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Abstract

A new numerical solution to the Lagrange problem is presented.
The solution is compared with a priori estimates obtained re-
cently. Also we derive a new relation that shows that the cross-
sectional area at the middle of the optimally shaped column is
larger than the cross-sectional area at the ends. Our numerical
experiments confirm that conclusion.

Keywords: Lagrange problem, Pontryagin’s principle, Estimates
of cross-sectional area.

1 Introduction

The problem of determining the shape of a rod of a given volume that is
the strongest against buckling is an important engineering problem. It
was formulated by Lagrange (1773) and is now known as the Lagrange
problem. Correct solution of the problem, with the simply supported
boundary conditions, leading to the so called optimally shaped column,
was obtained by Clausen in1851. For the historical account of the La-
grange problem see, for example, the articles by [1, 2, 3]. For different
approach to Lagrange problem see also [8].

∗All the authors are from the Faculty of Technical Sciences, University of Novi
Sad, 21000 Novi Sad, Serbia
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Our intention in this work is to use Pontryagin’s principle, as is done
in [4]. For derivation of bimodal optimality conditions of elastic col-
umn in which moment of inertia I is proportional to the cross–sectional
area A, i.e., I = kAα, where k is a constant and α = 1, 2, 3. We shall
determine the optimal shape and corresponding buckling load. Our
numerical results will be compared with recently obtained a priori esti-
mates [5]. Also we shall prove a new property of the optimal solution
A (0) = A (L) < A (L/2) , that is the cross-sectional area of the optimal
rod is larger at the middle point of the rod than the cross-sectional area
at the ends. Our numerical scheme will be different than the one used
in [6].

2 Formulation of the problem

Consider an elastic rod of length L loaded by an axial force F with the
action line coinciding with the x axis of a rectangular coordinate system
x−B − y (see Fig. 1.)

Figure 1: Coordinate system and load configuration

We use the following notation: H and V are components of the
contact force (i.e. the resultant force in an arbitrary cross–section) along
x and y axes, respectively, M is the bending moment, θ is the angle
between the tangent to the column axis and the x axis, S is the arc–
length of the column axis measured from the origin of the coordinate
system B.
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Equilibrium equations for the column are, Atanackovic (1997)

dH

dS
= 0,

dV

dS
= 0,

dM

dS
= −V cos θ + H sin θ, (1)

We adjoin to (10) the geometrical,

dx̄

dS
= cos θ,

dȳ

dS
= sin θ, (2)

and the constitutive equation

M = EI
dθ

dS
. (3)

In (2), (3) we used x̄ and ȳ to denote coordinates of an arbitrary point
on the rod axis in the coordinate system x − B − y, E is modulus of
elasticity and I is the moment of inertia of the cross–section. Equations
(2), (3) correspond to the classical Bernoulli–Euler rod theory. The
boundary conditions for the column shown in Fig. 1. are

ȳ (0) = ȳ (L) = 0, θ (0) = θ (L) = 0, H (L) = −F. (4)

Solving (1)1,2 and by using (4)3 we obtain

H = −F. (5)

Also we assume that the axial moment of inertia I and the cross-sectional
area A are connected as I = kAα,where k is a constant and α = 1, 2, 3.
For example, if α = 2 than, for a circular cross–section k = 1/4π. By
introducing the dimensionless quantities

t =
S

L
, a =

A

L2
, ζ =

x̄

L
, η =

ȳ

L
,

w =
W

L3
, λ =

F

kEL2
, ν =

V

kEL2
, m =

M

kEL3
, (6)

we obtain from (1)–(5)

v̇ = 0, ṁ = −v cos θ − λ sin θ,

ζ̇ = cos θ, η̇ = sin θ, θ̇ =
m

aα
, (7)
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subject to boundary conditions

ζ (0) = 0, η (0) = 0, η (1) = 0, θ(0) = 0, θ(1) = 0, (8)

where
.

(·) = d
dt

(·) . The system (7), (8) has a trivial solution

θ0 = η0 = v0 = 0, ζ0 = t, (9)

for all values of load parameter λ1 and stiffness parameter λ2.To deter-
mine (λ1, λ2) ∈ R2 for which there is a nontrivial solution to (7), (8) we
write v = v0 + ∆v, ..., θ = θ0 + ∆θ where ∆v, ..., ∆θ are perturbations.
By substituting this into (7), (8) and by neglecting the higher order
terms in perturbations, we obtain (after omitting ∆ in front of ∆v etc.)

v̇ = 0, ṁ = −v − λθ, η̇ = θ, θ̇ =
m

aα
, (10)

subject to

η (0) = 0, η (1) = 0, θ(0) = 0, θ(1) = 0. (11)

The volume of the rod is given as

w =

∫ 1

0

a (t) dt. (12)

In order to apply Pontryagin’s maximum principle, we introduce new
dependent variables as

x1 = η, x2 = θ, x3 = v, x4 = m. (13)

Then, the system (10), (11) becomes

ẋ1 = x2, ẋ2 =
x4

aα
, ẋ3 = 0, ẋ4 = −x3 − λx2, (14)

and
x1 (0) = 0, x1 (1) = 0, x2 (0) = 0, x2 (1) = 0. (15)

In terms of the optimal control, the problem now becomes: Given λ find
the control a∗ (t) ∈ U such that

min
a∈U

I = min
a∈U

∫ 1

0

a (t) dt =

∫ 1

0

a∗ (t) dt. (16)
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under the state equations (14), (15).
It was shown in [6] that for given λ and a (t) the system (14),(15) can

have at most two linearly independent solutions (x1, ...x4) and (x̂1, ...x̂4)
corresponding to two buckling modes. Since both solutions correspond
to the same λ and a(t) = a∗(t) we have

.
x1 = x2,

.
x2 =

x4

aα
,

.
x3 = 0,

.
x4 = −x3 − λx2

.

x̂1 = x̂2,
.

x̂2 =
x̂4

aα
,

.

x̂3 = 0,
.

x̂4 = −x̂3 − λx̂2 (17)

satisfying

x1 (0) = 0, x1 (1) = 0, x2 (0) = 0, x2 (1) = 0,

x̂1 (0) = 0, x̂1 (1) = 0, x̂2 (0) = 0, x̂2 (1) = 0. (18)

The Pontryagin’s function H, taking into account that differential con-
straints are given by (17) reads

H = a + p1x2 + p2

x4

aα
+ p4 (−x3 − λx2)

+ p̂1x̂2 + p̂2
x̂4

aα
+ p̂4 (−x̂3 − λx̂2) ,

(19)

where pi, p̂i, i = 1, ..., 4 are so-called ”co–state” p-variables correspond-
ing to state x-variables. The ”co-state” variables pi, p̂i, i = 1, ..., 4 satisfy

.
p1 = −∂H

∂x1

= 0, p2 = −∂H
∂x2

= −p1 + λp4,

.
p3 = −∂H

∂x3

= p4,
.
p4 = −∂H

∂x4

= − p2

aα
,

.

p̂1 = −∂H
∂x̂1

= 0, p̂2 = −∂H
∂x̂2

= −p̂1 + λp̂4,

.

p̂3 = −∂H
∂x̂3

= p̂4,
.

p̂4 = −∂H
∂x̂4

= − p̂2

aα
, (20)

subject to

p3 (0) = 0, p3 (1) = 0, p4 (0) = 0, p4 (1) = 0,

p̂3 (0) = 0, p̂3 (1) = 0, p̂4 (0) = 0, p̂4 (1) = 0. (21)
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The optimality condition min
a∈U

H leads to

∂H
∂a

= 1− αp2

x4

aα+1
− αp̂2

x̂4

aα+1
= 0. (22)

By solving (22) for a we obtain

a = a
∗

= [α (p2x4 + p̂2x̂4)]
1/(α+1) . (23)

We now identify the state xi, x̂i, i = 1, ...4 and co–state pi, p̂i, i = 1, ...4
variables. It could be easily seen that p1 = x3, p2 = x4, p3 = −x1,

p4 = −x2, p̂1 = x̂3, p̂2 = x̂4, p̂3 = −x̂1, p̂4 = −x̂2. With these values, we
obtain, in original variables

a (t) =
[
α

(
m2 + m̂2

)]1/(α+1)
. (24)

In original variables the bimodal solutions are

.
η = θ,

.

θ =
m

aα
,

.
v = 0,

.
m = −v − λθ

.

η̂ = θ̂,
.

θ̂ =
m̂

aα
,

.

v̂ = 0,
.

m̂ = −v̂ − λθ̂, (25)

subject to

η1 (0) = 0, η1 (1) = 0, θ2 (0) = 0, θ2 (1) = 0,

η̂1 (0) = 0, η̂1 (1) = 0, θ̂2 (0) = 0, θ̂2 (1) = 0. (26)

We showed in [6] that H given by (19) is a first integral. Therefore

H = a (t) + θv +
(m)2

[
α

(
(m)2 + (m̂)2)]α/(α+1)

+ θ
(
v + λθ

)
+ θ̂v̂ +

(m̂)2

[
α

(
(m)2 + (m̂)2)]α/(α+1)

(27)

+ θ̂
(
v̂ + λθ̂

)
= const.



On the Optimal Shape of a Compressed Column 43

From [3] p. 69 we cite the other two first integrals of the system (here
in the generalized version with arbitrary α)

K = λ
α + 1

α
a (t) +

(
v + λθ

)2
+

(
v̂ + λθ̂

)2

= const.,

D = − (
v + λθ

)
m̂ +

(
v̂ + λθ̂

)
m = const. (28)

Note that

(m)2

[
α

(
(m)2 + (m̂)2)]α/(α+1)

+
(m̂)2

[
α

(
(m)2 + (m̂)2)]α/(α+1)

=
(m)2 + (m̂)2

[
α

(
(m)2 + (m̂)2)]α/(α+1)

=
a

α
,

where we used (24). Also
.
m = − (

v + λθ
)
,

.

m̂ = −
(
v̂ + λθ̂

)
, so that

H =
α + 1

α
a (t) + θv + θ̂v̂ − θ

.
m− θ̂

.

m̂. (29)

Since

θ
.
m =

(
θm

). −
.

θm =
(
θm

). − m

aα
m,

θ̂
.

m̂ =
(
θ̂m̂

).

−
.

θ̂m̂ =
(
θ̂m̂

).

− m̂

aα

we obtain after the integration of (29) and use of the boundary condi-
tions

H =
1 + α

α
w +

∫ 1

0

(m)2 + (m̂)2

aα

=
1 + α

α
w +

∫ 1

0

a (t)

α
dt =

2 + α

α
w.

(30)

Also by substituting t = 0 (or t = 1) and using the boundary conditions

θ (0) = 0, θ̂ (0) = 0 in (29) we obtain

H =
α + 1

α
a (0) =

α + 1

α
a (1) . (31)
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Finally by combining (30) and (31) we obtain a (0) = a (1) = 2+α
1+α

w.

Thus, for w = 1 we obtain:α = 1, a (0) = 3
2
, α = 2, a (0) = 4

3
, α =

3, a (0) = 5
4
. This estimates are presented in [5]. We call

(
η, θ, v, m

)

and
(
η̂, θ̂, v̂, m̂

)
the first and second mode solution, respectively. Since,

η (t) = η (1− t) we have θ (0.5) = 0. This relation with global equi-
librium equation for the rod leads to v = 0. Let a0 = a (0) ,m0 =

m (0) , m̂0 = m̂ (0) , as = a (0.5) , θ̂s = θ̂ (0.5) ,ms = m (0.5) , m̂s =
m̂ (0.5) . Then, from (28)1, evaluated at t = 0 and t = 0.5 we have

K = λ
α + 1

α
a0 + v̂2 = λ

α + 1

α
as +

(
v̂ + λθ̂s

)2

. (32)

Evaluating D given by (28)2 at t = 0 and t = 0.5 we get D = v̂m0 =(
v̂ + λθ̂s

)
ms. Note also that a (t) = a (1− t) (see [7], p. 108) so that

ȧ (0.5) = 0. This together with K̇ = 0 leads to m̂s = 0. Then from (24)

we have ms =
√

aα+1
s

α
. Therefore

D = v̂m0 =
(
v̂ + λθ̂s

) √
aα+1

s

α
(33)

Also, from (24) evaluated at t = 0 we get aα+1
0 = α [m2

0 + m̂2
0] . Since

m̂ (0) = −m̂ (1) the global equilibrium conditions imply m̂0 = v̂/2.

Therefore aα+1
0 = α

[
m2

0 + v̂2

4

]
, so that m0 =

√
aα+1
0

α
− v̂2

4
. Using this in

(33) we get

(
v̂ + λθ̂s

)2

=
v̂2

[
aα+1

0 − α v̂2

4

]

aα+1
s

(34)

By substituting (34) into (33) we finally obtain

α

4

v̂4

aα+1
s

+ v̂2

[
1− aα+1

0

aα+1
s

]
+ λ

α + 1

α
[a0 − as] = 0. (35)

Note that v̂ 6= 0 (otherwise, D = 0 and m (t) and m̂ (t) are linearly
dependent, see [3] p. 69). Then, from (35) we have a0 6= as! Our
numerical results show that a0 < as. Also (35) leads to a unique real
solution v̂ only if a0 < as.
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3 Numerical results

We solved (25-26) numerically for α = 1, 2, 3 and with the condition
v = 0 and w = 1. The results are shown in the next Table

Table 1
α λ a0 as

1 47.993050138 1.4999999587 1.500003492

2 52.356254741 1.3333328969 1.3339386287

3 54.825435481 1.2499977373 1.251667967

In Fig. 2 we show buckling modes and cross-sectional area for α = 3.
Our values for λ agree with the values obtained earlier. For example

in [7] for α = 2 the value λ = 52.3564 and for α = 3 the value λ =
54.8248 was obtained. In [8], the value λ = 52.3562 and λ = 52.356254
for α = 2 is obtained. Both values are obtained with different method.
Also in [6] the values λ = 47.99305032, λ = 52.3562542669 and λ =
54.82543305 for α = 1, 2, 3 is obtained, respectively.

As is seen from Table, in all cases a0 < as. By substituting values
from the Table in (35) we obtain

R (1) = −3.5942483042× 10−6,

R (2) = −3.4275646673× 10−5,

R (3) = −1.7020189244× 10−4

with

R (α) =
α

4

v̂4

aα+1
s

+ v̂2

[
1− aα+1

0

aα+1
s

]
+ λ

α + 1

α
[a0 − as] .

We note that if we assume a0 = as then

Ra0=as (1) = 3.3537843901× 10−4,

Ra0=as (2) = 0.0468940396,

Ra0=as (3) = 0.1186057782.

Thus, residual in equation (35) is much smaller when we use a0 < as

which follows from our numerical solution.
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(a) Modes

(b) Area

Figure 2: Buckling modes and optimal cross-sectional area for α = 3



On the Optimal Shape of a Compressed Column 47

Acknowledgment

This research is supported by the Grant 144019 of the Serbian Ministry
of Science.

References

[1] S. J.Cox, . The shape of the ideal column, The Mathematical Intel-
ligencer, 14 (1992)16–24.

[2] A. P. Seyranian, O. G.Privalova, The Lagrange problem on an opti-
mal column: old and new results, Structural and Multidisciplinary
Optimization, 25 (2003) 1-18.

[3] A. P. Seyranian, The Lagrange problem on optimal column. Ad-
vances in Mechanics (Uspekhi Mekhaniki) 2 (2003) 45-96.

[4] T.M. Atanackovic, Optimal shape of column with own weight: bi
and single modal optimization, Meccanica 41, (2006) 173-196.

[5] T. M. Atanackovic, A. P. Seyranian, Application of Pontryagin’s
principle to bimodal optimization problems and estimates for op-
timal control, International Conference ”Differential Equations and
Topology”, Moscow, 17-22 June, 2008.

[6] T. M. Atanackovic, A. P. Seyranian, Application of Pontryagin’s
principle to bimodal optimization problems, Struct. Multidisc. Op-
tim., (2008) DOI 10.1007/s00158-007-0211-6.

[7] A. P. Seyranian, On a problem of Lagrange. Mechanics of Solids
(Mekhanika Tverdogo Tela), 19 (2) (1984) 100–111.

[8] Yu. V. Egorov, On the Lagrange problem about strongest column.
C. R. Acad. Sci. Paris, Ser. I 335 (2002) 997–1002.

Submitted on September 2009.



48 T.M.Atanackovic, B.N.Novakovic, E.Basara

O optimalnom obliku pritisnutog stuba

Prikazano je novo numeričko rešenje Lagrange-ovog problema. Ovo
rešenje je upored̄eno sa apriornim ocenama nedavno dobijenim. Takod̄e
je izvedena nova relacija koja pokazuje da je površina poprečnog pre-
seka na sredini optimalno oblikovanog štapa veća od površina poprečnih
preseka na krajevima. Naši numerički eksperimenti potvrd̄uju ovaj za-
ključak.
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