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Abstract

Two separate nonlinear differential systems are investigated
in the frequency and time domains using plots generated by
Mathematica. Spectral density plots are of particular interest
as they can conveniently demonstrate the effect on a system
of changing one of the parameters. The effects of the starting
displacement on the nonlinear pendulum, and the behaviour
of the Lorenz system when the Rayleigh number is varied,
are considered in this way.
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1 Introduction

Systems of nonlinear differential equations play an important part in
subjects as diverse as meteorology, oceanography, optics, economics
and biology. Understanding nonlinear behaviour is also required
for renewable energy engineering, including modelling the wave and
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tidal power resource, and developing novel methods of harvesting en-
ergy with wave-driven pendulums [6]. Such dynamical systems are
rarely amenable to exact analytical solution, and numerical mod-
elling is frequently required to supplement experimental research.

Nonlinear systems are found to exhibit a rich variety of be-
haviour, including chaos. Many interesting features of such systems
can be conveniently elicited by performing a Fourier transform and
studying the solutions from a spectral perspective.

For example, the discrete nonlinear Schrödinger equation appears
in nonlinear optics and condensed matter physics, and its elliptic
function solution for two oscillators is equivalent to nonlinear pen-
dulum motion[4]. For two or three oscillators and a non-zero value
of the nonlinearity parameter, its solution gives an infinite series of
discrete spectral peaks[3]. Tracking their position and spacing as the
nonlinearity parameter is changed yields interesting insights into the
dynamical behaviour of the system.

In a similar vein, we shall be using Mathematica to generate
spectral representations of firstly the nonlinear pendulum, and then
the Lorenz equations, where we will be exploring such phenomena
as the onset of chaotic behaviour.

2 Pendulum Motion

We illustrate our methods of analysis by studying the behaviour of
the simple pendulum. Energy conservation considerations can be
used to show that the equation of motion is

θ̈ + ω2
0 sin θ = 0, (1)

where θ is the angular displacement, ω2
0 = g

l
, g is the gravitational

acceleration, l is the length of the pendulum, and a dot above a
function indicates a time derivative.

In a brief survey of analytical solutions, we shall firstly consider
the linearised equation, then a nonlinear solution due to Beléndez et
al [1] that uses elliptic functions. Introducing our range of plotting
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techniques, we shall generate numerical solutions with Mathematica
and examine the salient features of the pendulum’s behaviour.

2.1 Analytical Solutions

2.1.1 Linear Pendulum

For small oscillations, we can replace sin θ in (1) with the leading
order term in the Taylor expansion sin θ ≈ θ+ θ3

3!
+ θ5

5!
+ . . . to obtain

θ̈ + ω2
0θ = 0. (2)

This linear second order differential equation has the general solution

θ = A cos (ω0θ) + B sin (ω0θ) (3)

where the constants A and B are determined by the initial condi-
tions.

2.1.2 Nonlinear Pendulum

Beléndez et al obtained an exact solution to (1) using the Jacobi
elliptic function sn(u; k). For a pendulum with initial conditions
θ = θ0 and dθ

dt
= 0 at t = 0, this was shown to be

θ = 2 arcsin

{
sin

(
θ0

2

)
sn

[
K

(
sin2 θ0

2

)
− ω0t; sin

2

(
θ0

2

)]}
, (4)

where K(m), the complete elliptical integral of the first kind, is
defined as

K(m) =

∫ 1

0

dz√
(1− z2) (1−mz2)

. (5)

Up to initial displacements of 3π
4

, this motion is similar to that of a
simple harmonic oscillator with a modified angular frequency

ω(θ0) =
πω0

2K
(
sin2

(
θ0

2

)) . (6)
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2.2 Mathematica Plots

The behaviour of the nonlinear pendulum can be investigated by
solving equation (1) numerically using Mathematica. We represent
the results graphically using time-domain, phase, spectral and den-
sity plots.

2.2.1 Time Domain

Figure 1 shows the time dependence of the pendulum position for
various values of the initial displacement θ0. The pendulum oscil-
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Figure 1: Evolution of displacement θ with time for simple pendula
with initial displacements θ0 = π − 0.01, θ0 = π

2
and θ0 = π

4
.

lations for θ0 = π
2

are larger and longer than for θ0 = π
4
. When

θ0 = π− 0.01, so that the pendulum is initially pointing almost ver-
tically upwards, the time taken to complete these large-amplitude
swings is much longer, and the pendulum pauses at π − 0.01 and
π + 0.01.



Spectral analysis of nonlinear systems 115

2.2.2 Phase Portrait

The relationship between the pendulum’s initial angular displace-
ment and its motion can be seen clearly on a phase portrait. The
pendulum equation (1) can be separated to give

θ̇ = y, ẏ = −ω2
0 sin θ. (7)

Figure 2 shows trajectories on the (θ, θ̇) plane for various starting
positions. This phase portrait shows both oscillatory and rotational
motion. An oscillating pendulum with an initial position in the
interval 0 < θ0 < π and zero initial velocity starts off hanging to
the right. The velocity then becomes increasingly negative and the
pendulum decreases in θ as it swings left. The velocity reaches a
maximum at θ = 0 and then the pendulum slows down under gravity,
reaching a stop at −θ0. The pendulum then begins to swing right:
the velocity becomes positive, reaching a maximum at θ = 0 before
decreasing until θ = θ0 again. The lines outside the oscillations
correspond to rotational motion, which occurs for initial velocities
greater than zero for particular values of θ.

2.2.3 Spectral Plot

Another way to represent the motion of the pendulum is to plot
the spectrum in the frequency domain. A function of time h(t)
is related to its counterpart H(f) in the frequency domain by the
Fourier transform and its inverse:

H(f) =

∫ ∞

−∞
h(t)e2πiftdt, h(t) =

∫ ∞

−∞
H(f)e2πiftdf. (8)

We have used Mathematica to solve the pendulum equation numeri-
cally, so that our h(t) is given as a discrete set of data. We therefore
use an algorithm called a Fast Fourier Transform, a numerical ana-
logue of (8) to obtain another discrete data set in the frequency
domain. When we use the term “amplitude” in a spectral context,
we are referring to H(f) in equation (8). In the case of the pendu-
lum, as θ(t) is an even, real function of t, its Fourier transform will
also be real and even.
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Figure 2: Phase space portrait of the pendulum angle θ plotted
against angular velocity θ̇. The arrows indicate the direction of the
trajectories.

Figures 3 and 4 show the spectral pictures of the pendulum mo-
tion for two different initial positions, θ0 = π

2
and θ0 = π − 0.01.

Figure 3, for θ0 = π
2

has two large peaks at fairly low frequencies.
The peaks are closer together in figure 4, for θ0 = π−0.01, where we
have already seen from the time-domain picture that the oscillations
take longer. The maximum amplitudes are also seen to be higher in
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Figure 3: Spectral picture showing the relationship between the am-
plitude and frequency for a pendulum starting at θ = π

2
.

this case.

2.2.4 Density Plot

Figures 3 and 4 show the spectra for two different initial pendulum
displacements. A qualitative picture of the spectra over the entire
range of initial displacements θ0 can be obtained using a spectral
density plot, such as Figure 5. This shows 100 horizontal strips,
corresponding to θ0 being increased from zero to π. The amplitude
is represented by shading, with lighter shades at frequencies where
the amplitude is highest. For larger initial displacements, the peaks
are closer to the zero frequency. In Section 2.2.1, the time-domain
plots starting at larger displacements also exhibited longer periods
of oscillation.
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Figure 4: Spectral picture showing the relationship between the am-
plitude and frequency for a pendulum starting at θ = π − 0.01.

3 The Lorenz System

3.1 Introduction

The Lorenz system [5] is a set of three nonlinear dimensional differ-
ential equations that was found to be extremely sensitive to small
perturbations in the initial conditions, and to exhibit chaotic be-
haviour in certain circumstances. Lorenz, a meteorologist, derived
the system

Ẋ = −σX + σY, (9)

Ẏ = −XZ + rX − Y, (10)

Ż = XY − bZ, (11)

from a simplified form of the convection equations. The functions X,
Y and Z were proportional to the intensity of convective motion, the
temperature difference between the ascending and descending cur-
rents and the distortion of the vertical temperature from linearity.
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Figure 5: Density plot of 100 different spectra at varying initial
displacements θ0. Lighter greys represent higher amplitudes.

The constant σ is the Prantdl number, and b is a geometry parame-
ter. We shall adopt the standard values of 10 and 8

3
, which are most

commonly used to model the Earth’s atmosphere. The parameter r
is the Rayleigh number: if the Lorenz equations are being used to
model a fluid, this determines the convective behaviour. We shall
be varying this from zero to 30 to study its effect on the system.

While Lorenz obtained his differential system from fluid dynam-
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ical equations, a number of other processes can also be modelled in
this way. For example, the equations of motion for a damped pen-
dulum rotating in the ϕ direction as well as the usual θ-direction can
be written in the form (9)-(11) [2]. The spectral analysis of Section
3.3 shall be discussed in this context.

3.2 Fixed Points

Lorenz [5] analysed the fixed points of his system (9)-(11). These
occur when Ẋ = Ẏ = Ż = 0, and can hence be found by solving

0 = −σX + σY, (12)

0 = −XZ + rX − Y, (13)

0 = XY − bZ. (14)

A trivial solution to this is (0, 0, 0). This is found to be a stable fixed
point for r < 1, and unstable for r > 1.

Another solution is the pair of points (±
√

b(r − 1),±
√

b(r − 1), r−
1). These are only found when r > 1, as our functions X, Y and
Z are real and the parameters b, σ and r are positive. These fixed
points are stable when r < rB, where

rB =
σ(σ + b + 3)

σ − b− 1
, (15)

and unstable when r > rB.

Thus, as the Rayleigh number r is increased from zero, the system
is expected to change considerably. At r = 1, the two other, stable
fixed points appear, and the trivial fixed point becomes unstable.
This is associated with the onset of convection. Then, at r = rB the
pair of new fixed points become unstable. A bifurcation diagram of
the X-axis and r will therefore have a pitchfork bifurcation at r = 1
where the two fixed points appear at X = ±

√
b(r − 1). There will

then be a subcritical Hopf bifurcation at r = rB. The properties of
the system as r is varied will be explored further in the next section.
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3.3 Spectral Analysis

We can now use Mathematica to repeat the spectral analysis of Sec-
tions 2.2.3 and 2.2.4 for the Lorenz system. We obtain numerical
solutions to the Lorenz equations (9)-(11) for b = 8

3
and σ = 10.

We then calculate |X̃(f)|, the magnitude of the Fourier transform
of X(t). As with the pendulum, we can plot spectra for individual
values of the Rayleigh number r, or form a qualitative picture of the
variation of the spectra over a range of r with spectral density plots.

Figure 6 shows a spectral density plot for the entire range of
Rayleigh numbers considered. Each horizontal strip represents a
spectrum at the appropriate r. Within each spectrum, the frequen-
cies at which |X̃(f)| is the highest are shown in the lightest shades.
At r = 1, the onset of convection, there is a single, narrow peak with
little noise. This region has the greatest contrast between the light
central peak and the much darker surrounding area. A cross-section
of the density plot of Figure 6 at r = 1 is plotted in Figure 7. This
spectral plot resembles those in Section 2.2.3, and shows a single
peak close to zero frequency, and no smaller peaks. However, these
spectra have been generated from discrete numerical data, with a
resolution reflecting the time duration of the sampling. There may
in fact be two peaks, too close together to discriminate between with-
out higher resolutions. If the Lorenz system (9)-(11) were modelling
a pendulum, as in [2], the behaviour at r = 1 would correspond to
extremely long-period oscillations with minimal damping.

Smaller peaks begin to develop as r increases above unity. In
Figure 8, which shows the spectral densities for r up to 3.5, a pair
of smaller-amplitude peaks form at either side of the large central
peak and spread out to higher frequencies as r increases. For the
pendulum, these indicate damping. In Figures 9-11, we can see the
effect of this damping from spectral, time-domain and phase-space
perspectives when r = 3. The system is attracted to the fixed point
(
√

b(r − 1),
√

b(r − 1), r − 1), which is stable for low r.

Figure 12 shows the change in the spectra as r is increased from
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Figure 6: Spectral density plot for Rayleigh numbers varied from 0
to 30. Lighter greys represent higher amplitudes.

12 to 18. At the lower end of this scale, the system exhibits os-
cillatory behaviour with damping, although there are more small-
amplitude peaks than observed in Figure 8. Sample spectral, time-
domain and phase-space pictures for r = 13 are shown in Fig-
ures 13-15. Again, the trajectories approach the stable fixed point
(
√

b(r − 1),
√

b(r − 1), r − 1).
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Figure 7: Spectral picture at r = 1, the onset of convection.

As r increases towards approximately 14, the level of damping
is reduced, and Figure 12 shows an increase in the small-amplitude
peaks. Between r = 14 and r = 16, noise can be observed in the
spectra.

An unstable limit cycle appears at r = 14.5463. In Figure
12, the amount of noise increases markedly around this value of
r. The limit cycle is examined in more detail in Figures 16-18.
The value of X(t) is seen to oscillate without any damping ef-
fects then comes out of this state and approaches the fixed point
(−

√
b(r − 1),−

√
b(r − 1), r − 1). From the phase portrait in Fig-

ure 18, we can infer that a pendulum would oscillate much like the
simple pendulum during the unstable limit cycle, then perform one
full rotation as the phase trajectory crosses the fixed point (0, 0, 0),
before stabilising and performing damped oscillations.

Above r = 15.5 the chaotic behaviour diminishes. The spectrum
in Figure 12 shows fewer, small-amplitude peaks than the chaotic
zone, but spread out over a larger frequency range than the pure
oscillatory stage. A pendulum would perform one rotation followed
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Figure 8: Spectral density plot for Rayleigh numbers varied from 0
to 3.5. A light pair of smaller-amplitude peaks appears at either side
of the brighter central peak.

by damped oscillations.

Lorenz identified the onset of instability of convection with the
Rayleigh number rB given by equation (15), which, for our values
of σ and b, is 470

19
(∼ 24.74). This is borne out by the increase in

noise after approximately this value of r in Figure 19. The chaotic
behaviour continues up to r = 30, the highest value considered.
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Figure 9: Spectral portrait for r = 3. Small additional peaks appear
on either side of the central peak.
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Figure 10: Time-domain plot of X(t) for r = 3, showing rapid damp-
ing.
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Figure 11: Phase portrait for r = 3, showing the trajectory in the
(X, Y ) plane. The system moves fairly directly towards the stable
fixed point.

The data was sampled in the time domain up to t = 18. For
Rayleigh numbers where the system is performing damped oscil-
lations, the motion has died away by this time, so that the the
spectra will not change if a larger time period is used. However,
for 24.74 < r < 30, the aperiodic motion persists and the precise
spectra obtained will depend on the sampling time.
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Figure 12: Spectral density plot for Rayleigh numbers varied from
12 to 18. Around the Noise begins to appear at r = 14 and continues
until r = 16. It increases markedly around the limit cycle at r =
14.5463.
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Figure 13: Spectral portrait for r = 13. The plot is more complex
than Figure 9 for r = 3.
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Figure 14: Time-domain plot of X(t) for r = 13. The damping
is more gradual than in Figure 10, allowing the system to perform
more oscillations before it decays.
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Figure 15: Spectral portrait for r = 13. The system oscillates around
the fixed point several times before decaying.
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Figure 16: Spectral portrait for r = 14.5463, showing a lot of noise.
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Figure 17: Time-domain plot of X(t) for r = 14.5463, showing an
unstable limit cycle. The system oscillates without damping, then
crosses the X axis and decays to a stable fixed point.
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Figure 18: Phase portrait for r = 14.5463. The system leaves an
unstable limit cycle in the first quadrant to eventually decay to a
stable fixed point in the third quadrant.
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Figure 19: Spectral density plot for Rayleigh numbers varied from 21
to 30. The peaks in the bottom half indicate one rotation followed
by damped oscillation for a pendulum. The top half shows chaotic
behaviour.



Spectral analysis of nonlinear systems 133

-0.005 0.000 0.005
Frequency

0.1

1

10

100

Amplitude

Figure 20: Spectral portrait for r = 26, when the system is exhibiting
chaotic behaviour.
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Figure 21: Time-domain portrait of X(t) for r = 26, when the
system is exhibiting chaotic behaviour.
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Figure 22: Phase portrait for r = 26, when the system is exhibiting
chaotic behaviour.
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Figures 20-22 show an example of such chaotic behaviour.

The time domain plot shows a peak around t = 17, where X
moves towards the positive fixed point, then drops back towards the
negative one. This trend continues for an infinite time and does not
converge to a fixed point. The fixed points in the phase plane are
no longer stable or unstable, and the trajectories wander between
them in an unpredictable way, moving around one and then circling
back to the other. The time spent reaching an attractor may be
infinite, in which case it is known as a strange attractor. In this
chaotic region, the motion of a pendulum becomes an unpredictable
mixture of rotations and oscillations.

4 Conclusion

The Fourier domain is a useful arena in which to study the dynam-
ics of nonlinear systems. Spectral density plots are well suited to
observing the changes to a system as one of the parameter is varied.
In this way, we were able to observe the dependence of the period
of a pendulum’s motion on its the starting displacement. Similarly,
the spectral perspective offers useful insights into the Lorenz system,
which exhibits dramatically different behaviour as the Rayleigh num-
ber r is changed. Frequency spectra complement the time domain
plots and phase portraits, leading to a more complete picture of the
system in regimes such as convection and chaotic motion. The spec-
tral density plots showed the system shifting from one state to the
other as r is increased, and confirmed Lorenz’s values for the onset
of convection and chaos.
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Spektralna analiza nelinearnih sistema

Proučena su dva razdvojena nelinearna diferencijalna sistema u frekvent-
nom i vremenskom domenu korǐsćenjem crteža generisanih kodom
Mathematica. Crteži spektralne gustine su posebno interesantni jer
mogu da podesno pokažu efekat promene jedog od parametara sis-
tema. Na ovaj način su posmatrani uticaji početnog pomeranja na
nelinearno klatno kao i ponašanje Lorencovog sistema pri promeni
Rejlijevog broja.
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