. In the light of these various applications, thermophoretic de-
position of radioactive particles is considered to be one of the important
factors causing accidents in nuclear reactors. Thermophoresis in laminar
flow over a horizontal flat plate has been studied theoretically by Goren
(1977). Thermophoresis in natural convection with variable properties
for a laminar flow over a cold vertical flat plate has been studied by
Jayaraj et al.(1999). Selim et al. (2003) analyzed the effect of surface
mass flux on mixed convective flow past a heated vertical flat permeable
plate with thermophoresis. Recently, Chamkha and pop (2004) investi-
gated the effect of thermophoresis particle deposition in free convection
boundary layer from a vertical flat plate embedded in a porous medium.
Pantokratoras, (2004), Strauss and Schubert, (1977) and Lai and Ku-
lacki (1990) considered the variable viscosity effect for mixed convection
flow along a vertical plate embedded in saturated porous medium. The
variable viscosity effects on non-Darcy, free or mixed convection flow on
a horizontal surface in a saturated porous medium are studied by Ku-
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mari (2001). In particular, the study of heat and mass transfer with
thermophoresis and chemical reaction is of considerable importance in
chemical and hydrometallurgical industries.

Effects of heat and mass transfer on mixed convection flow in the
presence of suction/injection have been studied by many authors in dif-
ferent situations. But so far no attempt has been made to analyze the
effect of thermophoresis particle deposition on Darcy mixed convective
heat and mass transfer past a porous wedge in the presence of chemical
reaction and hence we have considered the problem of this kind. The or-
der of chemical reaction in this work is taken as first-order reaction. It is
hoped that the results obtained will not only provide useful information
for applications, but also serve as a complement to the previous studies.

2 Mathematical analysis
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Figure 1: Flow analysis along the wall of the wedge

A two-dimensional steady mixed convective heat and mass transfer
flow of a viscous, incompressible fluid over a porous wedge embedded in a
porous medium is considered. The fluid is assumed to be Newtonian and
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its property variations due to temperature are limited to density and vis-
cosity. The density variation and the effect of the buoyancy force is taken
into account in the momentum equation (Boussinesq’s approximation)
and the concentration of species far from the wall, C∞, is infinitesimally
small. The flow is assumed to be in the x-direction, which is taken along
the wall of the wedge and y-axis is taken to be normal to the wall. The
chemical reaction is taking place in the flow and the effect of thermophore-
sis are being taken into account to help in the understanding of the mass
deposition variation on the surface. Fluid suction or injection is imposed
at the wedge surface, see Fig.1.

The fundamental equations for steady incompressible flow can be de-
fined as follows:

Continuity equation:
div ~V = 0 (1)

Momentum equation:

(~V . grad ~V ) = −1

ρ
grad p + ν ∇2 ~V + ~g {β(T − T∞) + β∗(C − C∞)}

(2)
Energy equation:

(~V . grad)T =
ke

ρ cp

∇2T (3)

Species concentration equation:

(~V . grad)C = D ∇2 C − (div ~vT C) ± k1C (4)

where ~V the velocity vector, p is is the pressure, ν is the kinematic coef-
ficient of viscosity and ~g is the acceleration due to gravity.

Under these conditions, the basic governing boundary layer equation
of momentum, energy and diffusion for mixed convection flow neglecting
Joule’s viscous dissipation under Boussinesq’s approximation including
variable viscosity can be simplified to the following equations:

∂u

∂x
+

∂v

∂y
= 0 (5)

u
∂u

∂x
+ v

∂u

∂y
=

1

ρ

∂

∂y
(µ

∂u

∂y
) + U

dU

dx
− ν

K
(u− U) +
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(gβ(T − T∞) + gβ∗(C − C∞)) sin
Ω

2
(6)

ρ cp(u
∂T

∂x
+ v

∂T

∂y
) = ke

∂2T

∂y2
(7)

u
∂C

∂x
+ v

∂C

∂y
= D

∂2C

∂y2
− ∂(vT C)

∂y
− k1C (8)

T he boundary conditions are,

u = 0, v = −v0, T = Tw, C = Cw at y = 0 (9)

u = U(x), T = T∞, C = C∞ at y →∞ (10)

where D is the effective diffusion coefficient, µ is the dynamic viscosity,
ρ is the fluid density, cp is the specific heat at constant pressure, ke is the
porous medium effective thermal conductivity, K is the permeability of

the porous medium, vT (= −k
ν

T

∂T

∂y
) is the thermophoretic velocity, where

k is the thermophoretic coefficient. The third term on the right hand side
of Equ.(6) stands for the first-order (Darcy) resistance.

As in the line of Kafoussias et al., (1997), we introduce the following
change of variables

η = (

√
(1 + m)U

2ν x
)y, ψ = (

√
2Uν x

1 + m
)f(x, η), θ =

T − T∞
Tw − T∞

,

α1 =
Tr − T∞
Tw − T∞

and φ =
C − C∞
Cw − C∞

(11)

It is assumed that the viscosity of the fluid is inverse linear function of
temperature (Kumari, 2001; Lai and Kulacki, 1990) and it can be written
as

1

µ
=

1

µa

(1 + χ(T − Ta)) (12)

where µa is the ambient fluid dynamic viscosity and χ is a thermal prop-
erty of the fluid.

Equation (12) can be written as follows

1

µ
= a(T − Tr) (13)
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where a =
χ

µa

and Tr = Ta− 1

χ
are constants and their values depend on

the reference state and the thermal property of the fluid.
Under this consideration, the potential flow velocity can be written as

U(x) = Axm, β1 =
2m

1 + m
, where 0 < m < 1, (14)

where A and m are constants and β1 is the Hartree pressure gradient

parameter that corresponds to β1 =
Ω

π
for a total angle Ω of the wedge.

The continuity equation (1) is satisfied by the stream function ψ(x, y)
and it is defined as

u =
∂ψ

∂y
and v = −∂ψ

∂x
(15)

The equations (6) to (8) become

(θ − α1 )
∂3f

∂η3
=

(θ − α1)
2

α1

[−f
∂2f

∂η2
− 2m

1 + m
(1− (

∂f

∂η
)2)−

2

1 + m
γ1(θ + Nφ) sin

Ω

2
+

2x

1 + m
(
∂f

∂η

∂2f

∂x∂η
− ∂f

∂x

∂2f

∂η2
) + (16)

2

m + 1
λ(

∂f

∂η
− 1 ) ] +

∂θ

∂η

∂2f

∂η2

∂2θ

∂η2
= −Pr

∂θ

∂η
+

2 Pr

1 + m
θ
∂f

∂η
+ Pr

2x

1 + m
(
∂f

∂η

∂θ

∂x
− ∂f

∂x

∂θ

∂η
) (17)

∂2φ

∂η2
= −Sc (f − τ

∂θ

∂η
)
∂φ

∂η
+

2 Sc

1 + m
φ

∂f

∂η
+

2xSc

1 + m
(
∂f

∂η

∂φ

∂x
− ∂f

∂x

∂φ

∂η
)+

Scτ
∂2θ

∂η2
φ +

2 Sc x

1 + m
γ φ (18)

where the Grashof number Grx, Local buoyancy parameter γ1, Sustenta-
tion parameter N , Reynolds number Rex, Modified local Reynolds num-
ber Rek, Prandtl number Pr, Schmidt number Scs suction/injection pa-
rameter S, chemical reaction parameter γ, thermophoresis particle depo-
sition parameter τ and porous medium parameter λ, are defined as

Grx =
gβ ν(Tw − T∞)

U3
, γ1 =

Grx

Rex2
, Rex =

Ux

ν
, Rek =

U
√

K

ν
,



Variable viscosity and thermophoresis effects on Darcy mixed... 35

Pr =
ν

αe

, Sc =
ν

D
sS = v0

√
(1 + m)x

2 ν U
, (19)

γ =
ν k1

U2
sτ = −k(Tw − T∞)

Tr

and λ =
αe

KA
,

where αe is the effective thermal diffusivity of the porous medium (αe =
ke

ρ cp

).

The boundary conditions can be written as

η = 0 :
∂f

∂η
= 0,

f

2
(1 +

x

U

dU

dx
) + x

∂f

∂x
= −v0

√
(1 + m)x

2νU
, θ = 1, φ = 1

η →∞ :
∂f

∂η
= 1, θ = 0, φ = 0 (20)

where v0 is the velocity of suction if v0 < 0 and injection if v0 > 0.
Let ξ = k x

1−m
2 Kafoussias and Nanousis (1997), is the dimensionless

distance along the wedge (ξ > 0)
The equations (16) to (18) and boundary conditions (20) can be writ-

ten as

∂3f

∂η3
+

(θ − α1)

α1

[(f
∂2f

∂η2
+

1−m

1 + m
ξ(

∂f

∂ξ

∂2f

∂η2
− ∂2f

∂ξ ∂η

∂f

∂η
) +

2

1 + m
γ1(θ + Nφ) sin

Ω

2
− 2

m + 1
ξ2λ Pr(

∂f

∂η
− 1)− (21)

2m

m + 1
((

∂f

∂η
)2 − 1 )]− 2

1 + m
(

1

θ − α1

)
∂θ

∂η

∂2f

∂η2
= 0

∂2θ

∂η2
+ Pr(f

∂θ

∂η
+

1−m

1 + m
ξ(

∂f

∂ξ

∂θ

∂η
− ∂θ

∂ξ

∂f

∂η
)− 2 Pr

1 + m
θ
∂f

∂η
= 0 (22)

∂2φ

∂η2
+ Sc (f − τ

∂θ

∂η
)

∂φ

∂η
+ Sc

1 + m

1−m
(
∂φ

∂η
ξ
∂f

∂ξ
− ∂f

∂η
ξ
∂φ

∂ξ
) − 2Sc

1 + m
φ

∂f

∂η

−Scτ
∂2θ

∂η2
φ− 2Sc

1 + m
ξ2γ φ = 0 (23)
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η = 0 :
∂f(ξ, η)

∂η
= 0,

(1 + m)

2
f(ξ, η)+

1−m

2
ξ
∂f(ξ, η)

∂ξ
= −S, θ(ξ, η) = 1,

φ(ξ, η) = 1

η →∞ :
∂f(ξ, η)

∂η
= 1, θ(ξ, η) = 0, φ(ξ, η) = 0 (24)

where S is the suction parameter if S > 0 and injection if S < 0.
The system of equations (21) to (23) can also be written as

f ′′′ +
(θ − α1)

α1

[(ff ′′ +
2

1 + m
γ1(θ + Nφ) sin

Ω

2
− 2

m + 1
ξ2λ Pr(f ′ − 1 )

− 2m

m + 1
(f ′2 − 1 )] − 2

1 + m
(

1

θ − α1

)θ′ f ′′ = (25)

−(θ − α1)

α1

1−m

1 + m
ξ(f ′′

∂f

∂ξ
− f ′

∂f ′

∂ξ
)

θ′′ + Pr fθ′ − 2 Pr

1 + m
f ′θ = −Pr

1−m

1 + m
ξ(θ′

∂f

∂ξ
− f ′

∂θ

∂ξ
) (26)

φ′′ + Sc (f − τθ′) φ′ − 2Sc

1 + m
φ f ′ − Scτθ′′φ− 2Sc

1 + m
ξ2γφ =

− Sc
1−m

1 + m
ξ(φ′

∂f

∂ξ
− f ′

∂φ

∂ξ
) (27)

with boundary conditions

f ′(ξ, 0) = 0,
(1 + m)

2
f(ξ, 0)+

1−m

2
ξ
∂f(ξ, 0)

∂ξ
= −S, θ(ξ, 0) = 1, φ(ξ, 0) = 1

f ′(ξ,∞) = 1, θ(ξ,∞) = 0, φ(ξ,∞) = 0 (28)

where the prime denote partial differentiation with respect to η, whereas
the boundary conditions (24) remain the same. This form of the system
is the most suitable for the application of the numerical scheme described
below.

It may be observed that the equations (25) – (27) remain partial differ-
ential equations after transformation, with ∂/∂ξ terms on the right hand
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side. In this system of equations, it is obvious that the non-similarity as-
pects of the problem are embodied in the terms containing partial deriva-
tives with respect to ξ. This problem does not admit similarity solutions.
Thus, with ξ-derivatives terms retained in the system of equations, it is
necessary to employ a numerical scheme suitable for partial differential
equations for the solution. Formulation of the system of equations for the
local nonsimilarity model with reference to the present problem will now
be discussed.

At the first level of truncation, the terms accompanied by ξ
∂

∂ξ
are

small. This is particularly true when ξ << 1. Thus the terms with ξ
∂

∂ξ
(on the right hand sides of equations (25) to (27) are deleted to get the
following system of equations:

f ′′′ +
(θ − α1)

α1

[(ff ′′ +
2

1 + m
γ1(θ + Nφ) sin

Ω

2
− 2

m + 1
ξ2λ Pr(f ′ − 1 )

− 2m

m + 1
(f ′2 − 1 )]− 2

1 + m
(

1

θ − α1

)θ′ f ′′ = 0 (29)

θ′′ + Pr fθ′ − 2 Pr

1 + m
f ′θ = 0 (30)

φ′′ + Sc (f − τθ′) φ′ − 2Sc

1 + m
φ f ′ − Scτθ′′ φ− 2Sc

1 + m
ξ2γ φ = 0 (31)

with boundary conditions

f ′(ξ, 0) = 0,
(1 + m)

2
f(ξ, 0)+

1−m

2
ξ
∂f(ξ, 0)

∂ξ
= −S, θ(ξ, 0) = 1, φ(ξ, 0) = 1

f ′(ξ,∞) = 1, θ(ξ,∞) = 0, φ(ξ,∞) = 0 (32)

Equations (29-31) can be regarded as a system of ordinary differential
equations for the functions f, θ and φ with ξ as a parameter for given
pertinent parameters.

The major physical quantities of interest are the local skin friction
coefficient; the local Nusselt number and the local Sherwood number are
defined, respectively, by:

Cf =
f ′′(ξ, 0)

Re
1
2
x

; Nu = −θ′(ξ, 0)

Re
1
2
x

and Sh = −φ′(ξ, 0)

Re
1
2
x

(33)
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The mass diffusion equation (31) can be adjusted to meet these cir-
cumstances if one takes (i) γ > 0 for the destructive reaction,(ii) γ = 0
for no chemical reaction and (iii) γ < 0 for the generative reaction. The
momentum equation (29) can also be attempt these circumstances if one
takes γ1 >> 1.0 corresponds to pure free convection, γ1 = 1.0 corresponds
to mixed convection and γ1 << 1.0 corresponds to pure forced convec-
tion. Throughout this calculation we have considered γ1 = 1.0 unless
otherwise specified.

3 Numerical solution

The boundary layer over the wedge, subjected to a velocity of suction or
injection, is described by the system of partial differential equations (25) -
(27), and its boundary conditions (28). In this system of equations f(ξη)
is the dimensionless stream function; θ(ξ, η) be the dimensionless temper-
ature; φ(ξ, η)be the dimensionless concentration; Pr, the Prandtl number;
Rex, Reynolds number etc. which are defined in (19). It is obvious that
the nonsimilarity aspects of the problem are embodied in the terms con-
taining partial derivatives with respect to ξ. Thus, with ξ derivative terms
retained in the system of equations (29) - (31), it is necessary to employ
a numerical scheme suitable for partial differential equations for the so-
lution. In addition, owing to the coupling between adjacent streamwise
locations through the ξ derivatives, a locally autonomous solution, at any
given streamwise location, cannot be obtained.

In such a case, an implicit marching numerical solution scheme (the
basic marching method is direct, that is, noniterative, but some of the
most powerful techniques presented herein utilize it within rapidly con-
verging iterative schemes) is usually applied preceding the solution in
the ξ-direction, i.e., calculating unknown profiles at ξι+1 when the same
profiles at ξι are known. The process starts at ξ = 0 and the solution
proceeds from ξι to ξι+1 but such a procedure is time consuming.

However, when the terms involving
∂f

∂ξ
,
∂θ

∂ξ
and

∂φ

∂ξ
and their η deriva-

tives are deleted, the resulting system of equations resembles, in effect, a
system of ordinary differential equations, for the functions f, θ and φ with
ξ as a parameter and the computational task is simplified. Furthermore
a locally autonomous solution, for any given ξ, can be obtained because
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the streamwise coupling is severed.

So, in this work, a modified and improved numerical solution scheme,
for local nonsimilarity boundary layer analysis, is used. The scheme is
similar to that of Minkowycz and Sparrow (1988) but it deals with the
differential equations in lieu of integral equations. In each level of trunca-
tion, the governing coupled and nonlinear system of differential equations
is solved by applying the common finite difference method, with central
differencing, a tridiagonal matrix manipulation, and an iterative proce-
dure. The whole numerical scheme can be programmed and applied easily
and has distinct advantages compared to that in Minkowycz and Sparrow
(1988) with respect to stability, accuracy, and convergence speed. The
details of this scheme are described in Kafoussias and Williams (1993)
and Kafoussias and Karabis (1996).

To examine the behavior of the boundary layer over the wedge, nu-
merical calculations were carried out for different values of the dimen-
sionless parameters, entering the problem under consideration for Pr =
0.71, which corresponds to air. The numerical results are shown in Figs.
2 - 5 for the velocity, the temperature and the concentration of the fluid
along the wall of wedge.

4 Results and discussion

The computations have been carried out for various values of variable
viscosity α1, chemical reaction (γ), Thermophoresis particle deposition
parameter (τ) and porous medium (λ). In order to validate our method,
we have compared steady state results of skin friction f ′′(ξ, 0) and rate
of heat transfer −θ′(ξ, 0) for various values of ξ (Table.1) with those of
Minkowycz et al. (1988) and found them in excellent agreement.

The velocity, temperature and concentration profiles obtained in the
dimensionless form are presented in the following Figures for Pr = 0.71
which represents air at temperature 200C and Sc = 0.62 which corre-
sponds to water vapor that represents a diffusion chemical species of
most common interest in air. Grashof number for heat transfer is chosen
to be Grx = 9, since these values corresponds to a cooling problem, and
Reynolds number Rex = 3.0. The values of γ are chosen to be 0.1, 2.0
and 5.0. It is important to note that α1 is negative for liquids and positive
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Minkowycz et al. (1988) Present works

ξ f ′′(ξ, 0) −θ′(ξ, 0) f ′′(ξ, 0) −θ′(ξ, 0)

0 0.33206 0.29268 0.33206 0.29268
0.2 0.55713 0.33213 0.55707 0.33225
0.4 0.75041 0.35879 0.75007 0.35910
0.6 0.92525 0.37937 0.92449 0.37986
0.8 1.08792 0.39640 1.08700 0.39685
1.0 1.24170 0.41106 0.24062 0.41149
2.0 1.92815 0.46524 1.92689 0.46551
10.0 5.93727 0.64956 5.93502 0.64968

Table 1: Comparison with previous published work N = 3, γ1 = 1.0, Sc =
0.62, λ = 0.1, S = 3.0, α1= 0 and Ω = 300

for gases when Tw − T∞ is positive. The values of α1 (for air α1 > 0) are
chosen to be 0.1, 0.3 and 0.5 and the value of suction, S is chosen to be
3.0.

In the absence of species concentration equation, in order to ascertain
the accuracy of our numerical results, the present study is compared with
the available exact solution in the literature. The velocity profiles for ξ are
compared with the available exact solution of Minkowycz et al. (1988),
is shown in Fig.2. It is observed that the agreements with the theoretical
solution of velocity and temperature profiles are excellent.

Effect of chemical reaction with thermophoresis particle deposition
plays a very important role on the concentration field. The effect of
thermophoretic parameter, τ and chemical reaction, γ on velocity, tem-
perature and concentration field are shown in Figs.3 and 4. It is observed
that the velocity, temperature and concentration of the fluid decrease with
increase of thermophoresis and chemical reaction parameters. In particu-
lar, the effect of increasing the thermophoretic parameter τ is limited to
be increasing slightly the wall slope of the concentration profiles but de-
creasing the concentration. This is true only for small values of Schmidt
number for which the Brownian diffusion effect is large compared to the
convection effect. However, for large values of Schmidt number (Sc >
100) the diffusion effect is minimal compared to the convection effect
and, therefore, the thermophoretic and chemical reaction parameters are
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(a) Minkowycz et al. (1988)

(b) Present work

Figure 2: Comparison of the velocity and temperature profiles with
Minkowycz et al. (1988)
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Figure 3: Thermophoretic effect on velocity, temperature and concentra-
tion profiles. N = 3, γ1 = 1.0, Sc = 0.62, λ = 0.1, S = 3.0, α1= 0.5, ξ=
0.01 and Ω = 300

Figure 4: Chemical reaction over velocity, temperature and concentration
profiles. γ1 = 1.0, N = 3, Sc = 0.62, λ = 0.1, τ = 0.5, S = 3.0, α1= 0.5,
ξ = 0.01 and Ω = 300
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expected to alter the concentration boundary layer significantly. This is
consistent with the work of Goren (1977) on thermophoresis of aerosol
particles in flat plate boundary layer. It is evident to note that the in-
crease of chemical reaction and thermophoretic particle deposition are
significantly altered the concentration boundary layer thickness but not
momentum and thermal boundary layers.

Figure 5: Viscosity effect on velocity, temperature and concentration pro-
files. γ1 = 1.0, m = 0.0909, N = γ = 1.0, τ = 0.5, λ = 0.1, S = 3.0, ξ=
0.01 and Ω = 300

Increase of viscosity accelerates the fluid motion and reduces the tem-
perature of the fluid along the wall and the concentration of the fluid is
almost not affected with increase of the viscosity and these are shown in
Fig.5. The results presented demonstrate quite clearly that α1, which is
an indicator of the variation of viscosity with temperature, has a substan-
tial effect on fluid motion within the boundary layer over a heat surface
as well as the drag and heat transfer characteristics.

From the Table 2, it is observed that the skin friction increases and
the rate of heat and mass transfer decrease with increase of and viscosity
parameter, whereas the skin friction and the rate of mass transfer decrease
and the rate of heat transfer increases with increase of chemical reaction
and thermophoretic parameters.
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f ′′(0) θ′(0) φ′(0) Parameter
4.946190 -4.058611 -2.689660 γ = 0.1 Chemical reaction parameter
4.855660 -4.054048 -3.482368 γ = 3.0
4.818363 -4.052252 -3.910915 γ = 5.0
6.034338 -2.580389 -5.260410 τ = 1.0 Thermophoretic parameter
6.034184 -2.580390 -6.804620 τ = 2.0
6.034067 -2.580391 -8.366696 τ = 3.0

Table 2: Analysis for skin friction and rate of heat and mass transfer.
γ1 = 1.0, m = 0.0909, N = 1.0, λ = 0.1, S = 3.0, ξ= 0.01 and Ω = 300

5 Conclusions

In the present paper, the effect of variable viscosity on Darcy mixed con-
vection boundary layer flow over a porous wedge with thermophoresis
particle deposition in the presence of chemical reaction has been studied
numerically. There are many parameters involved in the final form of
the mathematical model. The problem can be extended on many direc-
tions, but the first one seems to be to consider the effects of chemical
reaction with thermophoresis particle deposition. In mixed convection
regime, the concentration boundary layer thickness decreases with in-
crease of the thermophoretic and chemical reaction parameters. So, the
thermophoretic with chemical reaction effects in the presence of viscosity
of the fluid have a substantial effect on the flow field and, thus, on the heat
and mass transfer rate from the sheet to the fluid. Thermophoresis is an
important mechanism of micro-particle transport due to a temperature
gradient in the surrounding medium and has found numerous applica-
tions, especially in the field of aerosol technology. The numerical results
are influenced by mixed convection parameter and the variable viscosity
parameter which defines the effect of variable viscosity of the fluid α1. It
is observed that with variable viscosity, the separation of boundary layer
is delayed for α1 > 0 than α1 < 0. When the effect of variable viscosity
is considered for the assisting flow case, the heat transfer for liquids is
higher and for gases is lower compared to the constant viscosity case. It
is expected that this research may prove to be useful for the study of
movement of oil or gas and water through the reservoir of an oil or gas
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field, in the migration of under ground water and in the filtration and wa-
ter purification processes. Such kind of numerical solution for the effect
of thermophoresis particle deposition on nonlinear boundary layer flow
over a porous wedge with variable viscosity in the presence of chemical
reaction is presented first time in the literature.
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Uticaji promenljive viskoznosti i termoforeze na Darsijev
prenos toplote i mase preko poroznog klina u prisustvu

hemijske reakcije

Proučava se uticaj taloženja čestica termoforezom kao i promenljive viskoz-
nosti na Darsijev prenos toplote i mase viskoznog nestǐsljivog fluida preko
poroznog klina u prisustvu hemijske reakcije. Zid klina je potopljen u uni-
formnu Darsijevu poroznu sredinu da bi se dozvolilo usisavanje ili ubriz-
gavanje. Za viskoznost fluida se pretpostavlja da je inverzno linearna
funkcija temperature. Analizirani su uticaji promenljive viskoznosti, mag-
netskih i parametara termoforeze kao i hemijske reakcije na karakteristike
tečenja, prenos toplote i mase.
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