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Abstract

The interaction of free convection with thermal radiation of a vis-
cous incompressible unsteady MHD flow past a moving vertical
cylinder with heat and mass transfer is analyzed. The fluid is a
gray, absorbing-emitting but non-scattering medium and the Rosse-
land approximation is used to describe the radiative heat flux in
the energy equation. The governing equations are solved using an
implicit finite-difference scheme of Crank-Nicolson type. Numeri-
cal results for the transient velocity, the temperature, the concen-
tration, the local as well as average skin-friction, the rate of heat
and mass transfer for various parameters such as thermal Grashof
number, mass Grashof number, magnetic parameter, radiation pa-
rameter and Schmidt number are shown graphically. It is observed
that, when the radiation parameter increases the velocity and tem-
perature decrease in the boundary layer. Also, it is found that as
increase in the magnetic field leads to decrease in the velocity field
and rise in the thermal boundary thickness.
Keywords: Heat transfer, Radiation, Finite-difference Scheme,
Vertical cylinder
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1 Introduction

The study of unsteady boundary layer flow over a moving vertical cylinder
has important geophysical and engineering applications. For example, as
a result of volcanic activities or tectonic movements, magmatic intrusion
may occur at shallow depths in the earth’s crust. The intrusive magma
may take the form of a cylindrical shape. An experimental and analytical
study is reported by Evas et al. [1] for transient natural convection in a
vertical cylinder. Velusamy and Grag [2], given a numerical solution for
the transient natural convection over a heat generating vertical cylinder.

The study of flow problems, which involve the interaction of several
phenomena, has a wide range of applications in the field of science and
technology. One such study is related to the effects of MHD free convec-
tion flow, which plays an important role in geophysics, astrophysics and
petroleum industries. Michiyoshi et al. [3] considered natural convection
heat transfer from a horizontal cylinder to mercury under a magnetic field.
Magnetic field effect on a moving vertical cylinder with constant heat flux
was given by Ganesan and Loganathan [4].

Free convection flow involving coupled heat and mass transfer occures
frequently in nature. It occures not only due to temperature differences,
but also due to concentration differences or a combination of these two, for
example, in atmospheric flows there exist differences in the H20 concen-
tration. A few representative fields of interest in which combined heat and
mass transfer plays an important role are designing of chemical processing
equipment, formation and dispersion of fog, distribution of temperature
and moisture over agricultural fields and groves of fruit trees, crop damage
due to freezing, and environmental pollution. The effects of heat and mass
transfer on natural convection flow over a vertical cylinder was studied by
Chen and Yuh [5]. Combined heat and mass transfer effects on moving
vertical cylinder for steady and unsteady flows were analyzed by Takhar et
al. [6] and Ganesan and Loganathan [7] respectively. A numerical solution
for the transient natural convection flow over a vertical cylinder under the
combined buoyancy effect of heat and mass transfer was given by Ganesan
and Rani [8], by employing an implicit finite-difference scheme. Shanker
and Kishan [9] presented the effect of mass transfer on the MHD flow past
an impulsively started infinite vertical plate. Ganesan and Rani [10] stud-
ied the MHD unsteady free convection flow past a vertical cylinder with
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heat and mass transfer.
In the context of space technology and in processes involving high tem-

peratures, the effects of radiation are of vital importance. Studies of free
convection flow along a vertical cylinder or horizontal cylinder are impor-
tant in the field of geothermal power generation and drilling operations
where the free stream and buoyancy induced fluid velocities are of roughly
the same order of magnitude. Many researchers such as Arpaci [11], Cess
[12], Cheng and Ozisik [13], Raptis [14], Hossain and Takhar [15, 16] have
investigated the interaction of thermal radiation and free convection for
different geometries, by considering the flow to be steady. The unsteady
flow past a moving vertical plate in the presence of free convection and
radiation were studied by Das et al. [17]. Radiation and mass transfer
effects on two-dimensional flow past an impulsively started isothermal ver-
tical plate were studied by Ramachandra Prasad et al. [18]. The combined
radiation and free convection flow over a vertical cylinder was studied by
Yih [19]. Radiation and mass transfer effects on flow of an incompressible
viscous fluid past a moving vertical cylinder was studied by Ganesan and
Loganathan [20].

However, the interaction of radiation with mass transfer in an electri-
cally conducting fluid past a moving vertical cylinder has received a little
attention. Hence, the object of this paper is to study the radiation and
mass transfer effects on hydromagnetic free convection flow of a viscous
incompressible optically thick fluid past a moving vertical cylinder. The
governing boundary layer equations along with the initial and boundary
conditions are first cast into a dimensionless form and the resulting sys-
tem of equations are then solved by an implicit finite-difference scheme
of Crank-Nicolson type. The behaviour of the velocity, temperature, con-
centration, skin-friction, Nusselt number and Sherwood number has been
discussed for variations in the governing thermophysical and hydrodynam-
ical parameters.

2 Mathematical Analysis

A two-dimensional unsteady free convection flow of a viscous incompress-
ible electrically conducting and radiating optically thick fluid past an im-
pulsively started semi-infinite vertical cylinder of radius r0 is considered.
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Here the x-axis is taken along the axis of cylinder in the vertical direction
and the radial coordinate r is taken normal to the cylinder. Initially, the
fluid and the cylinder are at the same temperature T ′

∞ and the concen-
tration C ′

∞. At time t′ > 0, the cylinder starts moving in the vertical
direction with velocity u0 and the surface of the cylinder is raised to a uni-
form temperature T ′

w and concentration C ′
w and are maintained constantly

thereafter. A uniform magnetic field is applied in the direction perpen-
dicular to the cylinder. The fluid is assumed to be slightly conducting,
and hence the magnetic Reynolds number is much less than unity and the
induced magnetic field is negligible in comparison with the applied mag-
netic field. It is further assumed that there is no applied voltage, so that
electric field is absent. It is also assumed that the radiative heat flux in the
x-direction is negligible as compared to that in the radial direction. The
viscous dissipation is also assumed to be negligible in the energy equation
due to slow motion of the cylinder. Also, it is assumed that there is no
chemical reaction between the diffusing species and the fluid. It is also
assumed that all the fluid properties are constant except that of the influ-
ence of the density variation with temperature and concentration in the
body force term (Boussinesq’s approximation). The foreign mass present
in the flow is assumed to be at low level and hence Soret and Dufour ef-
fects are negligible. Then, the flow under considereation is governed by
the following system of equations

Continuity equation

∂ (ru)

∂ x
+

∂(rv)

∂ r
= 0 (1)

Momentum equation

∂ u

∂ t′
+u

∂ u

∂ x
+v

∂ u

∂ r
= g β (T ′−T ′

∞)+g β∗(C ′−C ′
∞) +

ν

r

∂

∂r

(
r
∂u

∂r

)
− σ B2

0

ρ
u

(2)
Energy equation

∂ T ′

∂ t′
+ u

∂ T ′

∂ x
+ v

∂ T ′

∂ r
=

α

r

∂

∂r

(
r
∂T ′

∂r

)
− 1

ρ cp

1

r

∂

∂r
(rqr) (3)

Mass diffusion equation

∂ C ′

∂ t′
+ u

∂ C ′

∂ x
+ v

∂ C ′

∂ r
=

D

r

∂

∂r

(
r
∂C ′

∂r

)
(4)
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The initial and boundary conditions are:

t′ ≤ 0 : u = 0 , v = 0, T ′ = T ′
∞,

C ′ = C ′
∞ for all x ≥ 0 and r ≥ 0

t′ > 0 : u = u0 , v = 0, T ′ = T ′
w, C ′ = C ′

w at r = r0

u = 0, v = 0, T ′ = T ′
∞ , C ′ = C ′

∞ at x = 0 and r ≥ r0 (5)

u → 0 , T ′ → T ′
∞, C ′ → C ′

∞ as r →∞
where u, v are the velocity components in x, r directions respectively, t′-
the time, g- the acceleration due to gravity, β- the volumetric coefficient
of thermal expansion, β∗- the volumetric coefficient of expansion with con-
centration, T ′- the temperature of the fluid in the boundary layer, C ′- the
species concentration in the boundary layer, T ′

w - the wall temperature, C ′
w-

the concentration at the wall, T ′
∞ - the free stream temperature of the fluid

far away from the plate, C ′
∞ - the species concentration in fluid far away

from the cylinder, ν-the kinematic viscosity, α- the thermal diffusivity, σ-
the electrical conductivity, B0 - the magnetic induction, ρ- the density of
the fluid, cp- the specific heat at constant pressure, qr- the radiation heat
flux and D- the species diffusion coefficient.

By using the Rosseland approximation (Brewster [21]), the radiative
heat flux qr is given by

qr = −4σs

3ke

∂T ′4

∂r
(6)

where σs is the Stefan-Boltzmann constant and ke- the mean absorption
coefficient. It should be noted that by using the Rosseland approximation,
the present analysis is limited to optically thick fluids. If the temperature
differences within the flow are sufficiently small, then Equation (6) can be
linearized by expanding T ′4 into the Taylor series about T ′∞, which after
neglecting higher order terms takes the form

T ′4 ∼= 4T ′3
∞ T ′ − 3T ′4

∞ (7)

In view of Equations (6) and (7), Equation (3) reduces to

∂ T ′

∂ t′
+ u

∂ T ′

∂ x
+ v

∂ T ′

∂ r
=

α

r

∂

∂r

(
r
∂T ′

∂r

)
+

16σs T ′3
∞

3keρ cp

1

r

∂

∂r

(
r
∂T ′

∂r

)
(8)
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Knowing the velocity, temperature and concentration fields, it is inter-
esting to study the local and average skin-frictions, Nusselt numbers and
Sherwood numbers, which are defined as follows.

Local and average skin-frictions are given respectively by

τ ′x = −µ

(
∂ u

∂ r

)

r=r0

(9)

τL =
−1

L

L∫

0

µ

(
∂ u

∂ r

)

r=r0

dx (10)

Local and average Nusselt numbers are given respectively by

Nux =
−x

(
∂ T ′
∂ r

)
r=r0

T ′
w − T ′∞

(11)

NuL = −
L∫

0

[(
∂ T ′

∂ r

)

r=r0

/
(T ′

w − T ′
∞)

]
dx (12)

Local and average Sherwood numbers are given respectively by

Shx =
−x

(
∂ C′
∂ r

)
r=r0

C ′
w − C ′∞

(13)

ShL = −
L∫

0

[(
∂ C ′

∂ r

)

r=r0

/
(C ′

w − C ′
∞)

]
dx (14)

In order to write the governing equations and the boundary conditions
in dimensionless form, the following non-dimensional quantities are intro-
duced.

X =
xν

u0r2
0

, R =
r

r0

, t =
t′ν
r2
0

, U =
u

u0

, V =
vr0

ν
, Gr =

gβr2
0(T

′
w − T ′∞)

νu0

,

Gc =
g β∗r2

0 (C ′
w − C ′

∞)

ν u0

, N =
kek

4σsT ′3∞
, (15)
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M =
σ B2

0r
2
0

ρν
, T =

T ′ − T ′∞
T ′

w − T ′∞
,

C =
C ′ − C ′∞
C ′

w − C ′∞
, Pr =

ν

α
, Sc =

ν

D

In view of the Equation (15), the Equations (1), (2), (8) and (4) reduce
to the following non-dimensional form

∂ (RU)

∂ X
+

∂(RV )

∂ R
= 0 (16)

∂ U

∂ t
+ U

∂ U

∂ X
+ V

∂ U

∂ R
= Gr T + Gc C +

1

R

∂

∂R

(
R

∂U

∂R

)
−MU (17)

∂ T

∂ t
+ U

∂ T

∂ X
+ V

∂ T

∂ R
=

1

Pr

(
1 +

4

3N

)
1

R

∂

∂R

(
R

∂T

∂R

)
(18)

∂ C

∂ t
+ U

∂ C

∂ X
+ V

∂ C

∂ R
=

1

Sc

1

∂R

(
R

∂C

∂R

)
(19)

The corresponding initial and boundary conditions are

t ≤ 0 : U = 0 , V = 0, T = 0, C = 0 for all X ≥ 0 and R ≥ 0

t > 0 : U = 1 , V = 0 , T = 1, C = 1 at R = 1

U = 0, T = 0 , C = 0 at X = 0 and R ≥ 1 (20)

U → 0, T → 0, C → 0 as R →∞
where Gr is the thermal Grashof number, Gc- solutal Grashof number,
M - the magnetic parameter, Pr - the Prandtl number, N - the radiation
parameter and Sc- the Schmidt number.

Local and average skin-frictions in non-dimensional form are given by

τX = −
(

∂ U

∂ R

)

R=1

(21)

τ = −
1∫

0

(
∂ U

∂ R

)

R=1

dX (22)
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Local and average Nusselt numbers in non-dimensional form are given
by

NuX = −X

(
∂T

∂R

)

R=1

(23)

Nu = −
1∫

0

(
∂T

∂R

)

R=1

dX (24)

Local and average Sherwood numbers in non-dimensional form are
given by

ShX = −X

(
∂C

∂R

)

R=1

(25)

Sh = −
1∫

0

(
∂C

∂R

)

R=1

dX (26)

3 Numerical Technique

In order to solve the unsteady, non-linear coupled Equations (16) to (19)
under the conditions (20), an implicit finite difference scheme of Crank-
Nicolson type has been employed.

[
Un+1

i,j − Un+1
i−1,j + Un

i,j − Un
i−1,j + Un+1

i,j−1 − Un+1
i−1,j−1 + Un

i,j−1 − Un
i−1,j−1

]

4∆X
+

[
V n+1

i,j − V n+1
i,j−1 + V n

i,j − V n
i,j−1

]

2∆R
+

V n+1
i,j

1 + (j − 1)∆R
= 0 (27)

[
Un+1

i,j − Un
i,j

]

∆t
+ Un

i,j

[
Un+1

i,j − Un+1
i−1,j + Un

i,j − Un
i−1,j

]

2∆X
+

V n
i,j

[
Un+1

i,j+1 − Un+1
i,j−1 + Un

i,j+1 − Un
i,j−1

]

4∆R
= Gr

[
T n+1

i,j + T n
i,j

]

2
+

Gc

[
Cn+1

i,j + Cn
i,j

]

2
+

[
Un+1

i,j−1 − 2 Un+1
i,j + Un+1

i,j+1 + Un+1
i,j+1 − 2Un

i,j + Un
i,j+1

]

2(∆R)2
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+

[
Un+1

i,j+1 − Un+1
i,j−1 + Un

i,j+1 − Un
i,j−1

]

4[1 + (j − 1)∆R]∆R
− M

2

[
Un+1

i,j + Un
i,j

]
(28)

[T n+1
i,j − T n

i,j]

∆t
+ Un

i,j

[
T n+1

i,j − T n+1
i−1,j + T n

i,j − T n
i−1,j

]

2∆X
+

+V n
i,j

[
T n+1

i,j+1 − T n+1
i,j−1 + T n

i,j+1 − T n
i,j−1

]

4∆R
=

1

Pr

(
1 +

4

3N

) ([
T n+1

i,j−1 − 2 T n+1
i,j + T n+1

i,j+1 + T n
i,j−1 − 2T n

i,j + T n
i,j+1

]

2(∆R)2
+

[
T n+1

i,j+1 − T n+1
i,j−1 + T n

i,j+1 − T n
i,j−1

]

4[1 + (j − 1)∆R]∆R

)
(29)

[Cn+1
i,j − Cn

i,j]

∆t
+ Un

i,j

[
Cn+1

i,j − Cn+1
i−1,j + Cn

i,j − Cn
i−1,j

]

2∆X
+

V n
i,j

[
Cn+1

i,j+1 − Cn+1
i,j−1 + Cn

i,j+1 − Cn
i,j−1

]

4∆R
=

1

Sc

[
Cn+1

i,j−1 − 2 Cn+1
i,j + Cn+1

i,j+1 + Cn
i,j−1 − 2Cn

i,j + Cn
i,j+1

]

2(∆R)2
+

[
Cn+1

i,j+1 − Cn+1
i,j−1 + Cn

i,j+1 − Cn
i,j−1

]

4Sc[1 + (j − 1)∆R]∆R
(30)

Here, the subscript i- designates the grid point along the X - direction,
j - along the R- direction and the superscript n along the t - direction. The
appropriate mesh sizes considered for the calculation are ∆X = 0.05, ∆R
= 0.25, and time step ∆t = 0.01. During any one-time step, the coefficients
Un

i,j and V n
i,j appearing in the difference equations are treated as constants.

The values of U, V, T and C are known at all grid points at t = 0 from the
initial conditions. The computations of U, V, T and C at time level (n+1)
using the known values at previous time level (n) are calculated as follows.

The finite difference Equation (30) at every internal nodal point on a
particular i- level constitute a tri-diagonal system of equations. Such a
system of equations is solved by Thomas algorithm as described in Carna-
han et al. [22]. Thus, the values of C are found at every nodal point on a
particular iat (n+1)th time level. Similarly, the values of T are calculated
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from the Equation (29). Using the values of C and T at (n+1)th time level
in the Equation (28), the values of U at (n + 1)th time level are found in
a similar manner. Thus the values of C, Tand Uare known on a particular
i- level. The values of V are calculated explicitly using the Equation (27)
at every nodal point on a particular i- level at (n + 1)th time level. This
process is repeated for various i- levels. Thus, the values of C, T, U and
V are known at all grid points in the rectangular region at (n + 1)th time
level.

Computations are carried out till the steady state is reached. The
steady state solution is assumed to have been reached, when the absolute
difference between the values of U as well as temperature T and con-
centration C at two consecutive time steps are less than 10−5 at all grid
points. The derivatives involved in the Equations (21) to (26) are evalu-
ated using five-point approximation formula and the integrals are evaluated
using Newton-Cotes closed integration formula. The truncation error in
the finite-difference approximation is O (∆t2 + ∆R2 + ∆X) and it tends
to zero as ∆X, ∆R, ∆t → 0. Hence the scheme is compatible. The finite-
difference scheme is unconditionally stable as explained by Ganesan and
Rani [8]. Stability and compatibility ensures convergence.The derivatives
involved in the Equations (21) - (26) are evaluated using five-point ap-
proximation formula and the integrals are evaluated using Newton-Cotes
closed integration formula.

4 Results and Discussion

In order to get a physical insight into the problem, a representative set of
numerical results is shown graphically in Figs. 1-11, to illustrate the influ-
ence of governing parameters viz., radiation parameter N , thermal Grashof
number Gr, solutal Grashof number Gc, magnetic field parameter M and
Schmidt number Sc on the velocity, temperature and concentration. The
value of the Prandtl number Pr is choosen to be 0.71, which corresponds
air and the values of Sc are chosen such that they represent water vapor
(0.6) and carbon dioxide (0.94).

In order to ascertain the accuracy of the numerical results, the present
study is compared with the previous study. The concentration profiles for
Gr = 5.0, Gc = 5.0, N = 0.0, M = 0.0, Pr = 0.7 are compared with the
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available solution of Ganesan and Loganathan [7] in Fig.1. It is observed
that the present results are in good agreement with that of Ganesan and
Loganathan [7].

The transient velocity profiles for different values of Gr, Gc, M , N and
Sc at a particular time t= 0.75 are shown in Fig.2. The thermal Grashof
number signifies the relative effect of the thermal buoyancy (due to density
differences) force to the viscous hydrodynamic force in the boundary layer
flow. The positive values of Gr correspond to cooling of the cylinder by
natural convection. Heat is therefore conducted away from the vertical
cylinder into the fluid which increases temperature and thereby enhances
the buoyancy force. It is observed that the transient velocity accelerates
due to enhancement in the thermal buoyancy force. The solutal Grashof
number Gc defines the ratio of the species buoyancy force to the viscous
hydrodynamic force. It is noticed that the transient velocity increases
considerably with a rise in the species buoyancy force. In both the cases it
is interesting to note that as Gr or Gc increases, there is rapid rise in the
velocity near the surface of vertical cylinder and then descends smoothly
to the free stream velocity. As expected, the transient velocity decreases
with an increase in the magnetic parameter M . It is because that the
application of transverse magnetic field will result a resistive type force
(Lorentz force) similar to drag force which tends to resist the fluid flow and
thus reducing its velocity. Also, the boundary layer thickness decreases
with an increase in the magnetic parameter. The radiation parameter
N(i.e., Stark number) defines the relative contribution of conduction heat
transfer to thermal radiation transfer. It can be seen that an in increase in
N leads to a decrease in the velocity. The Schmidt number Sc embodies
the ratio of the momentum diffusivity to the mass (species) diffusivity.
It physically relates the relative thickness of the hydrodynamic boundary
layer and mass-transfer (concentration) boundary layer. It is observed that
as the Schmidt number increases the transient velocity decreases.

In Fig.3, the transient and steady state velocity profiles are presented
for different values Gr, Gc, M , N and Sc. The steady state velocity in-
creases with an increase in Gr or Gc. It can be seen that an increase in
the thermal or species buoyancy force, reduces the time required to reach
the steady state. The steady state velocity decreases with an increase in
Mor N or Sc. The time taken to reach the steady state velocity increases
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as M or N increases.
The transient and steady state temperature profiles are presented for

different values M , N and Sc in Fig.4. It is observed that, as N decreases
from 5.0 to 2.0, the temperature increases markedly throughout the length
of the cylinder. As a result the thermal boundary layer thickness is de-
creasing due to a rise in N values. It is noticed that the temperature
decreases with an increase in M while it increases with an increase in Sc.
The time required to reach the steady state temperature increases with an
increase in Mor N and it decreases with an increase in Sc.

In Fig.5, the transient and steady state concentration profiles are pre-
sented for different values of M , N and Sc. It is found that the concen-
tration decreases as the radiation parameter N or the Schmidt number Sc
increases, while it increases with an increase in M . The time required to
reach the steady state concentration increases with an increase in M or N
and it decreases with an increase in Sc.

Steady-state local skin-friction (τx) values against the axial coordinate
X are plotted in Fig.6. The local shear stress τx increases with an increase
in Sc, while it decreases with an increase in Gr or Gc or M . The average
skin-friction (τ̄) values are shown in Fig. 7. It is found that the average
skin-friction increases with an increase in Sc, while it decreases with an
increase in Gr or Gc or M , throughout the transient period. It is also
observed that the average skin-friction increases as the radiation interac-
tion parameter N increases. The local Nusselt number (NuX) is shown in
Fig.8. The local heat transfer rate decreases with an increase in Sc, while
it increases with an increase in Gr or Gc or M . Also it is found that as the
radiation parameter N increases, the local Nusselt number increases. The
average Nusselt number (Nu) values are shown in Fig.9. It is observed
that the average Nusselt number increases with an increase in Gr or Gc
orN . The local Sherwood number ShX is plotted in Fig.10. It is noticed
that ShX increases with an increase in Sc, where as it decreases with an
increase in Gr or Gc or N . The average Sherwood number (Sh) values
are shown in Fig.11. It can be seen that the average Sherwood number
increases with an increase in Gr or Gc or Sc, while it decreases with an
increase in M .
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Figure 1: Comparison of velocity profiles

Figure 2: Transient velocity profiles at X=1.0 for different Gr, Gc, M, N
and Sc
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Figure 3: Velocity profiles at X=1.0 for different Gr, Gc, M , N and Sc

Figure 4: Temperature profiles at X=1.0 for different M, N and Sc
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Figure 5: Concentration profiles at X=1.0 for different M, N and Sc

Figure 6: Local skin-friction
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Figure 7: Average skin-friction

Figure 8: Local Nusselt number
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Figure 9: Average Nusselt number

Figure 10: Local Sherwood number
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Figure 11: Average Sherwood number

5 Conclusions

A numerical study has been carried out to study the interaction of radia-
tion and mass transfer effects on MHD flow of an incompressible viscous
fluid past a moving vertical cylinder. The fluid is gray, absorbing-emitting
but non-scattering medium and the Rosseland approximation is used to
describe the radiative heat flux in the energy equation. A family of gov-
erning partial differential equations is solved by an implicit finite difference
scheme of Crank-Nicolson type, which is stable and convergent. The re-
sults are obtained for different values of radiation parameter N , thermal
Grashof number Gr, solutal Grashof number Gc, magnetic field parameter
M , and Schmidt number Sc. The conclusions of this study are as follows

1. The transient velocity increases with the increase in Gr or Gc.

2. The transient velocity decreases with an increase in the magnetic
parameter M .
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3. The time required for velocity to reach the steady-state increases as
radiation parameter N increases.

4. As small values of the radiation parameter N , the velocity and tem-
perature of fluid increases sharply near the cylinder as the time t
increases, which is totally absent in the absence of radiation effects.

5. The skin-friction decreases with an increase M and increases with
the increasing value of radiation parameter N and Schmidt number
Sc.
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Radijacija i prenos mase pri nestacionarnoj MHD konvekciji
nestǐsljivog viskoznog fluida po pokretnom vertikalnom cilindru

Analizira se interakcija slobodne konvekcije sa termičkim zračenjem pri
viskoznom nestǐsljivom nestacionarnom MHD strujanju preko pokretnog
vertikalnog cilindra sa toplotnim i masenim prenosom. Fluid je siva, apsor-
bujuće-emitujuća nerasejavajuća sredina te se Rosseland-ova aproksimacija
koristi za opis zračećeg toplotnog protoka u jednačini energije. Jednačine
problema se rešavaju šemom konačnih razlika Krenk-Nikolsonovog tipa.
Numerički rezultati za prelaznu brzinu, temperaturu, koncentraciju, lokalno
i prosečno trenje na zidu, brzinu promene toplote i prenos mase su prikazani
za rezličite parametre kao: termički Grashofov broj, maseni Grashofov
broj, magnetski parametar, parametar zračenja i Šmitov broj. Primećuje
se da kada parametar zračenja raste tada brzina i temperatura u graničnom
sloju opadaju. Takodje, nadjeno je da porast magnetskog polja vodi
opadanju polja brzine i rastu debljine termičke granice.
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