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Abstract

This paper concerns with unsteady two-dimensional temperature
laminar magnetohydrodynamic (MHD) boundary layer of incom-
pressible fluid. It is assumed that induction of outer magnetic field
is function of longitudinal coordinate with force lines perpendic-
ular to the body surface on which boundary layer forms. Outer
electric filed is neglected and magnetic Reynolds number is signif-
icantly lower then one i.e. considered problem is in induction-
less approximation. Characteristic properties of fluid are con-
stant because velocity of flow is much lower than speed of light
and temperature difference is small enough (under 50oC). Intro-
duced assumptions simplify considered problem in sake of math-
ematical solving, but adopted physical model is interesting from
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practical point of view, because its relation with large number
of technically significant MHD flows. Obtained partial differen-
tial equations can be solved with modern numerical methods for
every particular problem. Conclusions based on these solutions
are related only with specific temperature MHD boundary layer
problem. In this paper, quite different approach is used. First
new variables are introduced and then sets of similarity parame-
ters which transform equations on the form which don’t contain
inside and in corresponding boundary conditions characteristics of
particular problems and in that sense equations are considered as
universal. Obtained universal equations in appropriate approxi-
mation can be solved numerically once for all. So-called universal
solutions of equations can be used to carry out general conclusions
about temperature MHD boundary layer and for calculation of ar-
bitrary particular problems. To calculate any particular problem
it is necessary also to solve corresponding momentum equation.

Keywords: MHD, magnetic field, electroconductivity, tempera-
ture, similarity parameters, universal equations, Prandtl number,
Eckert number.

Nomenclature

B magnetic induction
cp specific heat capacity
D standardization constant
Ec Eckert number
F characteristic function, F = U∂z/∂t
fk,n dynamical parameters
g time derivate of characteristic function z
gk,n magnetic parameters
h characteristic linear scale of transversal coordinate
H characteristic function, H = δ∗/δ∗∗

H∗ characteristic function, H = δ∗/h
H∗∗ characteristic function, H = δ∗∗/h
lk,n temperature parameters
N characteristic function, N = σB2/ρ
Pr Prandtl number
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q temperature difference between body surface and outer flow
t time
T thermodynamic temperature
u, v longitudinal and transversal velocity in boundary layer respectively
U velocity on outer border of boundary layer
x, y longitudinal and transversal coordinate respectively
z characteristic function, z = h2/ν

Greek symbols

δ∗ extrusion thickness
δ∗∗ thickness of impulse loss
Φ dimensionless stream function
η dimensionless transversal coordinate
λ thermal conductivity
µ viscosity
ν kinematic viscosity
Θ dimensionless temperature difference
ρ fluid density
σ conductivity
τ shear stress
Ψ stream function
ξ characteristic function, ξ = τwh/(µU)

Subscripts

0 initial time moment
1 known boundary layer cross-section
∞ outer boundary of boundary layer
w body surface

1 Introduction

Idea of boundary layer control appear when Prandtl form the theory, and
this idea came from Prandtl [1] himself. Here control mean, position
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of boundary layer separation point control. For a long time following
methods was used for boundary layer control: admit the body motion
in streamwise direction, increasing the boundary layer velocity, boundary
layer suction, second gas injection, profile laminarization, body cooling.

Interest in effect of outer magnetic filed on heat-physical processes ap-
pear fifty years ago [2]. Developing of this research was stimulated by two
problems: protection of spacecrafts from aerodynamic overheating and
destruction during the passage trough dense atmosphere layers; building
the operational ability of high temperature MHD generators constructive
elements for direct transformation of heat energy in to electric. First
problem show that magnetohydrodynamical influence on ionized gases is
convenient control method for mass, heat and hydrodynamic processes.
Solutions of mentioned problems were followed with rapid increase of an-
alytical papers and experimental procedures about heat transfer in MHD
boundary layer [3], [4].

MHD research was connected gradually with new applied problems.
MHD devices for liquid metals engage metallurgist attention. It was
shown that effect of magnetic filed could be very helpful in moderniza-
tion of technological processes. Developing of nuclear power systems is
almost unconceivable without usage of MHD devices. It is determined
that magnetic field can have significantly influence on different chemical-
technology processes. Controlling of crystallization processes in metal-
lurgy and influence of magnetic field on discrete chemical systems bring
magnetohydrodynamics and heat physics in relation with problems that
was research subject in other science (physical chemistry, kinetics, bio-
physics. . . ). At the end, analogies, which appear with knowledge of mag-
netic field influence on mechanics and biological suspensions (especially
blood), brought to possibility to transfer heat physics research results into
magneto-biological and medical processes [5].

2 Mathematical model

As mentioned in introduction, in this paper, unsteady temperature two-
dimensional laminar MHD boundary layer of incompressible neutral fluid
is studied.
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Outer magnetic field is still in relation to fluid in outer flow. It is
assumed that outer magnetic filed induction is function of longitudinal
coordinate with force lines perpendicular to the body surface on which
boundary layer forms. Further on it is presumed there is no outer elec-
tric filed and magnetic Reynolds number is significantly lower then one
i.e. considered problem is in induction-less approximation. Velocity of
flow is considered much lower then speed of light and usual assumption
in temperature boundary layer calculation that temperature difference is
small (under 50oC) is used, accordingly characteristic properties of fluid
are constant (viscosity, heat conduction, electro-conductivity, magnetic
permeability, mass heat capacity . . . ). Introduced assumptions simplify
considered problem, however obtained physical model is interesting from
practical point of view, because its relation with large number of MHD
flows significant for technical practice. Of course, all introduced assump-
tions are related with simplified mathematical model, which can be solved.

Described two-dimensional problem of MHD unsteady temperature
boundary layer in inductioneless approximation is mathematically pre-
sented with continuity equation:

∂u

∂x
+

∂v

∂y
= 0; (1)

moment equation:

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
=

∂U

∂t
+ U

∂U

∂x
+ ν

∂2u

∂y2
− σB2

ρ
(u− U) ; (2)

energy equation:

∂T

∂t
+ u

∂T

∂x
+ v

∂T

∂y
=

λ

ρ cp

∂2T

∂y2
+

µ

ρ cp

(
∂u

∂y

)2

+
σB2

ρ cp

(u− U)2 ; (3)

and corresponding boundary and initial conditions:

u = 0 , v = 0, T = Tw (x, t) for y = 0; (4)

u → U (x, t) , T → T∞ for y →∞; (5)

u = u0(x, y) , T = T0 (x, y) for t = t0; (6)
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u = u1(t, y) , T = T1 (t, y) for x = x0. (7)

In previous equations and initial and boundary conditions the param-
eter labeling used is common for the theory of MHD boundary layer.

For further consideration stream function, Ψ (x, y, t) is introduced
with following relations:

∂Ψ

∂x
= −v ,

∂Ψ

∂y
= u; (8)

which satisfies equation (1) identically and transform moment equation
(2) into equation:

∂2Ψ

∂t∂y
+

∂Ψ

∂y

∂2Ψ

∂x∂y
−∂Ψ

∂x

∂2Ψ

∂y2
=

∂U

∂t
+U

∂U

∂x
+ν

∂3Ψ

∂y3
−σB2

ρ

(
∂Ψ

∂y
− U

)
; (9)

and energy equation into equation:

∂T

∂t
+

∂Ψ

∂y

∂T

∂x
− ∂Ψ

∂x

∂T

∂y
=

λ

ρ cp

∂2T

∂y2
+

µ

ρ cp

(
∂2Ψ

∂y2

)2

+
σB2

ρ cp

(
∂Ψ

∂y
− U

)
.

(10)
Boundary and initial conditions are transformed into equations:

Ψ = 0,
∂Ψ

∂y
= 0; T = Tw(x, t) for y = 0; (11)

∂Ψ

∂y
→ U (x, t) ; T → T∞ for y →∞; (12)

∂Ψ

∂y
= u0(x, y) , T = T0 (x, y) for t = t0; (13)

∂Ψ

∂y
= u1(t, y) , T = T1 (t, y) for x = x0. (14)

Equation (9) does not depend from equation (10) and it can be solved
independently. Solution of equation (9) is used for solving of equation
(10).
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3 Universal equations

Obtained partial differential equations (1), (2), (3) can be solved for every
particular case using modern numerical methods and computer. In this
paper, quite different approach is used based on ideas in papers [6,7,8]
which is extended in papers [9,10,11]. Essence of this approach is in
introducing adequate transformations and sets of parameters in start-
ing equations of laminar two-dimensional unsteady temperature MHD
boundary layer of incompressible fluid, which transform the equations
system and corresponding boundary conditions into form unique for all
particular problems and this form is considered as universal. Solution
of universal equations obtained using modern numerical methods, can
be on convenient wave saved and used for general conclusions derivation
about developing of described temperature MHD boundary layer and for
boundary layer calculation of observed problem special cases. Integra-
tion of obtained universal equations is performed once for all. In order to
solve particular problems it is necessary to determine impulse equation
using obtained universal solutions. In this paper, universal equations of
described problem are given and numerical solving is subject of future
research.

In order to realize described procedure following new variables are
introduced:

x = x, t = t, η =
Dy

h (x, t)
, Φ (x, t, η) =

DΨ (x, y, t)

U (x, t) h (x, t)
,

Θ (x, t, η) =
Tw − T

Tw − T∞
(15)

where D is normalizing constant, and h (x, t) is characteristic linear scale
of transversal coordinate in boundary layer. According to introduced
variables, equation (9) is transformed in new form:

D2∂3Φ

∂η3
+ f1,0

(
Φ

∂2Φ

∂η2
−

(
∂Φ

∂η

)2

+ 1

)
+ (f0,1 + g1,0)

(
1− ∂Φ

∂η

)
+

1

2
(FΦ + ηg)

∂2Φ

∂η2
= z

∂2Φ

∂t∂η
+ UzX(η; x) (16)
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where for the sake of shorter expression, the notations are introduced:

z =
h2

ν
; g =

∂z

∂t
; N =

σB2

ρ
; g1,0 = Nz; F = U

∂z

∂x
;

f1,0 = z
∂U

∂x
; f0,1 =

z

U

∂U

∂t
; (17)

X (x1; x2) =
∂Φ

∂x1

∂2Φ

∂η∂x2

− ∂Φ

∂x2

∂2Φ

∂x1∂η
;

and equation (10) now have the form:

D2

Pr

∂2Θ

∂η2
−D2Ec

(
∂2Φ

∂η2

)2

− Ecg1,0

(
1− ∂Φ

∂η

)2

+

(1−Θ)

(
l0,1 + l1,0

∂Φ

∂η

)
+

1

2
ηg

∂Θ

∂η
+ (18)

1

2
(F + 2f1,0) Φ

∂Θ

∂η
= z

∂Θ

∂t
− UzY (x; η)

where the following notations have been used for the sake of shorter state-
ment:

Pr =
νρcp

λ
− Prandtl number

Ec =
U2

cp (Tw − T∞)
− Eckert number

l0,1 =
z

Tw − T∞

∂Tw

∂t
; l1,0 =

Uz

Tw − T∞

∂Tw

∂x
,

Y (x1; x2) =
∂Φ

∂x1

∂Θ

∂x2

− ∂Φ

∂x2

∂Θ

∂x1

. (19)

Now we introduce sets of parameters: dynamical

fk,n = Uk−1 ∂k+nU

∂xk∂tn
zk+n(k, n = 0, 1, 2, ...; k ∨ n 6= 0); (20)

magnetic

gk,n = Uk−1 ∂k−1+nN

∂xk−1∂tn
zk+n(k, n = 0, 1, 2, ..., ; k 6= 0); (21)
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temperature

lk,n =
Uk

q

∂k+nq

∂xk∂tn
zk+n , (k, n = 0, 1, 2, ...; k ∨ n 6= 0), (22)

where
q = Tw − T∞; (23)

and constant parameter:

g =
∂z

∂t
= const. (24)

which can have different values. It can be noticed that first parameters
are given in the Eqs. (17) and (19). Introduced sets of parameters reflect
the nature of velocity change on outer edge of boundary layer, alteration
characteristic of variable N and temperature change on body surface,
and a part from that, in the integral form (by means of z and ∂z/∂t)
pre-history of flow in boundary layer. Introduced sets of parameters en-
able transformations of differential equations (16) and (18) into universal
form in sense that neither equations nor boundary conditions explicitly
depends from values that characterized particular problems.

Procedure for obtaining “universal” equations has following steps.
First, we find the derivates in Eqs. (16) and (18) using the operators
given in equations (25)-(26), and then we transform this Eqs. with intro-
duced independent variables η; fk,n; gk,n; lk,n.

For derivate along longitudinal coordinate x we used operator:

∂

∂x
=

∞∑

k,n=0

k∨n 6=0


∂fk,n

∂x

∂

∂fk,n

+





0, for Eq. (16)
∂lk,n

∂x

∂

∂lk,n

, for Eq. (18)


 +

∞∑

k=1
n=0

∂gk,n

∂x

∂

∂gk,n

; (25)

and for time derivate operator:

∂

∂t
=

∞∑

k,n=0

k∨n6=0


∂fk,n

∂t

∂

∂fk,n

+





0, for Eq. (16)
∂lk,n

∂t

∂

∂lk,n

, for Eq. (18)


 +
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∞∑

k=1
n=0

∂gk,n

∂t

∂

∂gk,n

; (26)

Parameter derivates along coordinate x and time t are obtained by dif-
ferentiation of Eqs. (20)-(22):

∂fk,n

∂x
=

1

Uz
{ [(k − 1) f1,0 + (k + n) F ] fk,n + fk+1,n} =

1

Uz
Qk,n; (27)

∂fk,n

∂t
=

1

z
{ [(k − 1) f0,1 + (k + n) g] fk,n + fk,n+1} =

1

z
Ek,n; (28)

∂gk,n

∂x
=

1

Uz
{ [(k − 1) f1,0 + (k + n) F ] gk,n + gk+1,n} =

1

Uz
Kk,n; (29)

∂gk,n

∂t
=

1

z
{ [(k − 1) f0,1 + (k + n) g] gk,n + gk,n+1} =

1

z
Lk,n; (30)

∂lk,n

∂x
=

1

Uz
{ [(k − 1) l1,0 + (k + n) F ] lk,n + lk+1,n} =

1

Uz
Mk,n; (31)

∂lk,n

∂t
=

1

z
{ [(k − 1) l0,1 + (k + n) g] lk,n + lk,n+1} =

1

z
Nk,n; (32)

where Qk,n; Ek,n; Kk,n; Lk,n; Mk,n; Nk,n are terms in curly brackets in ob-
tained equations. It is important to notice Qk,n; Kk,n; Mk,n beside the
parameters depend on value U∂z/∂x = F . Using Eqs. (20)-(22) and
(24), operators (25) and (26), terms (27)-(32) Eqs. (16) and (18) are
transformed into equations:

=1 =
∞∑

k,n=0

k∨n6=0

[
Qk,nX (η; fk,n) + Ek,n

∂2Φ

∂η∂fk,n

]
+

∞∑

k=1
n=0

[
Lk,n

∂2Φ

∂η∂gk,n

+ Kk,nX (η; gk,n)

]
; (33)

=2 =
∞∑

k,n=0

k∨n6=0

[
Qk,nY (η; fk,n) + Ek

∂Θ

∂fk,n

+ Nk,n
∂Θ

∂lk,n

+ Mk,nY (η; lk,n)

]
+
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∞∑

k=1
n=0

[
Lk,n

∂Θ

∂gk,n

+ Kk,nY (η; gk,n)

]
, (34)

where the following markings have been used for shorter statement:=1-
left side of first equation of system (16), =2- left side of equation (18). In
order to make Eqs. (33) and (34) universal it is necessary to show that
value F which appear in terms for Qk,n; Kk,n; Mk,n can be expressed by
means of introduced parameters. In order to prove mentioned we start
from impulse equation of described problem:

∂

∂t
(Uδ∗) +

∂

∂x

(
U2δ∗∗

)
+ U

(
∂U

∂x
+ N

)
δ∗ − τw

ρ
= 0, (35)

in which:

δ∗ (x, t) =

∞∫

0

(
1− u

U

)
dy extrusion thickness (36)

δ∗∗ (x, t) =

∞∫

0

u

U

(
1− u

U

)
dy thicknes of impulse loss (37)

and

τw (x, t) = µ

(
∂u

∂y

)

y=0

friction stress on the body. (38)

Introducing dimensionless characteristic functions:

H∗ (x, t) =
δ∗

h
; H∗∗ (x, t) =

δ∗∗

h
; ξ (x, t) =

τwh

µU
(39)

which, according to Eqs. (14) and (36)-(38), can be expressed in the
following form:

H∗ (x, t) =
1

D

∞∫

0

(
1− ∂Φ

∂η

)
dη, H∗∗ (x, t) =

1

D

∞∫

0

∂Φ

∂η

(
1− ∂Φ

∂η

)
dη,

ξ (x, t) = D
∂2Φ

∂η2

∣∣∣∣
η=0

; (40)
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and after transition to new independent variables (introduced parameters)
in terms (40) values H∗, H∗∗, ξ become functions only from parameters
fk,n, gk,n, lk,n, g. Now, using parameters (20), (21) and (22) as new
independent variables and derivative operators (25), (26) from impulse
Eq. (35) after simple transformation next equation is obtained:

F =
P

Q
(41)

where, for the sake of shorter expression following marks are used:

P = ξ − f1,0 (2H∗∗ + H∗)−
(

f0,1 + g1,0 +
1

2
g

)
H∗−

∞∑

k,n=0

k∨n 6=0

{
Ek,n

∂H∗

∂fk,n

+ [(k − 1) f1,0fk,n + fk+1,n]
∂H∗∗

∂fk,n

}
−

∞∑

k=1
n=0

{
Lk,n

∂H∗

∂gk,n

+ [(k − 1) f1,0gk,n + gk+1,n]
∂H∗∗

∂gk,n

}
; (42)

Q =
1

2
H∗∗ +

∞∑

k,n=0

k∨n6=0

(k + n) fk,n
∂H∗∗

∂fk,n

+
∞∑

k=1
n=0

(k + n) gk,n
∂H∗∗

∂gk,n

. (43)

Last two equations define function F in terms of values, which depends
only from introduced parameters. Eqs. (33) and (34) are now universal
equations of described problem. Boundary conditions, also universal, are
given with terms:

Φ = 0,
∂Φ

∂η
= 0, Θ = 0 for η = 0 (44)

Φ → 1, Θ → 1 for η →∞ (45)

Φ = Φ0 (η) , Θ = Θ0 (η) for



fk,n = 0, lk,n = 0 (k, n = 0, 1, 2, ...k ∨ n 6= 0)
gk,n = 0 (k, n = 0, 1, 2, ..., k 6= 0)
g = 0



 (46)



Universal equations of unsteady two-dimensional MHD... 131

where Φ0 (η)-Blasius solution for stationary boundary layer on the plate,
Θ0 (η) is solution of following equation:

D2

Pr

d2Θ0

dη2
−D2Ec

(
d2Φ0

dη2

)2

+
ξ0

H∗∗Φ0
dΘ0

dη
= 0. (47)

Universal Eqs. (33) and (34) with boundary conditions (44)-(46) are
strictly for wide class of problems in which z = At+C (x), where A is ar-
bitrary constant and C (x) some function of longitudinal coordinate. For
other problems this equations are approximated “universal” equations.

Eqs.(33) and (34) are integrated in m-parametric approximation once
for good and all. Obtained characteristic function can be used to yield
general conclusions about development of described boundary layer and
to solve any particular problem.

Before integration for scale of transversal coordinate in boundary layer
h (x, t) some characteristic value is chosen. In this case h = δ∗∗ and
accordingly to Eq. (39) H∗∗ = 1, H∗ = δ∗/δ∗∗ = H, and equality (40)
now have form:

F = 2

[
ξ − f1,0 (2 + H)−

(
f0,1 + g1,0 +

1

2
g

)
H−

∞∑

k,n=0

k∨n 6=0

Ek,n
∂H

∂fk,n

−
∞∑

k=1
n=0

Lk,n
∂H

∂gk,n


 (48)

Taking parameters fk,n = 0, gk,n = 0, g = 0 Eq. (33) is simplified into
form:

d3Φ0

dη3
+

ξ0

D2
Φ0

d2Φ0

dη2
= 0 (49)

and if D2 = ξ0 then previous Eq. became well-known Blasius equation.
According to previous statement for normalizing constant D value 0,47
must be chosen. For selected value h Eq. (47) for determining variable
Θ0 became:

1

Pr

d2Θ0

dη2
+ Φ0

dΘ0

dη
− Ec

(
d2Φ0

dη2

)2

= 0. (50)
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In this paper adequate approximations of Eqs. (33) and (34) are given
in which influence of parameters f1,0, f0,1, g1,0, l1,0, l0,1 and g are detained
and influence of parameters f0,1, l1,0, l0,1 derivatives are disregarded. In
this way Eq. (33) is simplified into following form:

=1 = Ff1,0X (η; f1,0)+gf1,0
∂2Φ

∂η∂f1,0

+Fg1,0X (η; g1,0)+gg1,0
∂2Φ

∂η∂g1,0

(51)

and function F is obtained from Eq. (48) in same approximation:

F = 2

[
ξ − f1,0 (2 + H)−

(
f0,1 + g1,0 +

1

2
g

)
H − gf1,0

∂H

∂f1,0

− gg1,0
∂H

∂g1,0

]
.

(52)
Eq.(50) is four-parametric once localized approximation of Eq. (33).
Eq.(34) is simplified into form:

=2 = Ff1,0Y (η; f1,0) + gf1,0
∂Θ

∂f1,0

+ Fg1,0Y (η; g1,0) + gg1,0
∂Θ

∂g1,0

(53)

where function F is given with Eq. (52). Last equation is six-parametric
three times localized approximation of Eq. (34).

Boundary conditions which coincide to Eqs. (51) and (52) are condi-
tions (44), (45) and condition:

Φ = Φ0 (η) , Θ = Θ0 (η) for f1,0 = 0, f0,1 = 0,

g1,0 = 0, l1,0 = 0, l0,1 = 0 and g = 0 (54)

which is obtained from condition (46), using same simplifications like as
equations.

Universal equations (51) and (53) need to be solved with correspond-
ing boundary conditions (44), (45) and (54) using three-diagonal method,
known in Russian literature as the “progonka” method. Obtained uni-
versal solutions can be saved and then used for general conclusions about
boundary layer development and also for calculations for every particular
problem.

As we early mentioned numerical solving of universal equations will
be subject of future research of authors.
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4 Conclusion

In this paper unsteady two-dimensional MHD boundary layer whose tem-
perature varies with time is considered. This problem can be analyzed
for every particular case i.e. for given outer flow characteristics. Here is
used quite different approach in order to use benefits of multi-parametric
method and universal equations of observed problem are derived. These
equations in some approximation are solved once for all. Approximation
is in relation with taking into account definite number of parameters,
which is in direct connection with available computer memory. Some ap-
proximated equations are given in paper. Solving of these equations is
subject of future research.
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[7] L.G.Lojcjanskij, Universal equations and parametric approximations
in the theory of laminar boundary layer (in Russian), PMM (Applied
mathematics and mechanics) Vol. 29, (1965) 70-87

[8] Saljnikov, V. N., 1978, A Contribution to Universal Solutions of the
Boundary Layer Theory, Theoretical and Applied Mechanics 4, pp.
139 - 163.

[9] O.N.Bushmarin and Yu.V.Sarajev, Parametrical method in the the-
ory of nonstationary boundary layer, Journal of engineering and
phyasics (Inz-fiz zurnal), Vol. XXVII, No. 1, (1974) 110-118.
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Univerzalne jednačine nestacionarnog
dvodimenzijskog MHD graničnog sloja na telu duž

koga se temperature menja tokom vremena

U ovom radu se razmatra nestacionarni temperaturski dvodimenzionalni
magnetnohidrodinamički (MHD) laminarni granični sloj nestǐsljivog neu-
tralnog fluida. Pretpostavlja se da je indukcija spoljašnjeg magnetnog
polja funkcija samo uzdužne koordiante sa linijama sila upravnim na površ
tela na kome se formira granični sloj. Dalje se pretpostavlja da spoljašnje
električno polje ne postoji i da je vrednost magnetnog Rejnoldsovog broja
značajno manja od jedinice tj. Razmatra se problem u tzv. Bezinduk-
cionoj aproksimaciji. Osim toga, smatra se da su brzine strujanja mnogo
manje od brzine svetlosti, i da su razlike temperature dovoljno male (is-
pod 50oC), odnosno da su karakteristične veličine fizičkih svojstava flu-
ida konstantne. Iako učinjene pretpostavke značajno uprošćavaju raz-
matrani problem, tako da se može matematički rešavati, usvojeni fizički
model strujanja je interesantan i sa praktične tačke gledǐsta, jer se odnosi
na veliki broj magnetnohidrodinamičkih strujanja od tehničkog značaja.
U radu dobijene parcijalne diferencijalne jednačine mogu se u svakom
konkretnom slučaju rešiti korǐsćenjem savremenih numeričkih metoda i
računara. Zaključci donešeni na osnovu ovakvih rešenja odnose se samo
na konkretni problem temperaturskog MHD graničnog sloja. U ovom
radu se koristi sasvim drugačiji pristup. Uvode se nove promenljive, a
zatim i skupovi parametara sličnosti i tako jednačine svode na oblike
koji u sebi i odgovarajućim graničnim uslovima ne sadrže karakteristike
konkretnih problema i u tom smislu ih smatramo univerzalnim. Dobijene
univerzalne jednačine, u odgovarajućoj aproksimaciji, mogu se numerički
rešiti jedared za svagda. Na ovaj način dobijena tzv. univerzalna rešenja
mogu se koristiti za donošenje generalnih zaključaka o temperaturskom
MHD graničnom sloju, a i za proračune konkretnih problema temper-
aturskog graničnog sloja. Za proračune konkretnih problema potrebno je
još rešiti samo odgovarajuću impulsnu jednačinu.
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