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Abstract

Polynomial reconstruction of staggered unstructured vector fields
has been considered. Coefficients of such polynomials are deter-
mined by the least squares method. Reduction in the rank of the
least squares systems caused by the over-specification of the di-
vergence may lead to difficulties. This has been investigated. The
rank of these systems may be further reduced depending on the
mesh geometry, or they may become ill conditioned. Guidelines
for solving such linear systems have been presented.

Keywords: staggered unstructured grid, polynomial reconstruc-
tion, staggered vector field.

1 Introduction

For numerical approximation of the incompressible Navier-Stokes equa-
tions on Cartesian grids, the classical staggered Marker and Cell scheme
of Harlow and Welch [3] is often the method of choice. The reasons are
absence of spurious modes, local mass conservation, and the fact that
artificial boundary conditions are not needed.
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Several generalizations of this scheme have been proposed for unstruc-
tured triangular meshes in [1, 2, 4, 5, 6, 7, 10, 11]. All these methods
are first-order accurate in space on irregular meshes. Except [10, 11], the
schemes described are restricted to incompressible flows. Second order
accurate schemes for incompressible and compressible flows have been
presented in [8, 9].

In staggered grids the pressure and the velocity are stored in different
points. The usual choice is to store the pressure in the cells, as well as
the other scalars, and to associate normal velocity components with the
faces. This is illustrated in Fig. 1.

: pressure

: normal velocity component

Figure 1: Staggered positioning of the variables in an unstructured grid.

Since the velocity vector is not known in any point, the preprocessing
and the postprocessing stages are more complicated than in the collocated
case. Additional difficulties that arise on unstructured grids may be the
reason why the staggered unstructured schemes are not widely accepted.

The main problem in the design of unstructured staggered schemes
is the reconstruction of the velocity vector in certain points of interest.
Some techniques to achieve this on a triangular grid in two dimensions and
difficulties that arise are presented in this paper. The three dimmensional
case is similar.

2 Staggered vector field

In a staggered grid the velocity field u is represented by its averaged
normal components

ue =
1

le

∫

e

(u ·Ne)dl, (1)
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where Ne is one of the two possible unit normal vectors to face e, and
le is the length of this face. Such choice allows an exact discretization of
the velocity divergence:

∫

Ω

(∇ · u) dΩ =

∮

∂Ω

(u · n) dΓ =
3∑

e=1

uele, (2)

where le = (Ne · ne) le, ne is the outward normal to face e, and Ω is a
triangle.

3 Piecewise constant reconstruction

The scheme developed in [8, 9] uses the following reconstruction to com-
pute a vector component in a cell:

N · u ≈ ξiui + ξjuj, (3)

where i and j are two faces of this cell, N is an arbitrary unit vector, and
ξi and ξj are chosen such that

N = ξiNi + ξjNj. (4)

This reconstruction is exact for piecewise constant vector fields only.
Other expressions of the same order of accuracy are found in the litera-
ture.

4 Piecewise linear reconstruction

In order to obtain higher order schemes, the velocity vector field needs to
be reconstructed from staggered data with sufficient accuracy. To approx-
imate u in the vicinity of point with coordinate vector r0, we postulate a
piecewise linear approximation of the following form:

u(r) ≈ P(r) = a + bx + cy, (5)

where r = [xy]T is the position vector of a point where u is to be re-
constructed, relative to point r0. Point r0 may be a face center, a cell
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centroid, or a vertex. We want to determine a, b and c such that the
face average of Ne · P(r) matches the normal components ue for face e
belonging to a certain set (that will be called the reconstruction stencil)
as closely as possible in the least squares sense. Fig. 2 shows possible
reconstruction stencils. This leads to the following linear system:

0 0

0

Figure 2: Examples of reconstruction stencils for face-based (left), cell-
based (middle) and vertex-based (right) linear reconstruction.

Ne ·P(re) = ue, for each face e in the reconstruction stencil, (6)

where re is the coordinate of the center of face e relative to r0. This
system can be written as

Mc = u, (7)

where

M =




Nx,1 Ny,1 Nx,1x1 Nx,1y1 Ny,1x1 Ny,1y1
...

...
...

...
...

...
Nx,k Ny,k Nx,kxk Nx,kyk Ny,kxk Ny,kyk


 , (8)

c =
[
a1 a2 b1 b2 c1 c2

]T
, u =

[
u1 . . . uk

]T
, (9)

and k is the number of faces in the reconstruction stencil.
If the tangential velocity component ut

e is prescribed as a boundary
condition in some of the boundary faces belonging to the reconstruction
stencil, equation

Te ·P(re) = ut
e (10)
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is added to system (6) where Te = (−Ny,e, Nx,e) and ut
e = Te · ue. This

can be done for all faces in the reconstruction stencil where the tangential
velocity is prescribed, or only for the faces closer to the center of the
reconstruction stencil.

In order to determine the least squares solution for c it is necessary
that rank(M) = 6. If rank(M) < 6, the stencil needs to be enlarged,
or the degree of P must be lowered. On general unstructured grids it is
difficult to specify a priori reconstruction stencils such that rank(M) = 6.
However, we can say the following: if a reconstruction stencil contains one
triangle Ω, the rank of M will be lowered by one by adding constraint

∇ · u = b1 + c2 =
1

|Ω|
∮

∂Ω

n ·P(r)dΓ =
1

|Ω|
3∑

e=1

Ne ·P(re)le (11)

(see (2) and (6)). Each triangle in the reconstruction stencil adds such a
constraint, and therefore

rank(M) ≤ k − k̃ + 1, (12)

where k̃ is the number of triangles in the reconstruction stencil. Hence,
for the stencil in Fig. 3 we have rank(M) ≤ 5, so this stencil is too small,
and additional faces must be added.

0

Figure 3: Insufficient reconstruction stencil for vertex-based linear recon-
struction.

An additional rank reduction may occur in special situations. Fig
4 shows an enlarged vertex-based reconstruction stencil for a boundary
vertex 0. Face centers 1, 2 and 3 are collinear, so there exist coefficients



90 D. Vidović

21 3

0

Figure 4: Reconstruction stencil at a boundary.

α and β such that r3 = αr1 + βr2 and α + β = 1. In the case presented
in Fig. 4, α = 1

2
and β = 1

2
. These faces are also parallel, and we shall

suppose that N1 = N2 = N3. By substituting this in the left hand side
of the equation (6) for face 3 we obtain

N3 ·P(r3) = N3 ·P(αr1 + βr2) = αN1P(r1) + βN2P(r2). (13)

The equation for face 3 is linearly dependent on the equations for faces 1
and 2, and rank(M) ≤ k − k̃ + 1− 1 < 6.

If the grid is unstructured, stencils close to the stencil of Fig. 4 fre-
quently appear at boundaries, resulting in ill-conditioned linear systems.
In order to detect such situations, singular value decomposition (SVD)
is used to find the pseudo-inverse of M . The stencil is enlarged if some
singular value is less than some threshold. Because the matrices involved
are small, SVD takes only a small part of total computing time.

In order to match the normal velocities in the faces closer to the center
more closely than those in the outer part of the reconstruction stencil,
we use weight 1 for the equations related to the central faces, and 10−2

for all the others. Central faces are the faces meeting in the central
vertex in the case of the vertex-based reconstruction, faces of the central
triangle in the case of the cell-based reconstruction, or the faces of the two
central triangles in the case of the face-based reconstruction. This gives
practically absolute priority to the nearest neighbors, but still keeps the
singular values of the reconstruction matrix relatively large. Numerical
experiments have shown that in this matrix two groups of singular values
can be distinguished: those proportional to the larger weight, and those
proportional to the smaller weight. For this reason using too small weights
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can have negative effect on the accuracy. Using ratio 1/1000 gives almost
the same results. Results are not very sensitive to this parameter.

Still, matrix MT M emerging from (6) when the least squares or the
SVD method is used becomes very ill-conditioned as the mesh is refined.
This problem is also present in the 1d case. Requirement that a one-
dimensional polynomial of degree n − 1 has specified values in points
x1, . . . , xn results in Vandermonde matrix. Determinant of this matrix is∏

i>j(xi−xj). As points xi get closer to each other, the matrix approaches
a singular one. Our situation is similar. In order to avoid growing ill-
conditioning, we scale ri by some typical length h, for example the length
of the central face, the square root of the area of the central cell, or
the average length of the faces meeting in the central vertex. Hence, in
(5)–(7) instead of r and P we use

r̃ =
[
x̃ ỹ

]T
=

r

h
, P̃(r̃) = P(r) = a + b̃x̃ + c̃ỹ, b̃ = hb, c̃ = hc.

(14)
We solve for the scaled coefficients a, b̃ and c̃, which are used to calculate
b and c.

The coefficients of the linear polynomial are obtained in the form

[a1, . . . c2]
T = M+ · [u1, . . . uk]

T , (15)

where M+ is the pseudo-inverse of matrix M . In codes that solve partial
differential equations, systems like (7) have to be solved many times with
different right hand sides. However, matrix M+ depends only on the grid
and on the weights. Therefore it can be calculated in advance. This
implies that a 6× k matrix must be stored for each vertex, cell, or face.

4.1 Divergence-free linear reconstruction

Since b1 + c2 = ∇ ·P in (5), we can require that

b1 + c2 = d = ∇ · u (16)

exactly, where the divergence is computed as in (2):

d =
1

|Ω|
∫

Ω

(∇ · u)dΩ =
1

|Ω|
k1∑

e=1

uele. (17)
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Let b1 = d/2 + b, c2 = d/2− b, and

P(r) = a +

[
b c1

b2 −b

]
r. (18)

Note that ∇ · P = 0; therefore P will be called the divergence-free part
of P. The reconstruction polynomial with specified divergence d can be
represented in the following way:

P(r) = P(r) +
d

2
r. (19)

The number of free parameters has dropped from six to five.
Each face e in the reconstruction stencil contributes the following

equation:

Ne ·P(re) = ue − 1

2
(Ne · r)d. (20)

The least squares solution is given by



a1

a2

b
c1

b2




= M+ ·







u1
...

uk


− 1

2




Nx,1x1 + Ny,1y1
...

Nx,kxk + Ny,kyk


 d


 , (21)

where M+ is the pseudo-inverse of the matrix M of system (20). We
substitute (17) in (21) in order to obtain



a1

a2

b
c1

b2




= M+ ·







u1
...

uk


− 1

2 |Ω|




Nx,1x1 + Ny,1y1
...

Nx,kxk + Ny,kyk




[
l1 . . . lk1

] ·




u1
...

uk1





 .

(22)
In this way faces used to specify the divergence d enter the reconstruction
stencil.

If at least five faces meet in a vertex, they impose enough conditions
to determine the solenoidal part of a vertex-based linear polynomial (see
Fig. 5 on the left and in the middle). However, if fewer than five faces
meet in some vertex, the stencil is enlarged as in Fig. 5 on the right (or
the order of interpolation must be lowered.
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Figure 5: Reconstruction stencils for the divergence-free vertex-based lin-
ear reconstruction.

5 Piecewise quadratic reconstruction

We postulate

u(r) ≈ P(r) = a + bx + cy + dx2 + exy + fy2. (23)

We have 12 free parameters. The stencils shown in Fig. 2 do not contain
enough information to determine these parameters, so we must enlarge
them. An example of an appropriate cell-based stencil is shown in Fig.
6.

0

Figure 6: Reconstruction stencil for cell-based quadratic reconstruction.
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Our primary velocity variables are not the normal velocities in the
face centers but their averages along these faces. For this reason, instead
of Ne ·P = ue we need to satisfy

1

le

∫

e

Ne ·Pdl = ue (24)

The average of a linear polynomial along a face is equal to the value
of the polynomial in the center of that face, and this is why condition (6)
was good enough in the linear case. In order to evaluate (24) we need
the averages of x2, xy and y2 over the faces. Face e is parameterized as
x = xe + tlx,e, y = ye + tly,e, t ∈ [−1/2, 1/2], where (lx,e, ly,e) is the vector
of face e and xe and ye are the coordinates of the face center. Then

1

le

∫

e

x2dl =
1

le

∫ 1
2

−1
2

(xe + tlx,e)
2ledt = x2

e +
l2x,e

12
,

1

le

∫

e

xydl = xeye +
lx,ely,e

12
, (25)

1

le

∫

e

y2dl = y2
e +

l2y,e

12
.

Each face e in the reconstruction stencil contributes with the following
equation:

Nx,ea1 + Ny,ea2 + Nx,exeb1 + Ny,exeb2 + Nx,eyec1 + Ny,eyec2 +

+Nx,e

(
x2

e +
l2x,e

12

)
d1 + Ny,e

(
x2

e +
l2x,e

12

)
d2 +

+Nx,e

(
xeye +

lx,ely,e

12

)
e1 + Ny,e

(
xeye +

lx,ely,e

12

)
e2 + (26)

+Nx,e

(
y2

e +
l2y,e

12

)
f1 + Ny,e

(
y2

e +
l2y,e

12

)
f2 = ue.

If the tangential vector component is given in this face, the appropriate
equation is obtained by replacing Ne by Te and ue by ut

e .
As in the linear case, we combat rounding errors by scaling by h, and

actually use r̃ instead of r in (23). Later we transform the coefficients of
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this scaled polynomial into the coefficients of the original one by dividing
the coefficients with linear terms by h and the coefficients with quadratic
terms by h2.

5.1 Divergence-free quadratic reconstruction

The divergence of a quadratic polynomial is a linear function

∇ ·P(r) = b1 + c2 + (2d1 + e2)x + (e1 + 2f2)y = α + βx + γy. (27)

It is required that ∇ · P(r) matches the divergence of the reconstructed
vector in at least three triangles as closely as possible in the least squares
sense. For example, if a cell-based quadratic polynomial is being calcu-
lated, then the divergence is calculated from the central and the three
surrounding triangles in Fig. 6. For each of these triangles the following
equation needs to be satisfied as closely as possible:

∫

Ω

(α + βx + γy)dΩ =
∑

e

uele, (28)

where the summation runs over the faces of triangle Ω. From these condi-
tions parameters α, β and γ are calculated. By substituting (27) in (23)
one obtains

Px(r) = a1 + (α/2 + b)x + c1y + d1x
2 + (γ − 2f2)xy + f1y

2

Py(r) = a2 + b2x + (α/2− b)y + d2x
2 + (β − 2d1)xy + f2y

2 (29)

When the system (24) is formed, terms containing α, β and γ are moved
to the right hand side, and the rest is calculated in analogy with the linear
case.

6 Piecewise cubic reconstruction

We consider cubic polynomials:

P(r) = a + bx + cy + dx2 + exy + fy2 + gx3 + hx2y + ixy2 + jx3. (30)
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Here we have 20 free parameters. The stencil is obtained by choosing
faces closest to the stencil center until the rank is 20 and all singular
values are sufficiently large. Typical stencil contains around 30 faces.

In the similar manner as before, we shall need the following integrals:

Ix3 =
1

le

∫

e

x3dl = x3
e + xe

l2x,e

4
,

Ix2y =
1

le

∫

e

x2ydl = x2
eye +

lx,e

12
(lx,eye + 2ly,exe),

Ixy2 =
1

le

∫

e

xy2dl = xey
2
e +

ly,e

12
(2lx,eye + ly,exe), (31)

Iy3 =
1

le

∫

e

y3dl = y3
e + ye

l2y,e

4
.

For each face e in the reconstruction stencil the following equation needs
to be satisfied as closely as possible in the least squares sense:

Nx,ea1 + Ny,ea2 + Nx,exeb1 + Ny,exeb2 + Nx,eyec1 + Ny,eyec2 +

+Nx,eIxxd1 + Ny,eIxxd2 + Nx,eIxye1 + Ny,eIxye2 + Nx,eIyyf1 + Ny,eIyyf2 +

+Nx,eIx3g1 + Ny,eIx3g2 + Nx,eIx2yh1 + Ny,eIx2yh2 + (32)

+Nx,eIxy2i1 + Ny,eIxy2i2 + Nx,eIy3j1 + Ny,eIy3j2 = ue,

where

Ixx = x2
e +

l2x,e

12
, Ixy = xeye +

lx,ely,e

12
, Iyy = y2

e +
l2y,e

12
. (33)

It is possible to make divergence-free cubic reconstruction in an anal-
ogous way to the linear and the quadratic case.

7 Conclusion

Several methods for reconstruction of staggered vector fields have been
presented, together with some difficulties that arise on unstructured grids.
Vertex-based divergence-free linear reconstruction has several advantages.
It leads to a smaller reconstruction stencil, and it requires roughly half
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the memory of the non-divergence-free linear reconstruction. It does not
need weights, thresholds or SVD whenever at least five faces meet in a
vertex or if the tangential velocity is prescribed in a sufficient number of
faces meeting in the central vertex.

Quadratic and cubic reconstruction require large reconstruction sten-
cils. It is difficult to determine in advance which faces need to enter the
reconstruction stencil, and the computer code must implement some sort
of a trial and error approach. It has been demonstrated in [8, 9] that
vertex-based divergence-free linear reconstruction is accurate enough to
obtain second-order accuracy when solving Navier-Stokes equations.
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Polinomijalna rekonstrukcija razdeljenih
nestruktuiranih vektorskih polja

Razmatra se polinomialna rekonstrukcija razdeljenih nestruktuiranih
vektorskih polja. Koeficijenti takvih polinoma se odreduju metodom na-
jmanjih kvadrata. Smanjenje ranga sistema najmanjih kvadrata uzroko-
vano preodredenjem divergencije može da dovede do teškoća. Ovo je
ispitano. Rank ovih sistema može biti još vǐse umanjen u zavisnosti od
geometrije mreže, ili oni mogu postati slabo uslovljeni. Predstavljene su
vodilje za rešavanje takvih linearnih sistema.
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