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Abstract

We present a survey on some recent results concerning the differ-
ent models of a mixture of compressible fluids. In particular we
discuss the most realistic case of a mixture when each constituent
has its own temperature (MT ) and we first compare the solutions
of this model with the one with a unique common temperature
(ST ). In the case of Eulerian fluids it will be shown that the cor-
responding (ST ) differential system is a principal subsystem of the
(MT ) one. Global behavior of smooth solutions for large time for
both systems will also be discussed through the application of the
Shizuta-Kawashima condition.

Then we introduce the concept of the average temperature of
mixture based upon the consideration that the internal energy of
the mixture is the same as in the case of a single-temperature
mixture. As a consequence, it is shown that the entropy of the
mixture reaches a local maximum in equilibrium. Through the
procedure of Maxwellian iteration a new constitutive equation for
non-equilibrium temperatures of constituents is obtained in a clas-
sical limit, together with the Fick’s law for the diffusion flux.

Finally, to justify the Maxwellian iteration, we present for dis-
sipative fluids a possible approach of a classical theory of mixture
with multi-temperature and we prove that the differences of tem-
peratures between the constituents imply the existence of a new
dynamical pressure even if the fluids have a zero bulk viscosity.
Keywords: Multi-temperature mixture of fluids; Maxwellian it-
eration; dynamical pressure; non-equilibrium thermodynamics.
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1 Mixtures in rational thermodynamics

In the context of rational thermodynamics, the description of a homo-
geneous mixture of n constituents is based on the postulate that each
constituent obeys to the same balance laws that a single fluid does [1],
[2]. The laws express the equations of balance of masses, momenta and
energies





∂ρα

∂t
+ div (ραvα) = τα,

∂(ραvα)

∂t
+ div (ραvα ⊗ vα − tα) = mα, (α = 1, 2, . . . , n)

∂
(

1
2
ραv2

α + ραεα

)

∂t

+div
{(

1
2
ραv2

α + ραεα

)
vα − tαvα + qα

}
= eα.

(1)

On the left hand side, ρα is the density, vα is the velocity, εα is the internal
energy, qα is the heat flux and tα is the stress tensor of the constituent α.
The stress tensor tα can be decomposed into a pressure part −pαI and a
viscous part σα as

tα = −pαI + σα.

On the right hand sides τα, mα and eα represent the production terms
related to the interactions between constituents. Due to the total con-
servation of mass, momentum and energy of the mixture, the sum of
production terms over all constituents must vanish

n∑
α=1

τα = 0,
n∑

α=1

mα = 0,

n∑
α=1

eα = 0.
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Mixture quantities ρ,v, ε, t and q are defined as

ρ =
n∑

α=1

ρα total mass density,

v =
1

ρ

n∑
α=1

ραvα mixture velocity,

ε = εI +
1

2ρ

n∑
α=1

ραu2
α internal energy,

(
εI = 1

ρ

∑n
α=1 ραεα

)

t = −pI+σI −
n∑

α=1

(ραuα ⊗ uα) stress tensor,

q = qI +
n∑

α=1

ρα

(
εα +

pα

ρα

+
1

2
u2

α

)
uα flux of internal energy,

(2)

where uα = vα − v is the diffusion velocity of the component α, p =∑n
α=1 pα is the total pressure, εI is the total intrinsic internal energy,

qI =
∑n

α=1 qα is the total intrinsic heat flux and σI =
∑n

α=1 σα is the
total intrinsic shear stress. We obtain by summation of Eqs. (1),





∂ρ

∂t
+ div (ρv) = 0,

∂(ρv)

∂t
+ div (ρv ⊗ v − t) = 0,

∂
(

1
2
ρv2 + ρε

)

∂t
+ div

{(
1

2
ρv2 + ρε

)
v − tv + q

}
= 0,

that are the conservation laws of mass, momentum and energy of the
mixture. They are in the same form as for a single fluid.
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In order to compare the balance equations of mixture and single fluid, we
write Eqs. (1) in the equivalent form,





∂ρ

∂t
+ div (ρv) = 0,

∂(ρv)

∂t
+ div (ρv ⊗ v − t) = 0,

∂
(

1
2
ρv2 + ρε

)

∂t

+div
{(

1
2
ρv2 + ρε

)
v − tv + q

}
= 0,

∂ρb

∂t
+ div (ρbvb) = τb, (b = 1, . . . , n− 1)

∂(ρbvb)

∂t
+ div (ρbvb ⊗ vb − tb) = mb,

∂
(

1
2
ρbv

2
b + ρbεb

)

∂t

+div
{(

1
2
ρbv

2
b + ρbεb

)
vb − tbvb + qb

}
= eb,

(3)

where the index b runs from 1 to n− 1.
In this multi-temperature model (MT ), used in particular in plasma

physics [3], we have 5n independent field variables ρα, vα and Tα (α =
1, 2, . . . , n), where Tα is the temperature of constituent α. To close the
system (3) of the field equations of the mixture process, we must write
the constitutive equations for the quantities pα, εα,qα, σα (α = 1, 2, . . . , n)
and τb, mb, eb (b = 1, . . . , n−1) in terms of the field variables ρα,vα and
Tα (α = 1, 2, . . . , n).

1.1 Galilean invariance of field equations

The system (3) is a particular case of the balance law one:

∂tF
0 + ∂iF

i = F, (4)
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where F0 (densities), Fi (fluxes) and F (productions) are N−vectors func-
tions of the field variables and ∂t = ∂/∂t, ∂i = ∂/∂xi. It is convenient
to divide field variables into a pair u = (w,v), v being the velocity field
and w objective quantities. Moreover, the non-convective fluxes can be
defined as Gi = Fi − F0vi, thus putting equation (4) in the form:

∂tF
0 + ∂i(F

0vi + Gi) = F. (5)

Principle of relativity requires that field equations are invariant with re-
spect to Galilean transformations:

x 7→ x∗ − ct∗; t 7→ t∗; v 7→ v∗ − c, for any constant velocity c,

i.e. the system (5) has the same form in the new frame:

∂t∗F
0(w,v∗) + ∂i∗(F0(w,v∗)vi∗ + Gi(w,v∗)) = F(w,v∗).

As a consequence, (see Ruggeri [4]), there exists a linear operator X(v)
such that :

F0(w,v) = X(v)F̂0(w);

Gi(w,v) = X(v)Ĝi(w);

F(w,v) = X(v)F̂(w),

where:

F̂0(w) = F0(w,0); Ĝi(w) = Gi(w,0); F̂(w) = F(w,0),

are objective ”internal” densities, fluxes and productions, while X(v) has
the following properties:

X(a + b) = X(a)X(b) = X(b)X(a); X(0) = I,

i.e.

X(v) = eArvr

with Ar constant (3×3) matrix such that ArAs = AsAr, (r, s = 1, 2, 3).
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In the case of a mixture, the Galilean invariance dictates the velocity
dependence in the source terms [5]:

τb = τ̂b;

mb = τ̂bv + m̂b; (b = 1, . . . , n− 1) (6)

eb = τ̂b
v2

2
+ m̂b · v + êb,

where τ̂b, m̂b and êb are independent of v.

1.2 The entropy principle and its restrictions

Another important restriction comes from the entropy inequality, i.e.
there exists a supplementary balance law of entropy with an entropy
production non negative::

∂tρS + ∂i(ρSvi + ϕi) = Σ ≥ 0,

where ρS =
∑n

α=1 ραSα, ϕi and Σ are the entropy density, the non-
convective entropy flux and the entropy production, respectively. For
example in the case of a mixture of Eulerian fluids, the entropy production
becomes [5]:

Σ =
n−1∑

b=1

(
µn − 1

2
u2

n

Tn

− µb − 1
2
u2

b

Tb

)
τ̂b

+

(
un

Tn

− ub

Tb

)
· m̂b +

(
1

Tb

− 1

Tn

)
êb ≥ 0. (7)

This inequality allows to obtain the following structure of production
terms.

The internal parts of production terms (6) are chosen in such a way
that the residual inequality (7) is actually a quadratic form. In particular
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in agreement with kinetic theory, we obtain:

τ̂b =
n−1∑
c=1

ϕbc

(
µn − 1

2
u2

n

Tn

− µc − 1
2
u2

c

Tc

)
+

n−1∑
c=1

gbc

(
1

Tc

− 1

Tn

)
;

m̂b =
n−1∑
c=1

ψbc

(
un

Tn

− uc

Tc

)
; (8)

êb =
n−1∑
c=1

θbc

(
1

Tc

− 1

Tn

)
+

n−1∑
c=1

gbc

(
µn − 1

2
u2

n

Tn

− µc − 1
2
u2

c

Tc

)
,

where:

µα = εα − TαSα +
pα

ρα

(α = 1, . . . , n), are the chemical potentials of the constituents and

[
ϕbc gbc

gbc θbc

]
, ψbc

are phenomenological symmetric positive definite matrices (b, c = 1, . . . , n−
1). In the sequel, our analysis will be restricted to a model of non-reacting
mixtures, for which τb = 0.

2 Coarser theories: single temperature model

and classic mixture

Due to the difficulties to measure the temperature of each component, a
common practice among engineers and physicists is to consider only one
temperature for the mixture. When we use a single temperature (ST ),
Eq. (3)6 disappears and we get a unique global conservation of the total
energy in the form (3)3 (see for example [2]).

A further step of coarsening theory is the classical approach of mix-
tures (CT ), in which the independent field variables are the density, the
mixture velocity, the individual temperature of the mixture and the con-
centrations of constituents. In that case system (3) reduces to the equa-
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tions 



dρ

dt
+ ρ div v = 0,

ρ
dv

dt
− divt = 0,

ρ
dε

dt
− t gradv + div q = 0,

ρ
dcb

dt
+ div Jb = 0, (b = 1, · · ·n− 1),

(9)

where
d

dt
=

∂

∂t
+ v· ∂

∂x

represents the material derivative of the mixture motion

cα =
ρα

ρ
,

(
n∑

α=1

cα = 1

)

are the components concentrations, and

Jα = ραuα = ρα (vα − v) ,

(
n∑

α=1

Jα = 0

)

are the diffusion fluxes of the components.
In the classical approach the stress tensor - as in a single fluid - splits
up into the pressure isotropic part and the viscosity stress tensor σ (for
Stokesian fluids this is a deviatoric tensor)

t = −pI + σ.

The system (9) determines the field variables ρ, T,v and cb (b = 1, · · ·n−
1). Consequently, we need constitutive relations for ε, σ,q and Jb (b =
1, · · ·n− 1).
We consider the pressure p(ρ, T, cb) and the internal energy ε(ρ, T, cb) as
given by the equilibrium equations of state as they appear in the Gibbs
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equations for mixture, viz.

TdS = dε− p

ρ2
dρ−

n−1∑

b=1

(µb − µn) dcb (10)

where µα = µα(ρ, T, cb), with α = 1, · · · , n, denote the chemical potentials
of components at equilibrium and S is the entropy density of the mixture.
The entropy balance law is a consequence of equation (10) and system
(9). For dissipative fluids, by using arguments of the thermodynamics of
irreversible processes (TIP) presented in [6] and [2] chapter 5, we obtain
the classical constitutive equations of mixtures

σ = λ (div v) I + 2 ν DD,

q = L grad

(
1

T

)
+

n−1∑

b=1

Lb grad

(
µb − µn

T

)
, (11)

Ja = L̃a grad

(
1

T

)
−

n−1∑

b=1

Lab grad

(
µb − µn

T

)

where DD denotes the deviatoric part of the strain velocity tensor D =
1
2

(∇v + (∇v)T
)
. The phenomenological coefficients L, Lb, L̃a and Lab (a, b =

1, · · · , n− 1) are the transport coefficients of heat conduction and diffu-
sion.
Let us note that relation (11)1 are the classical Navier-Stokes equations of
a Newtonian (Stokesian and isotropic) fluid, while (11)2,3 are generaliza-
tions of the original phenomenological laws of Fourier and Fick according
to which the heat flux and the diffusion flux depend on the gradients
of temperature and concentrations respectively (but not on both). TIP
permits the temperature gradient to influence the diffusion fluxes and
concentration gradients to influence the heat flux; both effects are in-
deed observed and they are called respectively thermo-diffusion effect and
diffusion-thermo effect or Soret effect. Additively, the Onsager conditions
of symmetry yield the following symmetries of coefficients [7]

Lab = Lba , L̃b = Lb (a, b = 1, · · · , n− 1)
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and the following inequalities must be satisfied
[

L Lb

L̃a Lab

]
is a positive definite form

(12)

and ν ≥ 0,

such that the entropy inequality can be satisfied.

3 Euler fluids and comparison between MT

and ST models

First we consider the case in which all the constituents of the mixture are
Eulerian fluids, i.e. neither viscous nor heat-conducting, i.e.:

tα = −pαI, qα = 0 ; (α = 1, . . . , n).

3.1 Symmetric hyperbolic system and principal sub-
systems

For a generic hyperbolic system (4), when the entropy density h0 = −ρS
is a convex function of u ≡ F0, it is possible to prove that there exists a
privileged set of field variables, the main field

u′ =
∂h0

∂u

such that original balance laws could be transformed in a symmetric form.
In fact introducing the four potentials [8], [9]

h′0 = u′ · F0 − h0; h′i = u′ · Fi − hi (i = 1, 2, 3)

the original system can be put in the special symmetric form:

∂t

(
∂h′0

∂u′

)
+ ∂i

(
∂h′i

∂u′

)
= F

⇐⇒ (13)

∂2h′0

∂u′∂u′
∂tu

′ +
∂2h′i

∂u′∂u′
∂iu

′ = F ; (i = 1, 2, 3).
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The Boillat proof [8, 10], has the advantage with respect to the sym-
metrization of Friedrichs and Lax [11] that the symmetric system is the
original one. Moreover this includes, as a particular case, the example
discovered first by Godunov for the fluid dynamics case and the Euler-
Lagrange systems [12]. Symmetric structure of the system of balance
laws is highly desirable due to hyperbolicity and local well-posedness of
initial-value problems (see e.g. [13]). The main field components for the
mixture of Euler fluids described by the system (3) have the form [5]:

Λρ =
1

Tn

(
µn − 1

2
(un + v)2

)

Λv =
1

Tn

(un + v)

Λε = − 1

Tn

(14)

Λρb =
1

Tb

(
µb − 1

2
(ub + v)2

)
− 1

Tn

(
µn − 1

2
(un + v)2

)

Λvb =
ub

Tb

− un

Tn

−
(

1

Tb

− 1

Tn

)
v

Λεb =
1

Tn

− 1

Tb

.

The use of the main field has still another advantage: the possibility
of recognition of principal and equilibrium subsystems. Let us give a
brief review of the results which can be found in [14]. Let us split the
main field u′ ∈ RN into two parts u′ ≡ (v′,w′), v′ ∈ RM , w′ ∈ RN−M ,
(0 < M < N) and the system (13) with F ≡ (f ,g), reads:

∂t

(
∂h′0(v′,w′)

∂v′

)
+ ∂i

(
∂h′i(v′,w′)

∂v′

)
= f(v′,w′), (15)

∂t

(
∂h′0(v′,w′)

∂w′

)
+ ∂i

(
∂h′i(v′,w′)

∂w′

)
= g(v′,w′). (16)

Given an assigned constant value w′
∗ to w′, we call principal subsystem
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of (13) the system:

∂t

(
∂h′0(v′,w′

∗)
∂v′

)
+ ∂i

(
∂h′i(v′,w′

∗)
∂v′

)
= f(v′,w′

∗) (17)

In other words, a principal subsystem coincide with the first block of the
system (15) putting w′ = w′

∗. In this case we have

Sub-Entropy Law: The solutions of a principal subsystem (17) sat-

isfy a supplementary subentropy law: The subentropy h
0

is convex and
therefore every principal subsystem is symmetric hyperbolic [14].

Let λ(k)(v′,w′,n) and λ
(k)

(v′,w′
∗,n), be the characteristic velocities

of the total system (15), (16) and of the subsystem (17), respectively,
n ∈ R3 being a unit vector. In general the solutions of the subsystem are
not particular solutions of the system (for w′ = w′

∗) and the spectrum of
λ’s is not a part of the spectrum of λ’s. However, if

λmax = max
k=1,2,...,N

λ(k), λmax = max
k=1,2,...,M

λ
(k)

,

and similarly for the minima, one obtains the following result

Sub-characteristic Conditions: Under the assumption that h0 is a
convex function, the following sub-characteristic conditions hold for every
principal subsystem [14]:

λmax(v
′,w′

∗,n) ≥ λmax(v
′,w′

∗,n), (18)

λmin(v
′,w′

∗,n) ≤ λmin(v
′,w′

∗,n),

∀v′ ∈ RM and ∀n ∈ R3, || n ||= 1.

Taking into account (14) and (3), we can recognize the following in-
teresting principal subsystems:

Case 1 - The single-temperature model is a principal subsystem of
the multi-temperature. Let us suppose that Λεb = 0 for b = 1, . . . , n− 1,
then

T1 = . . . = Tn = T.

This principal subsystem contains only the energy conservation equation
for the mixture, while energy balance equations for the constituents are
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dropped. Thus, one may conclude that single-temperature model natu-
rally appears as a principal subsystem of the multi-temperature system.

Case 2 - The equilibrium subsystem. If we set

Λεb = Λvb = Λρb = 0 ∀ b = 1, ..., n− 1

i.e.:
Tb = T ; ub = 0 ; µb = µ ∀ b = 1, ..., n− 1,

we have the equilibrium Euler subsystem (a single fluid system) with
concentrations cb being solutions of µ1 = µ2 = . . . = µn.

3.2 Characteristic velocities and their upper bound
in the ST model

The characteristic velocities for the MT are simple to evaluate. Since,
for each constituent, they are the same as the ones of a single fluid, i.e.:

λ(1)
α = vαn − csα; λ(2,3,4)

α = vαn; λ(5)
α = vαn + csα;

where vαn = vα · n are the normal component of the velocities on the

wave front and csα =

√(
∂pα

∂ρα

)
Sα

are the sound velocities. For an ideal

gas,

pα =
k

mα

ραTα, εα = c
(α)
V Tα, c

(α)
V =

k

mα(γα − 1)
(19)

(k,mα, c
(α)
V , γα, are respectively the Boltzmann constant, the atomic mass,

the specific heat at constant volume and the ratio of the specific heats),
we have

csα =

√
kγα

mα

Tα.

Instead, in the case of a ST system the evaluation of the velocities is very
difficult also in an equilibrium state due to the fact that the characteristic
polynomial is, in general, irreducible (see e.g. [2], [15]) but thanks to the
subcharacteristic property (18) of principal subsystems we are able now
to establish the following lower and upper bound for the characteristic
velocities of the ST model:

min
α

(vαn − c∗sα) ≤ λST
min; max

α
(vαn + c∗sα) ≥ λST

max,
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where now

c∗sα =

√
kγα

mα

T .

3.3 Qualitative analysis

The system (3), is a particular case of a system of balance laws (4) and
it is dissipative due to the presence of the productions that satisfy the
entropy principle. Moreover we have verified that h0 is a convex function
of the densities u ≡ F0. On the other hand the system (3) is of mixed
type, some equations are conservation laws and the other ones are real
balance laws, i.e., we are in the case in which

F(u) ≡
(

0
g(u)

)
; g ∈ RN−M .

In this case the coupling condition discovered for the first time by
Shizuta-Kawashima (K-condition) [16] plays a very important role in the
analysis of global existence of smooth solutions. If it is satisfied the
dissipation present in the second block of equations (balance laws) have
effect also on the first block of equations (conservation laws). Hanouzet
and Natalini [17] in one-space dimension and Wen-An Yong [18] in the
multidimensional case, have proved the following theorem:

Assume that the system (4) is strictly dissipative and the K-condition
is satisfied. Then there exists δ > 0, such that, if ‖u(x, 0)‖2 ≤ δ, there is
a unique global smooth solution, which verifies

u ∈ C0
(
[0,∞); H2)(R) ∩ C1

(
[0,∞); H1(R).

)

Recently, Ruggeri and Serre [19] have proved in the one-dimensional
case the stability of constant states:

Under natural hypotheses of strongly convex entropy, strict dissipa-
tiveness, genuine coupling and “zero mass” initial for the perturbation of
the equilibrium variables, the constant solution stabilizes

‖u(t)‖2 = O
(
t−1/2

)
.
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Lou and Ruggeri [20] have observed that exists a weaker form of K-
condition, valid only for the genuine non-linear eigenvalues, that is a
necessary (but, in general, not sufficient) condition for the global existence
of smooth solutions.

3.4 The K-condition in the mixture theories

It is important to observe that in general, under the same initial data, the
solutions of the subsystem are not particular solutions of the full system!
Therefore also if the ST appears a particular physical case of the MT, the
solutions starting from the same initial data (with Tα(x, 0) = T (x, 0) =
T0(x)) are different and with different regularity. In fact, for ST theory
without chemical reactions it was proven [21], [22] that the K-condition is
violated also for some genuinely non linear eigenvalues. Therefore, taking
into account the results [20], in general, global smooth solutions do not
exist, even if the initial data are small enough. Instead, for MT system
it is possible to verify that the K-condition is satisfied for all eigenvalues.
This means, roughly speaking, that the dissipation in ST is too weak with
respect to the hyperbolicity and we do not have global smooth solutions
for all the time; instead if we add the multi-temperature effect together
with mechanical diffusion, the dissipation becomes enough to win the
effect of hyperbolicity. Therefore we can conclude [5]:

If the initial data of the MT model are perturbations of equilibrium
state, smooth solutions exist for all time and tends to the equilibrium
constant state.

Also from this point of view the MT model provides a description
more realistic than the ST model.

4 Average temperature

The (MT ) theory is of course the most realistic one and also in agreement
with the kinetic theory [23] and it is a necessary theory in several physical
situations, in particular in plasma physics [3]. Nevertheless, from the
theoretical point of view, the main problem remains how it is possible
to measure the temperatures of each constituent. Therefore, a question
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of definition of a macroscopic average temperature has to be posed. In
this paper we reconsider the definition of average temperature recently
proposed by Ruggeri and co-workers [24]-[28]. The main idea is to exploit
the definition of internal energy to introduce (average) temperature T as a
state variable for the mixture, and to do it in such a way that the intrinsic
internal energy εI (see (2)3) of the multi-temperature mixture resembles
the structure of intrinsic internal energy of a single-temperature mixture.
Therefore, the following implicit definition of an average temperature is
adopted :

ρεI(ρβ, T ) =
n∑

α=1

ραεα(ρα, T ) =
n∑

α=1

ραεα(ρα, Tα), (20)

By expanding this relation in the neighborhood of the average tempera-
ture we have:

T =

∑n
α=1 ραc

(α)
V Tα∑n

α=1 ραc
(α)
V

, (21)

where

c
(α)
V =

∂εα(ρα, Tα)

∂Tα

∣∣∣∣
Tα=T

is the specific heat at constant volume of constituent α. We observe that
Eq. (21) gives the exact value of the average temperature in the case of

the mixture of ideal gases for which the c
(α)
V are constant.

This definition of average temperature has several advantages with
respect to usual ones used in the literature, as we can see in the following.
First, as a consequence of the definition, the conservation law for the
energy of mixture (3)3 becomes an evolution equation for the average
temperature T as in the case of (ST ) and (CT ). So, in the case of spatial
homogeneous solution of the differential system (3) (whose solutions only
depend on time), T is constant and all the non-equilibrium temperatures
of each constituent Tα converge to T for large time, as we can see in the
sequel.

The second advantage is related to the entropy of the whole mixture
that, thanks to the introduction of this average temperature, reaches its
maximum value when Tα = T . In fact Ruggeri and Simić have proved
in [26], using the Gibbs equations for each constituent, that the entropy
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density near the equilibrium becomes a negative definite quadratic form
of the non-equilibrium variables Θα = Tα − T (diffusion temperature
flux ):

ρS =
n∑

α=1

ραSα(ρα, Tα) =

n∑
α=1

ραSα(ρα, T )− 1

2T 2

n∑
α=1

ραc
(α)
V Θ2

α + O(Θ3
α). (22)

4.1 Alternative form of the differential system

It is convenient for the following to rewrite the system (3) using the
material derivatives

d

dt
=

∂

∂t
+ v · ∇,

db

dt
=

∂

∂t
+ vb · ∇

for b = 1, · · ·n− 1, and taking into account the definition of the average
temperature given by (20):





dρ

dt
+ ρ div v = 0,

ρ
dv

dt
− divt = 0,

ρ
∂εI

∂T

dT

dt
= ρ2∂εI

∂ρ
div v+

n−1∑

b=1

∂εI

∂cb

div Jb + t gradv − div q

dbρb

dt
+ ρb div vb = 0

ρb
dbvb

dt
− divtb = m̂b,

ρb
dbεb

dt
− tb · ∇vb + div qb = êb.

(23)

These differential equations give the evolution equations respectively
of ρ, v, T, ρb, Jb and Θb, provided we assign the constitutive equations



224 Tommaso Ruggeri

pα, εα and for dissipative fluids also the heat fluxes qα and the viscous
stress tensors σα.

5 Examples of spatially homogenous mix-

ture and static heat conduction

In this section two simple examples will be provided in order to support
previous theoretical considerations, and to stress the main features of
multi temperature approach and the role of the average temperature.

5.1 Solution of a spatially homogenous mixture

First we consider a non-reacting mixture of gases in the special case of
spatially homogeneous fields, i.e. the case in which field variables depend
solely on time [27], [26]. The governing equations (23) can be written in
the following form:

dρ

dt
= 0;

dv

dt
= 0;

dT

dt
= 0; (24)

dρb

dt
= 0; ρb

dvb

dt
= m̂b; ρb

dεb

dt
= êb. (25)

where now d/dt = ∂/∂t. From (24), (25), it is easy to conclude:

ρ = const.; v = const.; T = const.;

ρb = const.; b = 1, . . . , n,

and due to Galilean invariance we may choose v = v0 = 0 without loss
of generality. It is also remarkable that the average temperature of the
mixture remains constant during the process: T (t) = T0.

In the sequel we shall regard only small perturbations of equilibrium
state, vα = v0 = 0, Tα = T0, α = 1, . . . , n, and analyze their behavior.
Therefore, the r.h.s. of (25)2,3 could be linearized in the neighborhood of
equilibrium and taking into account (8), we obtain:



Multi-temperature mixture of fluids 225

ρb
dvb

dt
= −

n−1∑
c=1

ψ0
bc

T0

(vc − vn); (26)

ρbc
(b)
V

dTb

dt
= −

n−1∑
c=1

θ0
bc

T 2
0

(Tc − Tn), (27)

where ψ0
bc and θ0

bc are entries of positive definite matrices evaluated in
equilibrium. Note that vb − vn = ub − un and Tb − Tn = Θb − Θn.
For what concerns the n-species vn and Tn are obtained by the algebraic
equations (2)2 and (21).

In the particular case of a binary mixture the explicit solution of
equations (26), (27), can be obtained and it reads:

v1(t) = v1(0)e−
t

τv ; T1(t) = T0 + (T1(0)− T0)e
− t

τT ,

where τv and τT represent relaxation times that for ideal gas assume the
expression

τv =
ρ1ρ2T0

ψ0
11ρ

;

τT =
kρ1ρ2T

2
0

θ0
11(ρ1m2(γ2 − 1) + ρ2m1(γ1 − 1))

.

Starting from these solutions, other field variables can be obtained by
means of defining equations:

ρ1v1 + ρ2v2 = ρv = 0.

ρ1c
(1)
V T1 + ρ2c

(2)
V T2 = (ρ1c

(1)
V + ρ2c

(2)
V )T

= (ρ1c
(1)
V + ρ2c

(2)
V )T0.

It is obvious that, due to dissipative character of the system, all the non-
equilibrium variables exponentially decay and converge to their equilibrium
values. In order to compare the values of τv and τT for ideal gases, and
also to compute the actual values of variables in numerical example, the
relations from kinetic theory has to be recalled [3]:

θ0
11 =

3m1m2

(m1 + m2)2
kT 2

0 Γ′12; ψ0
11 =

2m1m2

m1 + m2

T0Γ
′
12,
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Figure 1: Dimensionless velocities and diffusion temperature fluxes of the
constituents versus time.

where Γ′12 represents volumetric collision frequency, and the following
estimate can be obtained:

τT

τv

=
2

3

ρ(m1 + m2)

ρ1m2(γ2 − 1) + ρ2m1(γ1 − 1)
>

2

3(γmax − 1)
≥ 1, (28)

(γmax = max{γ1, γ2} ≤ 5/3).
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In Figures 1, we present the graphs of normalized velocities, diffu-
sion temperature fluxes [26]. It can be observed that, due to inequality
(28), the mechanical diffusion vanishes more rapidly than the thermal one.
This is in sharp contrast with widely adopted approach which ignores the
influence of multiple temperature of each constituent of the mixture.

5.2 Static heat conduction solution

Another simple example is the one-dimensional mixture of gas at rest
(vα = 0), without chemical reactions (τα = 0) between two walls 0 ≤
x ≤ L, maintained at two different temperatures T (0) = T0, T (L) = TL

[28].
In both (CT ) and (ST), the static field equation reduces to the global

energy equation (23)3 that reads div q = 0. In the one-dimensional
case, this equation combined with the Fourier law with constant heat
conductivity, yields the classical result of a linear behavior temperature
profile as for a single fluid:

T ′′ = 0 ⇐⇒ T = (TL − T0)ξ + T0

with ξ = x/L and ′ denotes d/dξ. For what concerns the densities they
are obtained by the conditions that the pressure of each constituent must
be constant due to the momentum equations.

In the (MT ) model, the situation is quite different. In fact if we
consider the simple case of a binary mixture (n = 2), by taking into
account of Eqs. (23), and system (8), in the linear case, is reduced to





dp1

dx
= 0,

dp2

dx
= 0,

dq1

dx
= β (T2 − T1) ,

dq2

dx
= β (T1 − T2) ,

(29)

where β = θ11/T
2
0 . By using the Fourier law, Eqs. (29)2,3 can be rewritten

as {
T ′′

1 = ν1(T1 − T2),

T ′′
2 = ν2(T2 − T1),

(30)
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Figure 2: Graphs of the average temperature T and constituent temper-
atures T1, T2 in terms of the dimensionless distance x/L. Tcl represents
the classical straight line solution. T0 is the temperature unit.

where we assume that the dimensionless quantities

ν1 =
βL2

χ1

, ν2 =
βL2

χ2

, (31)

are constant. The system (30) is equivalent to

T̂ ′′ = 0, Θ′′ − ω2 Θ = 0

with T̂ = νT1 + (1− ν)T2, Θ = T2 − T1 and

ν =
ν2

ν1 + ν2

=
χ1

χ1 + χ2

, ω =
√

ν1 + ν2.

Consequently, we get the solution in the form

T1 = T̂ − (1− ν)Θ, T2 = T̂ + νΘ (32)

with

T̂ = A ξ+B, Θ =
1

sinh(ω)
{ΘL sinh(ω ξ) + Θ0 sinh(ω(1− ξ))} , (33)
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and A,B, Θ0, ΘL are constants of integration. In the case of ideal gas,
equations (29)1 and (19) yield the constance of the internal energy den-
sities of each constituent:

ραTαc
(α)
V = Pα = Const., (α = 1, 2). (34)

and Eq. (21) yield the average temperature

1

T
=

π

T1

+
1− π

T2

, with π =
P1

P1 + P2

. (35)

The constant π belongs to [0, 1]. It is interesting to observe that the
coldness 1/T (inverse of the average temperature) belongs to the convex
envelope of the component coldness 1/T1 and 1/T2. Equations (32), (33)
and (35) give the explicit solution of T1, T2 and T as function of ξ and five
constants of integration: (A,B, Θ0, ΘL, π). We observe the behavior of T
is not a straight line as in the classic case of (CT ) or (ST ) theories; the
multi-temperature effect is that the temperature is not a linear function of
x (see Figure 2). Due to Eqs. (29)-(31), when ε = 1/β tends towards zero,
the solution of Eqs. (32), (33) and (35) converges towards the classical
solution T1 = T2 = T = T̂ for any ξ ∈]0, 1[. This result is true also at the
boundary when Θ0 and Θ1 are of same order as ε.

Let c = ρ1/(ρ1 + ρ2) the concentration and c(0) = c0. Equations (34),
(32), (33), imply

c =
c0

c0 + Ω(1− c0)
, with Ω =

T1

T2

T20

T10

and

T10 = B − (1− ν)Θ0, T20 = B + νΘ0.

The concentration is function of the position x whereas in classical case
Ω = 1 and c = c0. Ruggeri and Lou [28] have studied how is possible to
determine in a unique way the constant of integration and they proved
that for a mixture of n constituents the measure of the average tempera-
ture at 2(n− 1) points allows to know the temperature behavior of each
constituent in all points.
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6 Maxwellian iteration

To find a connection between the extended models of MT or ST with
the classical theory CT it is necessary to use the procedure that is know
as Maxwellian iteration (see [2]). In the present case the Maxwellian
iterative procedure require to put in the left side of the system (23)5,6

the zero−th iterate, i.e the equilibrium state and in the right side the
first iterate. Taking into account that in zeroth iteration v

(0)
α = v and

consequently d
(0)
b /dt = d/dt, J

(0)
b = u

(0)
b = 0 and moreover T

(0)
α =

T, q(0)= q
(0)
b = 0, t(0) = −p(0)I = −p0I, t

(0)
b = −p

(0)
b I, we obtain after

some straightforward calculations, the Fick law for what concerns the
momentum equations (11)3, while for what concern the energy equations
we obtain a new constitutive equations:

Θ(1)
a = −ka div v. (36)

Equation (36), obtained by means of Maxwellian iteration gives the tem-
peratures of each species as a constitutive equation in the same manner
as the Fick law gives the velocities of each species.

For a mixture of ideal gases ka is a linear combination of

Ωb = ρbTc
(b)
V

∑n
α=1 ραc

(α)
V (γb − γα)∑n

α=1 ραc
(α)
V

.

When all the constituents have the same ratio of specific heats we have
Ωb = 0, and consequently Θ

(1)
b = 0, a = 1, . . . , n − 1. In this case the

diffusion temperature flux cannot be observed in the first approximation.

7 A classical approach of multi-temperature

mixtures

Therefore the ST model using the Maxwellian iteration converge to the
classic theory but when we start from the MT case we obtain a new con-
stitutive equation that is not present in the classical approach of mixture
theory.

To justify the results of the Maxwellian iteration, Gouin and Ruggeri
[25] have constructed a classical theory of mixture with multi-temperature.



Multi-temperature mixture of fluids 231

The idea is to use the usual equation of the classical approach (9), but
now we suppose that each constituent has its own temperature. In this
approach the role of the average temperature previously defined by (20)
is fundamental. In fact the multi-temperature effect appears through the
pressure, that now near equilibrium has the form:

p = p0 + πθ,

where

p0 =
n∑

α=1

pα(ρα, T ), πθ =
n−1∑

b=1

rb Θb

and

rb =
1

ρnc
(n)
V

{
ρnc

(n)
V

∂pb

∂Tb

(ρb, T )− ρbc
(b)
V

∂pn

∂Tn

(ρn, T )

}
. (37)

Therefore, the total pressure p of the mixture is the sum of the equilibrium
part p0 depending on T and a new dynamical pressure part (as a non-
equilibrium term) πθ due to the difference of temperatures between the
constituents.

We assume the internal energy ε(ρ, T, cb) and the equilibrium pressure
p0(ρ, T, cb) satisfy the Gibbs equation

TdS = dε− p0

ρ2
dρ−

n−1∑

b=1

(µb − µn) dcb . (38)

The differences between Eq. (10) and Eq. (38) consist in the fact that in
Eq. (38) T means the average temperature when each component α has
its own temperature Tα and p0 takes the place of p . Let us consider first
the case of a Stokesian fluid tr σ = 0. Taking into account that from (22)
ρS until first order expansion depends only on the average temperature
and using Eqs. (9) to eliminate the time derivative, we obtain from (38)
the following entropy balance:

ρ
dS

dt
+ div

{
1

T

(
q−

n−1∑

b=1

(µb − µn)Jb

)}
=

q · grad

(
1

T

)
−

n−1∑

b=1

Jb · grad

(
µb − µn

T

)
+

1

T
tr (Jmech D) , (39)
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where the mechanical flux is

Jmech = σ − πθ I.

Eq. (39) can be interpreted as a balance of entropy, if we accept

Φ =
1

T

(
q−

n−1∑

b=1

(µb − µn)Jb

)

and

Σ = q · grad

(
1

T

)
−

n−1∑

b=1

Jb · grad

(
µb − µn

T

)
+ tr

(
Jmech

D

T

)
(40)

as the entropy flux and the entropy production respectively.
We observe that the entropy production is the sum of products of the

following quantities:

thermodynamic fluxes thermodynamic forces
heat flux q temperature gradient grad

(
1
T

)
,

diffusion fluxes Jb chemical potential gradients −grad
(

µb−µn

T

)
,

mechanical flux Jmech velocity gradient D
T

.

In accordance with the case of a single temperature model [29] and
[2] chapter 5, in TIP near equilibrium, the fluxes depend linearly on the
associated forces (see also for the general methodology of TIP [6, 7, 30,
31]):

- For the heat flux and the diffusion fluxes, we obtain the constitutive
equations in the form of Eqs (11)2,3.

- For Stokesian fluids, the last term of Eq. (40) corresponding to the
mechanical production of entropy can be written in a separated form

1

T
tr (Jmech D) =

1

T
tr

(
σ DD

)− 1

T
πθ div v.

We obtain the constitutive equation of the viscous stress tensor in the
form of Eq. (11)1 (with λ = 0), and the dynamical pressure part due to
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the difference of temperatures yields

πθ =
n−1∑

b=1

rb Θb = −Lπ div v, (41)

where Lπ is a scalar coefficient of proportionality.
The production of entropy must be non-negative (40) and therefore

the phenomenological coefficients must satisfy the inequalities (12) and

Lπ ≥ 0.

Taking into account that terms rb given by Eq. (37) depend on (ρb, T ),
from Eq. (41) we deduce that constitutive quantities Θa (depending a
priori on ∇v) must be proportional to div v:

Θa = −ka div v (a = 1, · · · , n− 1).

This in perfect agreement with the Maxwellian iteration procedure pre-
sented in the previous section.

Let ‖Mab‖ be the matrix such that ka =
∑n−1

b=1 Mab rb, we have

Θa = −
n−1∑

b=1

Mab rb div v (a = 1, · · · , n− 1). (42)

Introducing expression (42) into Eq. (41), we obtain

Lπ =
n−1∑

a,b=1

Mab rarb ≥ 0,

and assuming the Onsager symmetry property, Mab = Mba (a, b = 1, · · · , n−
1), we deduce that coefficients Mab are associated with a positive definite
quadratic form.

Finally, the results are the same as in the classical theory, but more-
over we get new constitutive equations (42) for the difference of temper-
atures.

We have considered the simple case of Stokes fluids. If the fluid is non
Stokesian, the Navier-Stokes stress tensor of viscosity is given by (11)1

where λ is the bulk viscosity. The stress tensor t becomes

t = −(p0 + πθ) I + σ = −p I + 2 ν DD,
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with

p = p0 + πθ + πσ.

The non-equilibrium pressure p − p0 is separated in two different parts.
The first one πσ = −λ div v is related to the bulk viscosity and the
second one πθ = −Lπ div v is related to the multi-temperature effects
between components. Due to a non-zero dynamical pressure even for
Stokes fluids, we conclude that multi-temperature mixtures of fluids have
a great importance. Perhaps such a model may be used to analyze the
evolution of the early universe in which the dynamical pressure seems
essential [32, 33].

8 Conclusions

In this survey we have reconsidered the definition of an average tem-
perature in the context of multi-temperature approach to the theory of
mixtures of fluids. It was based upon the assumption that internal energy
of the mixture should retain the same form as in a single-temperature ap-
proach. The supremacy of this definition is supported by a simple deriva-
tion of entropy maximization result in equilibrium as its consequence and
the result that the average temperature remains constant for spatially
homogenous mixture. Furthermore, by means of Maxwellian first itera-
tive procedure we have derived constitutive equations for non-equilibrium
variables, mechanical diffusion flux Ja and diffusion temperature flux Θa,
in the neighborhood of equilibrium. It was shown that the first iterate of
diffusion flux J

(1)
a coincides with the classical generalized Fick’s laws which

can be obtained in TIP. However, diffusion temperature flux Θ
(1)
a is found

to be proportional to div v – a new result which is in accordance with
recent observations within classical TIP framework of multi-temperature
mixture [25].

Moreover we have studied in the case of the one-dimensional steady
heat conduction between two walls. We have verified that the main ef-
fect of multi-temperature is that the average temperature is not a linear
function of the distance as in the case of the ST theory. These last result
could be used during some experiments to show the order of magnitude
of the difference between ST and MT.



Multi-temperature mixture of fluids 235

References

[1] C. Truesdell, Rational Thermodynamics (McGraw-Hill, New York, 1969).

[2] I. Müller and T. Ruggeri, Rational Extended Thermodynamics (Springer,
New York, 1998).

[3] T.K. Bose, High Temperature Gas Dynamics (Springer, Berlin, 2003).

[4] T. Ruggeri, Galilean Invariance and Entropy Principle for Systems of
Balance Laws. The Structure of the Extended Thermodynamics, Contin.
Mech. Thermodyn. 1, 3 (1989)
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Vǐsetemperaturna mešavina fluida

Daje se pregled nekih nedavnih rezultata koji se odnose na različite
modele smese stivšljivih fluida. Posebno se diskutuje najrealniji slučaj
smese kada svaki sastojak ima svoju temperaturu (MT ), te se prvo upored-
juju rešenja ovog modela sa modelom koji ima jedinstvenu zajedničku
temperaturu (ST ). U slučaju Ojlerovskih fluida se zatim pokazuje da
je odgovarajući (ST )-diferencijalni sistem neki glavni podsistem of the
(MT )-sistema. Globalno ponašanje glatkih rešenja za velika vremena
oba sistema se tada diskutuje primenom Shizuta-Kawashima uslova.

Tada se uvodi koncept srednje temperature smese zasnovan na raz-
matranju da je unutrašnja energija smese ista kao u slučaju (ST )-smese.
Kao posledica, pokazano je da entropija smese dostiže lokalni maksimum u
ravnoteži. Postupkom Meksvelovske iteracije dobija se nova konstitutivna
jednačina za neravnotežne temperature sastojaka u klasičnom graničnom
slučaju zajedno sa Fikovim zakonom za fluks difuzije.

Konačno, da bi Meksvelovska iteracija bila zadovoljilena, daje se za
disipativne fluide jedan mogúı pristup klasične teorije smesa sa vǐse tem-
peratura, te se pokazuje da razlike temperatura sastojaka uzrokuju posto-
janje novog dinamičkog pritiska čak i ako fluidi imaju nultu zapreminsku
viskoznost.
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