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Abstract

In this paper, the relationship between the original Euler-Bernoulli’s
rod equation and contemporary knowledge is established. The so-
lution which Daniel Bernoulli defined for the simplest conditions
is essentially the solution of “direct kinematics”. For this reason,
special attention is devoted to dynamics and kinematics of elastic
mechanisms configuration. The Euler-Bernoulli equation and its
solution (used in literature for a long time) should be expanded
according to the requirements of the mechanisms motion complex-
ity. The elastic deformation is a dynamic value that depends on
the total mechanism movements dynamics. Mathematical model
of the actuators comprises also elasticity forces.
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Nomenclature

EBA “Euler-Bernoulli approach”, assumes the use
of Euler-Bernoulli equations which appeared
in 1750

LMA “Lumped-Mass Approach” is a method which
defines equation motion of any point of
considered mechanism

DOF degree of freedom
t(s) time
dt ∈ R1(s) sample time
T ∈ R1(s) whole period time
ps = [x y z ψ ℘ ϕ Cartesian coordinates
xi,j, yi,j, zi,j local coordinate frame, which is set in the

base of considered mode
xj, yj, zj local coordinate frame, which is set in the

base of the considered link
x, y, z basic coordinate frame, which is set in the

root of the considered mechanism
j = 1, 2, 3, ... , ni serial number of the mode of considered link
i = 1, 2, 3, ... , m ordinal number of the link
k = n1 + n2 + ... + nm whole u number of the modes in considered

mechanisms configuration
Mi,j ∈ R1(Nm) load moment for the mode tip
εi,j ∈ R1(Nm) bending moment for the mode tip
εj ∈ Rni(Nm) bending moments vector for each mode tip

considered link
ς ∈ R1(Nm) elasticity moment of the gear

#̂i,j quantities that are related to an arbitrary
point of the elastic line of the mode,

for example: M̂i,j, x̂i,j, ε̂i,j

#i,j quantities that are not designated by “ˆ” are
defined for the mode tip, for example:
Mi,j, xi,j, εi,j

#j quantities which characterized link
#o quantities that are defined desired value
ϑi,j ∈ R1(rad) bending angle of the considered mode
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ωi,j ∈ R1(rad) rotation angle of the tip of the considered mode
ξj ∈ R1(rad) deflection angle of the gear
βi,j ∈ R1(Nm2) flexural rigidity
ηi,j ∈ R1(s) factor which characterizes part of damping in

whole flexural characteristics
H ∈ Rkxk inertial matrix
h ∈ Rk centrifugal, gravitational, Coriolis vector
Fuk ∈ R6x1(N(Nm)) dynamic contact force
me ∈ R1(kg) equivalent mass
be ∈ R1(N/(m/s)) equivalent damping
ka1 ∈ R1(N/m) environment rigidity
µ friction coefficient
Je Jacobian matrix mapping the effect of the

contact force
Tsti,j ∈ R1(m) stationary part of flexible deformation caused

by stationary forces that vary continuously
over time

Ttoi,j ∈ R1(m) oscillatory part of flexible deformation
ai,j ∈ R1(m) commonly normal distance between

j-th and j + 1-th joints
αi,j ∈ Rm(rad) angle between the axes zj−1 and zj about axe xj

di,j ∈ R1 (m) distance between normal lj−1 and lj along axe
of j-th joint

Rj(Ω) rotor circuit resistance
ij(A) rotor current
CEj(V/(rad/s)) proportionality constants

of the electromotive force
CMj(Nm/A) proportionality constants of the moment
Buj(Nm/(rad/s)) coefficient of viscous friction
Ij(kgm2) inertia moments of the rotor and reducer
Sj expression defining the reducer geometry
θ̄j(rad) dynamics of motor motion
li,j ∈ R1(m) length of each mode
ri,j ∈ R1(m) flexure
κ ∈ R1 (m) spatially distance
λ trajectory mark
m ∈ R1 (kg) mass
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m̂el i,j(kg / m) equivalent mass of the mode to the
considered position on the flexible line

Ĵelzz i,j(kgm2/m) equivalent moment of inertia of the mode to
the considered position on the flexible line

Ekm(Nm) kinetic energy
Ep(Nm) potential energy
Φ(Nm/s) dissipative energy
φ generalized coordinate
g(m/s2) gravity acceleration
Jz ∈ R1 (kgm2) inertia moment
C ∈ R6x6 matrix of rigidity
B ∈ R6x6 matrix of damping
u ∈ R1(V ) control signal
Csi,j ∈ R1(kg/s2) characteristics of stiffness of the mode

considered link
Bsi,j ∈ R1(kg/s) characteristics of damping of the mode

considered link
Cξ ∈ R1(Nm/rad) characteristics of stiffness of the gear
Bξ ∈ R1 (Nm/(rad/s)) characteristics of damping of the gear

1 Introduction

Modeling of elastic mechanisms was a challenge to researchers in the last
four decades. In paper [1] the authors extended the integral manifold ap-
proach for the control of flexible joint robot manipulators from the known
parameter case to the adaptive case. Paper [2] presented the derivation
of the equations of motion for application of mechanical manipulators
with flexible links. In [3] the equations were derived using Hamilton’s
principle and they were nonlinear integro-differential equations. Method
of variables separation and Galerkin’s approach were suggested in the
paper [4] for the boundary-value problem with time-dependent boundary
condition. The first detailed presentation of the procedure for creating
reference trajectory was given in [5].

Spong [6] defined mathematical model of a mechanism with one degree
of freedom (DOF) with one elastic gear in 1987. Based on the same prin-
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ciple, the elasticity of gears was introduced in the mathematical model
in this paper, as well as in the papers [7]-[12]. However, it is necessary
to point out some essential problems in this domain concerning the intro-
duction of link flexibility in the mathematical model.

In our paper, we did not use “assumed modes technique”, proposed by
Meirovitch in [14]. We disagree with him. “Assumed modes technique”
[14] was used by all authors [15]-[25] in the last 40 years to form Euler
Bernoulli equation of beam. Unlike our contemporaries, we form Euler
Bernoulli equation but we do not use “assumed modes technique” in our
paper.

We believe that the “assumed modes technique” can be useful in some
other research areas but it is used in a wrong way in robotics, theory of
vibrations and theory of elasticity.

LMA (“Lumped-mass approach”) is a method, which defines motion
equation at any point of considered mechanism.

EBA (“Euler-Bernoulli approach”) assumes the use of Euler-Bernoulli
equations, which appeared in 1750. EBA [15]-[25] etc, gives the possibility
to analyze a flexible line form of each mode in the course of task realiza-
tion. The EBA approach is still in the focus of researchers’ interest. It
was analyzed most often in last decades.

The relationship between LMA and EBA was defined in [10] and [11].

In the period from 1750 when the Euler Bernoulli equation was pub-
lished until today our knowledge, especially in the robotics, the vibration
theory and the elasticity theory, have progressed significantly. Therefore,
this paper pointed out the necessity of extension of the Euler-Bernoulli
equation from many aspects.

In the previous literature [15]-[25] etc, the general solution of the
motion of an elastic mechanism was obtained by considering flexural de-
formations as transversal oscillations that could be determined by the
method of particular integrals of D. Bernoulli.

We consider that any elastic deformation can be presented by super-
imposing D. Bernoulli’s particular solutions of the oscillatory character
and stationary solution of the forced character. The elastic deformation is
a dynamic value, which depends on the total dynamics of the mechanism
movements (cf. [7], [8], [10]-[12]).

The reference trajectory is calculated from the overall dynamic model
when the mechanism tip tracks a desired trajectory in a reference regime
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in the absence of disturbances.

Elastic deformation (of flexible links and elastic gears) is a quantity,
which is, at least, partly encompassed by the reference trajectory. It is
assumed that all elasticity characteristics in the system (of both stiffness
and damping) are “known” at least partly and at that level, they can be
included into the process of defining the reference motion. Thus defined
reference trajectory allows the possibility of applying very simple control
laws via PD local feedback loops which ensures reliable tracking of the
mechanism tip considered in the space of Cartesian coordinates to the
level of known elasticity parameters.

In this paper we propose a mathematical model solution that includes
in its root the possibility for simultaneous analyzing both present phe-
nomena – the elasticity of gears and the flexibility of links and the idea
originated from [26], but based on new principles.

Our future work should be directed on implementation of gears elas-
ticity and links flexibility on any model of rigid mechanism and also on
model of reconfigurable rigid robot as given in [29-30] or any other type
of mechanism. The mechanism should be modeled to contain elastic ele-
ments and to generate vibrations, which are used for conveying particulate
and granular materials in [31].

A supplement to source equations of flexible line is given in Section 2.
Procedure of defining the dynamic model of the system under the influ-
ence of dynamic environment with all elements of coupling is presented
completely in Section 3 as well as with dynamic effects of present forces
defined. The created (direct and inverse kinematics) kinematic model
of system is shown in Section 4. We presented the analogy between
the Euler-Bernoulli equation solutions, which were defined, by Daniel
Bernoulli and the procedure of the “direct kinematics” and “inverse kine-
matics” solutions in Section 5. Section 6 gives an analysis of the dynam-
ics movement of a multiple DOF elastic mechanism with elastic gear and
flexible link in the presence of the second mode and environment force.
Section 7 is devoted to some concluding remarks.
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2 Elastic line source equations interpreta-

tion

Equation of the elastic line of beam bending has the following form:

M̂1,1 + β1,1 · ∂2ŷ1,1

∂x̂2
1,1

= 0. (1)

General motion solution i.e. the form of transversal oscillations of flex-
ible beams can be found by particular integrals method of D. Bernoulli,
i.e.:

ŷto1,1(x̂1,1, t) = X̂1,1(x̂1,1) · T̂to1,1(t). (2)

(see Fig. 1). Superimposing the above particular solutions (2), any
transversal oscillation can be presented in the following form:

ŷto1(x̂1,j, t) =
∞∑

j=1

X̂1,j(x̂1,j) · T̂to1,j(t). (3)
u
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Figure 1: Idealized motion of elastic body according to D. Bernoulli.

Equations (1)-(3) were defined under the assumption that elasticity
force was opposed only to the proper inertial force. Besides, it was sup-
posed, according to the definition, that motion in equation (1) was caused
by an external force, then suddenly added and finally removed. The so-
lution (2)-(3) of D. Bernoulli supported these assumptions.



56 Mirjana Filipovic, Ana Djuric

Bernoulli presumed that the horizontal position of the observed body
was its stationary state (in this case it matched the position x- axis,
see Fig. 1). At such presumption, the vibrations happened just around
the x- axis. If Bernoulli, at any case, had included the gravity force
in its equation (1), the situation would have been more real. Then the
stationery body position would not have matched the x- axis position,
but the body position would have been little lower and the vibrations
would have happened around the new stationery position (as presented
in Fig. 2).

Figure 2: The motion of elastic body in case of gravity force presence.

Equations (1)-(3) need short explanation that, we think, should be
assumed, but it could not be found in the literature. Euler and Bernoulli
wrote equation (3) based on “vision”. They did not define the mathe-
matical model of a link with an infinite number of modes (as presented
in Fig. 3), which had a general form of equation (4), but they defined the
motion solution (shape of elastic line) of such a link, which was presented
in equation (3).

They left the task of link modeling with an infinite number of modes
to their successors. Transversal oscillations defined by equation (4) de-
scribed the elastic beam motion to which we assigned an infinite number
of DOFs (modes) and which could be described by a mathematical model
composed of an infinite number of equations, in the form:

M̂1,j + ε̂1,j = 0, j = 1, 2, ..., j, ...∞. (4)
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Figure 3: The possible positions of the elastic segment tip.

Dynamics of each mode was described by one equation. The equa-
tions in the model (4) were not of equal structure as our contemporaries,
authors of numerous works, interpreted them. We think that coupling
between involved modes led to the structural diversity among the equa-
tions in the model (4). This explanation had the key importance and it
was necessary to understand our further discussion.

Under a mode, we considered the presence of coupling between all
the modes present in the system. We analyzed the system in which the
action of coupling forces (inertial, Coriolis’ and elasticity forces) existed
between the present modes. This yielded the difference in the structure
of Euler-Bernoulli equations for each mode.

The Bernoulli solution (2)-(3) described only partially the nature of
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real elastic beams motion. To be more precise, it was only one component
of motion. Euler-Bernoulli equations (1)-(3) should be expanded from
several aspects in order to be applicable in a broader analysis of mecha-
nisms elasticity. Having supplemented these equations with expressions
that came out directly from the elastic bodies’ motion dynamics, they
became more complex.

The motion of the considered mechanism mode was far more com-
plex than the motion of the body presented in Fig. 1. This means that
equations describing the mechanism (its elements) must also be more
complex than the equations (1)-(3) formulated by Euler and Bernoulli.
This fact was overlooked and the original equations were widely used in
the literature to describe the mechanism motion. This was very inad-
equate because valuable pieces of information about the complexity of
the elastic mechanism motion were lost that way. Hence, the necessity
of expanding the source equations for modeling mechanisms should be
emphasized and this should be done in the following way:

• based on the known laws of dynamics, equation (1) was to be sup-
plemented with all forces that participated in the formation of the
considered mode bending moment. It was assumed that forces of
coupling (inertial, Coriolis, and elastic) between the present modes
were also involved which yielded structural difference between equa-
tions (1) in the model (4),

• Equations (2)-(3) were to be supplemented with the stationary char-
acter of the elastic deformation caused by forces involved.

3 Dynamics

Let us analyze behaviour of the mechanism consisting of elastic gear and
flexible link in the presence of the second mode, as depicted in Fig. 4.
Tip of mechanism started from position “A” and moves directly to point
“B” in predicted time of T = 2(s).

We introduced the presence of the second mode in the analysis of the
mechanism behaviour. Angle θ̄is a rotation angle of the motor shaft after
the reducer; ϑ1,1 (ϑ1,2) is a bending angle of the first (second) mode of the
link; ω1,1 (ω1,2) is a rotation angle of the tip of the first (second) mode
(see [32]); ξ is a deflection angle of the gear.
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Figure 4: Mechanism.

The relations between the important angles in the horizontal and ver-
tical plane, defined in Fig 5, are given by the following expressions, re-
spectively.

q = γ + ϑ1,1q, γ = θ̄ + ξ, δ = ω1,1q + ϑ1,2δ, e = ω1,1m + ϑ1,2e. (5)

ω1,1q =
ϑ1,1q

2
, ω1,2δ =

ϑ1,2δ

2
. (6)

ω1,1m =
ϑ1,1m

2
, ω1,2e =

ϑ1,2e

2
(7)

q, δ, γ, ϑ1,1m and e are new DH parameters that also encompass the
rigidity characteristics (ai,j = li,j[m], αi,j = 0o and di,j = 0[m]).

Dynamic model (both the model of flexible line and model of motion of
each mode tip) is defined by the equations of motion of elastic mechanism
based on classical principles but with the previously introduced new DH
parameters, using Lagrange’s equations. Generalized coordinates can be
defined in an arbitrary way. Literature survey shows that authors always
chose flexible deformation of each mode for a generalized coordinate, as
well as the motor rotation angle. Obviously, there is no error in such a
choice. However, it appears that in such generalized coordinates choice it
is not possible to recognize the place where the environment force should
be introduced into the final form of the mathematical model. That might
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be the reason why this final form can also be written in a different way
if we carry out regrouping of the model elements. In order to overcome
this “problem” we will adopt the following quantities:q,δ,γ,ϑ1,1m, e and θ̄
as generalized coordinates (see Fig. 5).

Figure 5: Planar geometry of the mechanism in the horizontal and vertical
plane.
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We accepted that top of mode was moving continuously on the surface
of ball, which radius was li,j without shortening for each mode.

l1,1m ≈ l1,1, l1,2e ≈ l1,2, l1,1q ≈ lm, l1,2δ ≈ le. (8)

If we consider small bending angles and adopt that tg ϑ1,1m =
r1,1m

l1,1

,

tg ϑ1,2e =
r1,2e

l1,2

, tg ϑ1,1q =
r1,1q

lm
, tg ϑ1,2δ =

r1,2δ

le
, then ϑ1,1m ≈ tgϑ1,1m,

ϑ1,2e ≈ tgϑ1,2e, ϑ1,1q ≈ tgϑ1,1q, ϑ1,2δ ≈ tgϑ1,2δ, and lm = l1,1 · cos ϑ1,1m,
le = l1,2 · cos(ϑ1,1m + e). By applying equations (5)-(7), respectively, we
obtain:

r1,1m = l1,1 · ϑ1,1m. (9)

r1,2e = l1,2 · (e− ϑ1,1m

2
). (10)

r1,1q = l1,1 · cos ϑ1,1m · (q − γ) (11)

r1,2δ = l1,2 · cos(ϑ1,1m + e) · (δ − q − γ

2
) (12)

Magnitude r1,1m(r1,1q) is maximum deflection, i.e. the deflection at
the tip of the first mode in vertical (horizontal) plane, while r1,2e(r1,2δ) is
maximum deflection, i.e. the deflection at the tip of the second mode in
vertical (horizontal) plane.

Component of the whole environment force in the radial direction (see
Fig. 4) is: Fc = (me · κ̈+be · κ̇+F o

c +ka1 ·∆κ) whereas the friction force is

Ff = −µ
k̇∣∣∣k̇
∣∣∣
·Fc, as in [33]. F 2

uk = F 2
c +F 2

f . But also F 2
uk = F 2

h +F 2
v , where

Fv vertical component in x− z plane and Fh horizontal component in x
- y plane. F 2

h = F 2
ch + F 2

fh, F 2
v = F 2

cv + F 2
fv. Follows that Fh = [Fch Ffh]

T ,
Fv = [Fcv Ffv]

T . See Fig. 5.
κ2 = x 2 + y 2 + z 2is the distance from the point “C” to the tip of the

mechanism, and ∆κ = (l1,1 + l1,2)− κ.
Trajectory, marked with λ on Fig. 4, pertains to the ball surface.
According [32]:

m̂el i,j =
33

140
· w̄i,j · l̂i,j, Ĵelzz i,j = m̂el i,j · ( l̂i,j

2
)2. (13)
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Kinetic energy of the mechanism presented in Fig. 5 is:

ˆ̂
Ekm = 1/2·m̂el 1,1·(l̂1,1·cos ϑ̂1,1m)2 ·q̇2+1/2·(m+m̂el 1,2)·(l1,1·cos ϑ1,1m)2 ·q̇2+ ....

(14)
Potential energy of the involved masses is:

ˆ̂
Ep = m̂el1,1 · l̂1,1 · g · sin ϑ̂1,1m + (m + m̂el1,2) · l1,1 · g · sin ϑ1,1m+

+m · l1,2 · g · sin( ϑ1,1m + e) + m̂el1,2 · l̂1,2 · g · sin( ϑ1,1m + ê). (15)

We will express the flexibility moment at any point in the form:

ε̂i,j = βi,j · ∂2(ŷi,j + ηi,j · ˙̂yi,j)

∂ x̂2
i,j

.

Now, we should define the potential energy at the tip of each mode:
Epes1,j = 1

2
· Cs1,j · r2

1,j.
If we multiply and divide the previous expression by l2i,j, then

Epels1,j =
1

2
· Cs1,j ·

r2
1,j

l21,j

· l21,j.

By applying equations (9)-(12), respectively, we obtain:

Epels1,1 m =
1

2
Cs1,1(ϑ1,1m)2 · l21,1 (16)

Epels1,2 e =
1

2
Cs1,2(e− ϑ1,1m

2
)2 · l21,2. (17)

Epels1,1 q =
1

2
Cs1,1(q − γ)2 · (l·1,1 cos(ϑ1,1m))2. (18)

Epels1,2 δ =
1

2
Cs1,2(δ − q − γ

2
)2 · (l·1,2 cos(ϑ1,1m + e))2. (19)

Dissipative energy of the flexible link at the tip of each mode is:

Φels1,1 m =
1

2
Bs1,1(ϑ̇1,1m)2 · l21,1. (20)

Φels1,2 e =
1

2
Bs1,2(ė− ϑ̇1,1m

2
)2 · l21,2. (21)

Φels1,1 q =
1

2
Bs1,1(q̇ − γ̇)2 · (l·1,1 cos(ϑ1,1m))2. (22)
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Φels1,2 δ =
1

2
Bs1,2(δ̇ − q̇ − γ̇

2
)2 · (l·1,2 cos(ϑ1,1m + e))2. (23)

Potential energy of the elastic gear is:

Epel ξ =
1

2
· Cξ · ξ2 =

1

2
· Cξ · (γ − θ̄)2. (24)

Dissipative energy of the elastic gear is:

Φel ξ =
1

2
·Bξ · ξ̇2 =

1

2
·Bξ · (γ̇ − ˙̄θ)2. (25)

Epel = Epels1,1 m + Epels1,2 e + Epels1,1 q + Epels1,2 δ + Epel ξ. (26)

Φel = Φels1,1 m + Φels1,2 e + Φels1,1 q + Φels1,2 δ + Φel ξ. (27)

All the angles in the expression for kinetic energy (equation (14)),
characterizing flexibility of the links, should also be expressed via gener-
alized coordinates using equations (5)-(7).

Let us define the equation of flexible line of the first mode in horizontal

plane. The expressions
ˆ̂
Ekm (14) and

ˆ̂
Ep (15) should be defined for the

full length of the second mode:

l1,2 =

l1,2∫

0

dx1,2, mel1,2 =
33

140
· w̄1,2 · l1,2, Jelzz1,2 = mel1,2 · ( l1,2

2
)2. (28)

Thus we obtain the expressions Êkmel 1 and Êpel 1. By applying La-
grange’s equation respecting the first generalized coordinate q using ex-
pressions Êkmel 1, Êpel 1, Epel , Φel we obtain the load moment M̂1,1 q, which
represents the sum of all moments that causes the flexible deformation of
the first mode in horizontal plane and which is opposed to the flexibility
moment ε̂1,1 q. M̂1,1 q + ε̂1,1 q = 0. Magnitude M̂1,1 q includes also environ-
ment force in horizontal plane. This is just procedure for obtaining the
Euler-Bernoulli equation of the first mode in the horizontal plane:

[Ĥel1,1 Ĥel1,2 Ĥel1,3 0 0 0] · φ̈ + ĥel1 + ĵT
eq · [Fch Ffh 0 0 0 0]T−

−1

2
· ε1,2δ + β1,1 · ∂2(ŷ1,1q + η1,1 · ˙̂y1,1q)

∂ x̂2
1,1q

= 0 (29)
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We can define the motion of any point on the flexible line of the first
mode in horizontal plane by this equation.
ε = [ε1,1 qε1,2 δςε1,1 mε1,2 e0]T

ς = Cξ · ξ + Bξ · ξ̇ is elasticity force of the gear,
εi,j = (Cs i,j · ϑi,j + Bs i,j · ϑ̇i,j) · l2i,j is flexibility moment of the mode,

φ =
[

q δ γ ϑ1,1m e θ̄
]T

.

Ĥel1,1 = m̂el1,1 · (l̂1,1 · cos ϑ1,1m)2 + (m + m̂el1,2) · (l1,1 · cos ϑ1,1m)2‘+

+(m + m̂el1,2) · (l1,2 · cos(ϑ1,1m + e))2+

+2 · (m + mel1,2) · l̂1,1 · cos ϑm · l1,2 · cos(ϑm + e) · cos δ+

+
9

4
· Ĵelzz1,1 +

9

16
· (Jzz + Ĵelzz1,2)

Ĥel1,2 = ..., Ĥel1,3 = ..., ĥel1 = ....

In an analogue way we should also define equation of flexible line of
the second mode in horizontal plane.

The expressions
ˆ̂
Ekm(14) and

ˆ̂
Ep (15) should be defined for the full

length of the first mode:

l1,1 =

l1,1∫

0

dx1,1, mel1,1 =
33

140
· w̄1,1 · l1,1, Jelzz1,1 = mel1,1 · ( l1,1

2
)2. (30)

Thus we obtain expressions Êkmel 2 and Êpel 2. By applying Lagrange’s
equation respecting the second generalized coordinate δ using the expres-
sions Êkmel 2, Êpel 2, Epel , Φel we obtain the load moment M̂1,2 δ, which
represents the sum of all moments that causes the flexible deformation
of the second mode in horizontal plane and which is opposed to the flex-
ibility moment ε̂1,2 δ. M̂1,2 δ + ε̂1,2 δ = 0. Magnitude M̂1,2 δ includes also
environment force in horizontal plane Fh. This is just procedure for ob-
taining the Euler-Bernoulli equation of the second mode in the horizontal
plane:

[Ĥel2,1 Ĥel2,2 Ĥel2,3 0 0 0] · φ̈ + ĥel2 + ĵT
eδ · [Fch Ffh 0 0 0 0]T +
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+β1,2 · ∂2(ŷ1,2δ + η1,2 · ˙̂y1,2δ)

∂ x̂2
1,2δ

= 0 (31)

Let us define the equation of flexible line of the first mode in vertical

plane. The expressions
ˆ̂
Ekm (14) and

ˆ̂
Ep (15) should be defined for the

full length of the second mode, equation (28).
Thus we obtain expressions Êkmel 1 and Êpel 1. By applying Lagrange’s

equation respecting the fourth generalized coordinate ϑ1,1m using the ex-

pressions Êkmel 1, Êpel 1, Epel , Φel we obtain the load moment M̂1,1ϑ1,1m ,
which represents the sum of all moments that causes the flexible defor-
mation of the first mode in vertical plane and which is opposed to the
flexibility moment ε̂1,1 ϑ1,1m .M̂1,1 ϑ1,1m + ε̂1,1 ϑ1,1m = 0. Magnitude M̂1,1 ϑ1,1m

includes also environment force in vertical plane Fv. This is just proce-
dure for obtaining the Euler-Bernoulli equation of the first mode in the
vertical plane:

[0 0 0 Ĥel4,4 Ĥel4,5 0] · φ̈ + ĥel4 + ĵT
eϑ11m

· [0 0 0 Fcv Ffv 0]T −

−1

2
· ε1,2e + β1,1 · ∂2(ŷ1,1m + η1,1 · ˙̂y1,1m)

∂ x̂2
1,1m

= 0 (32)

In an analogue way we should also define equation of flexible line of
the second mode in vertical plane.

The expressions
ˆ̂
Ekm (14) and

ˆ̂
Ep (15) should be defined for the full

length of the first mode, equation (30).
Thus we obtain expressions Êkmel 2 and Êpel 2. By applying Lagrange’s

equation respecting the fifth generalized coordinate e using the expres-
sions Êkmel 2, Êpel 2, Epel , Φel we obtain the load moment M̂1,2 e, which
represents the sum of all moments that causes the flexible deformation of
the second mode in vertical plane and which is opposed to the flexibility
moment ε̂1,2 e. M̂1,2 e + ε̂1,2 e = 0. Magnitude M̂1,2 e includes also environ-
ment force in vertical plane Fv. This is just procedure for obtaining the
Euler-Bernoulli equation of the second mode in the vertical plane:

[0 0 0 Ĥel5,4 Ĥel5,50 ] · φ̈ + ĥel5 + ĵT
ee · [0 0 0 Fcv Ffv 0]T +

+β1,2 · ∂2(ŷ1,2e + η1,2 · ˙̂y1,2e)

∂ x̂2
1,2e

= 0 (33)
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Users are especially interested in the motion of the mode tip. Inertial
forces (own and the coupled ones of other modes), centrifugal, gravita-
tional, Coriolis forces (own and coupled), forces due to the relative mo-
tion of one mode with respect to the other, coupled elasticity forces of the
other modes, as well as the environment force act at this point, whereat
the effect of the latter on the motion of the considered link is transferred
through the Jacobian matrix.

The equation of motion of the forces involved at any point of the
elastic line of first mode in horizontal plane, including the point of the
first mode tip, can be defined in the following way.

The expressions
ˆ̂
Ekm and

ˆ̂
Ep should be defined for the full length of the

first mode l1,1 = x1,1and for the full length of the second mode l1,2 = x1,1.
The expressions Ekmel and Epel are derived this way. The equation of
the motion of the tip point of considered elastic line of the first mode in
horizontal plane is obtained by applying Lagrange’s equation with respect
to the generalized coordinate q and using the expressions Ekmel, Epel, Epel ,
Φel .

[Hel1,1 Hel1,1 Hel1,1 0 0 0] · φ̈ + hel1 +

+jT
eq · [Fch Ffh 0 0 0 0]T − 1

2
· ε1,2δ + ε1,1q = 0 (34)

Following the same procedure by applying Lagrange’s equation to ex-
pressions Ekmel, Epel, Epel , Φel with respect to other generalized coor-
dinates δ,γ,ϑ1,1m, e , the equations of motion at the tip point of the
considered elastic line considered mode respectively are obtained.

[Hel2,1 Hel2,2 Hel2,3 0 0 0] · φ̈+hel2 + jT
eδ · [Fch Ffh 0 0 0 0]T +ε1,2δ = 0 (35)

[Hel3,1 Hel3,2 Hel3,3 0 0 0] · φ̈ + hel3 +
1

2
ε1,2δ − ε1,1q + ς = 0 (36)

[0 0 0 Hel4,4 Hel4,5 0]· φ̈+hel4+jT
eϑ11m

·[0 0 0 Fcv Ffv 0]T − 1

2
·ε1,2e+ε1,1m = 0

(37)
[0 0 0 Hel5,4 Hel5,50 ] · φ̈ + hel5 + jT

ee · [0 0 0 Fcv Ffv 0]T + ε1,2e = 0 (38)

By applying Lagrange’s equation with respect to the sixth generalized
coordinate θ̄, we obtain the equation of the motor motion:

u = R · i + CE · ˙̄θ, CM · i = I · ¨̄θ + B · ˙̄θ − S · ς. (39)
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Equations (34)-(39) that we should write in the matrix form obtain the
mathematical model of the system depending on the selected generalized
coordinates q, δ, γ,ϑ1,1m, e, θ̄:

U = H · φ̈ + h + C · φ + B · φ̇ + JT
e · F T

p . (40)

Fp = [Fch Ffh 0 Fcv Ffv 0].
Via equation (40) we can define motions q, δ, γ, ϑ1,1m, e and θ̄ and

through them the angle of gear deflection, as well as the bending angle
for the tip of each mode in horizontal and vertical plane, but we cannot
define the motions of particular points on the flexible line of the present
modes.

Remark: Equations (29), (31), (32), (33) can not be equated to the
equations (34), (35), (37), (38), respectively because they are equations of
different type. Equations (29), (31), (32), (33) are Euler-Bernoulli equa-
tions, while the equations (34), (35), (37), (38) are equations of motion at
the point of the tip of the considered mode (LMA). The equations of the
model (40) are also equations of motion at a certain point. The system
(40) consists of the equations of the same type. Through them we can
analyze the motion of the mechanism tip. H ∈ R6x6.

H1,1 = mel1,1 · (l1,1 · cos ϑm)2 + (m + mel1,2) · (l1,1 · cos ϑm)2+

(m + mel1,2) · (l1,2 · cos(ϑm + e))2+

2 · (m + mel1,2) · l1,1 · cos ϑm · l1,2 · cos(ϑm + e) · cos δ+

9

4
· Jelzz1,1 +

9

16
· (Jzz + Jelzz1,2)

H1,2 = ..., H1,3 = ...,

h ∈ R1x6, C ∈ R6x6− is the matrix of rigidity,
B ∈ R6x6− is the matrix of damping.
Control is denoted by: U = [0 0 0 0 0 u]T .

u = Klp · (θ̄o − θ̄) + Klv · ( ˙̄θo − ˙̄θ). (41)

Je =




Je1,1h Je1,2h 0 0 0 0
Je2,1h Je2,2h 0 0 0 0
0 0 0 0 0 0
0 0 0 Je1,1v Je1,2v 0
0 0 0 Je2,1v Je2,2v 0
0 0 0 0 0 0




=




Jeq

Jeδ

06

Jeϑ11m

Jee

06
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- is the Jacobian matrix.

4 Kinematics

A geometric link between these characteristics (internal coordinates q,
δ, γ, ϑ1,1m, e and θ̄) and the space of Cartesian coordinates (external

coordinates) ps =
[

x y z ψ ℘ ϕ
]T

was defined as so-called “direct
kinematics”. In this case (see Fig. 5):

x = lm · cos q + le · cos(q + δ)

y = lm · sin q + le · sin(q + δ)

xv = l1,1 · cos ϑ1,1m + l1,2 · cos(ϑ1,1m + e) (42)

zv = l1,1 · sin ϑ1,1m + l1,2 · sin(ϑ1,1m + e)

z ≡ zv

From equation (42) ẋ, ẏ, ż and ẍ, ÿ, z̈ can be calculated.
The Jacobi matrix for a manipulator with elastic joints and links maps

the velocity vector of the external coordinates ṗs into the velocity vector
of internal coordinates Φ̇:

Φ̇ = J−1
e (Φ) · k̇s. (43)

Where k̇ =
[

ẋ ẏ ż ψ̇ ℘̇ ϕ̇
]T

defines the velocity of a given
point of the mechanism in the Cartesian coordinates, whereas

φ̇ =
[

q̇ δ̇ γ̇ ϑ̇1,1m ė ˙̄θ
]T

defines the velocity vector of internal co-

ordinates.
We form elements of Jacobi matrix Je in our example only for each

plane. In x− y plane we have Jeh Jacobi matrix. See Fig. 5.

Jeh =

[
Je1,1h· Je1,2h

Je2,1h Je2,2h

]
=

[ −(lm · sin(q + δ) + le · sin q) −lm · sin(q + δ)
lm · cos(q + δ) + le · cos q lm · cos(q + δ)

]
.

(44)
When mechanism is at rest, elastic deformation is raised only by the

gravitation force.
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5 The connection between the Euler-Bernoulli

equation solution and so-called “direct

kinematics solution”

The authors Euler and Bernoulli defined the equation (1) under simple
and almost idealized conditions and its solution (2) was only the conse-
quence of these ultimately simplified conditions.

The Euler-Bernoulli equation (4) in vector form was defined under
ultimately simplified conditions (which do not diminish its significance)
and its solution was defined by Daniel Bernoulli and presented by the
equation (3) in the original form.

The solution of Euler-Bernoulli equation, defined by Daniel Bernoulli
in the form of equation (2), i.e. (3), was, actually, the definition of the
position of any point on the segment elastic line (including the tip points)
in any selected moment, which was completely analogue to the “direct
kinematics” solution. We say “kinematics” in the terms of the rigid mech-
anisms because in that case that really is kinematics. However, when the
segment elasticity is present, then the elastic deformation values, which
are by their nature dynamic values, take part in the definition of the po-
sition and orientation of every point on the mechanism elastic line. In
addition, for that reason, in order to keep the familiar terminology, in
future we will imply that solving of the “direct kinematics” in the elastic
mechanisms means the presence of the elastic deformations.

In order to come to this important conclusion we had previously to
do the following:

• to extend significantly the original Euler-Bernoulli equation (1) in
both form and content by adding all the forces that took part in
creation of elastic line of every elastic element mode and to bring
them in the form given with the equations (29), (31), (32), (33) in
Example,

• to define the connection between EBA- these equations are (29),
(31), (32), (33) and LMA- these equations are (34), (35), (37), (38),

• to define properly new form of the motor mathematic model that
had the form of equation (39),
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• to define its movement solution that had the form of the equation
(42), on the basis of the total mechanism elastic model, which was
defined in the classic form by equations (34), (35), (36), (37), (38)
and equation (39).

That way we presented the analogy between:

the Euler-Bernoulli equation solutions
which were defined by Daniel Bernoulli
by the equation (3) in the original form

and
the procedure of the “di-
rect kinematics” solutions by
equation (42).

The analogy between the Euler-Bernoulli equation and its solution
and modern knowledge was presented that way.

6 The simulations example

The reference trajectory is defined in purely kinematics way i.e. geometric
and now in the presence of the elasticity elements we can include the
elastic deformation values at the reference level i.e. at the level of knowing
the elasticity characteristics during the reference trajectory defining.

A mechanism starts from the point “A” (Fig. 4) and moves towards
the point “B” in the predicted time T = 2 [s]. The adopted velocity profile
is trapezoidal, with the period of acceleration/deceleration of 0.2 ·T ·dt =
0.000053335[s]. Elastic deformation is a quantity, which is, at least partly,
encompassed by the reference trajectory. The characteristics of stiffness
and damping of the gear in the real and reference regimes are not the same
and neither are the stiffness and damping characteristics of the link.

Cξ = 0.2 · Co
ξ , Bξ = 0.2 ·Bo

ξ ,
Cs1,1 = 0.99 · Co

s1,1, Bs1,1 = 0.99 ·Bo
s1,1,

Cs1,2 = 0.99 · Co
s1,2, Bs1,2 = 0.99 ·Bo

s1,2.
The only disturbance in the system is the partial lack of the knowledge

of all flexibility characteristics.
As it can be seen from Fig. 6 in its motion from point “A” to point

“B”, the mechanism tip tracks the reference trajectory in the space of
Cartesian coordinates.

Since a position control law for controlling local feedback was applied,
the tracking of the reference force was directly dependent on the deviation
of position from the reference level (see Fig. 7).
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Figure 6: The tip coordinates and the position deviation from the refer-
ence level.

Figure 7: The environment force dynamics.
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Figure 8: The elastic deformations.
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The elastic deformations that are taking place in the vertical plane
angle of bending of the lower part of the link (the first mode) ϑ1,1m and
the angle of bending of the upper part of the link (the second mode) ϑ1,2e,
as well as elastic deformations taking place in the horizontal plane, the
angle of bending of the lower part of the link (the first mode) ϑ1,1q, the
angle of bending of the upper part of the link (the second mode) ϑ1,2δ

and the deflection angle of gear ξ were given in Fig. 8.

The rigidity of the second mode is about ten times lower compared
to that of the first mode. Then it is logical that the bending angle for
the second mode is about ten times larger compared to that of the first
mode.

A more significant lack of knowledge of gear flexibility characteristics
causes larger deviations of this quantity from the reference in the course
of mechanism task realization.

Let us present the special significance of results from Fig. 8a. This
figure exhibits the wealth of different amplitudes and circular frequencies
of the present modes of elastic elements. We have vibrations within vi-
brations. This confirms that we modeled all elastic elements as well as
high harmonics (in this case two harmonics of considered link).

7 Conclusions

It should be pointed out that the elastic deformation is the consequence of
the total mechanism dynamics, which is essentially different from widely
used method that implies the adaptation of the “assumed modes tech-
nique”.

The analogy was defined between the solution of the Euler-Bernoulli
equation, which Daniel Bernoulli defined in the original form and “the
direct kinematics solution”.

With fundamental approach to analysis of flexibility of the complex
mechanism, a wide field of working on analyzing and modeling of complex
mechanical construction as well as implementation of different control of
laws was opened. All this was presented for a relatively “simple” mecha-
nism that offered the possibility of analyzing the phenomena involved.

The formed mathematical model of robot mechanism with elastic seg-
ment in the presence of higher harmonics (of the second mode) served as a
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basis for the formation of the Software package TMODES. All presented
simulations were the result of the developed Software package TMODES.

Through the analysis and modeling of an elastic mechanism we at-
tempted to give a contribution to the development of this area.
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Puna analogija izmedju rešenja Daniela Bernoulli-a i
rešenja direktne kinematike

U ovom radu je uspostavljena veza izmedju originalne Euler-Bernoulli’s
jednačine i savremenih znanja. Rešenje koje je definisao Daniel Bernoulli
za pojednostavljene uslove je u suštini rešenje ,,direktne kinematike“.
Iz tih razloga posebna pažnja je posvećena dinamici i kinematici kon-
figuracija elastičnih mehanizama. Euler-Bernoulli jednačina a takodje i
njeno rešenje (korǐsćeno u literaturi dugi niz godina) treba proširiti prema
zahtevima složenosti kretanja mehanizma. Elastična deformacija je di-
namička veličina koja zavisi od ukupne dinamike kretanja mehanizma.
Matematički model aktuatora sadrži takodje sile elastičnosti.
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