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Abstract

Stability analysis based on the von Neumann method showed that
the Larkin methods for two-dimensional heat conduction with non-
uniform grids are conditionally stable while they are known to be
unconditionally stable with uniform grids. The stability criteria
consisting of the dimensionless time step ∆t, the space intervals ∆x,
∆y, and the ratios of neighboring space intervals α, β were derived
from the stability analysis. A subsequent numerical experiment
demonstrated that solutions derived by the Larkin methods with
non-uniform grids lose stability and accuracy when the criteria are
not satisfied.
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Saul’yev method, Larkin method
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List of notations

f, g mesh Fourier numbers in the x and y directions
r, s auxiliary variables
t dimensionless time
v, w auxiliary variables
x, y dimensionless space coordinates
D denominator of G
G complex amplification factor
Im imaginary part of complex numbers
N numerator of G
Re real part of complex numbers

Greek symbols

α, β space interval ratio in the x and y directions
∆t dimensionless time step
∆x, ∆y dimensionless space intervals in the x and y directions
θ dimensionless temperature

Subscripts and Superscripts

0 initial condition or location of the point heat source
i, j indices of grid point
max maximum number of index
n index of time steps

1 Introduction

The explicit finite-difference methods proposed by Saul’yev [1], Larkin [2],
and Barakat and Clark [3] are generally called the alternating direction
explicit (ADE) methods. They are known to be unconditionally stable for
solving unsteady diffusion equations with uniform grids. Saul’yev origi-
nally proposed his method for one-dimensional parabolic partial differen-
tial equations. Larkin, Barakat, and Clark expanded the Saul’yev method
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to two- and three-dimensional problems. (Here the term ”parabolic partial
differential equation” generally refers the unsteady diffusion equation, such
as the unsteady heat conduction equation. In contrast, the steady diffusion
equation, i.e., the Laplace equation is classified as elliptic and numerically
solved by the iterative methods such as the Jacobi method, Gauss-Seidel
method, etc.).

There are many numerical studies comparing the ADE methods with
other methods in terms of accuracy and computational time. Galligani
[4] used the Saul’yev method to solve multi-group diffusion equations and
compared it with other implicit and explicit methods. Towler and Yang
[5] compared the original and modified Saul’yev methods with Crank-
Nicolson methods for one-dimensional parabolic partial differential equa-
tions. Thibault [6] applied nine finite difference methods, including the
Larkin and Barakat-Clark methods, to three-dimensional heat conduction
problems and compared them. Darvishi [7] compared the original and
modified Saul’yev methods for a three-dimensional heat conduction prob-
lem. Dehghan [8] compared six finite difference methods, including two
types of Saul’yev methods, for one-dimensional parabolic partial differen-
tial equations. Bokahri and Islam [9] applied the Barakat-Clark method to
a two-dimensional convective-diffusive equation and compared the solution
with that for the other explicit method. These comparative studies showed
the superiority of the ADE methods.

However, these studies were carried out only with uniform grid systems,
which is problematic because non-uniform grids are often used for practical
problems. For example, for a point heat-source problem, the calculation
points of grids concentrate around the heat source point to enhance the
resolution and computational efficiency. In order to discuss the applica-
bility of ADE methods to practical problems, their stability and accuracy
have to be investigated for non-uniform grid systems.

The author of this paper has already discussed the stability of the
Saul’yev method for one-dimensional heat conduction with non-uniform
grids and presented the criterion for the stability of the Saul’yev method
with both non-uniform and uniform grids [10].

This paper discusses the stability of ADE methods for two-dimensional
heat conduction, i.e., the Larkin methods, with non-uniform grids. Stabil-
ity analysis based on the von Neumann methods [11] was carried out and
the criteria for the stability of the Larkin methods are presented.
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2 Algorithm of the Larkin Methods

For the sake of simplicity, we will treat the two-dimensional unsteady heat
conduction equation written in the following dimensionless form.

∂θ

∂t
=

∂2θ

∂x2
+

∂2θ

∂y2
(1)

Let us now assume the time and space shown in Fig.1 (which has a
non-uniform grid system). To solve Eq. (1) numerically, we consider four
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Figure 1: Time and space for two-dimensional calculations

auxiliary variables r, s, v, and w that satisfy Eq. (1). Using Larkin’s idea,
we can present the following finite difference equations corresponding to
Eq. (1).

rn+1
i, j − rn

i, j

∆t
=

2

∆xi + ∆xi+1

(
rn
i+1, j − rn

i, j

∆xi+1

− rn+1
i, j − rn+1

i−1, j

∆xi

)
+

2

∆yj + ∆yj+1

(
rn
i, j+1 − rn

i, j

∆yj+1

− rn+1
i, j − rn+1

i, j−1

∆yj

) (2)
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sn+1
i, j − sn

i, j

∆t
=

2

∆xi + ∆xi+1

(
sn+1

i+1, j − sn+1
i, j

∆xi+1

− sn
i, j − sn

i−1, j

∆xi

)
+

2

∆yj + ∆yj+1

(
sn+1

i, j+1 − sn+1
i, j

∆yj+1

− sn
i, j − sn

i, j−1

∆yj

) (3)

vn+1
i, j − vn

i, j

∆t
=

2

∆xi + ∆xi+1

(
vn

i+1, j − vn
i, j

∆xi+1

− vn+1
i, j − vn+1

i−1, j

∆xi

)
+

2

∆yj + ∆yj+1

(
vn+1

i, j+1 − vn+1
i, j

∆yj+1

− vn
i, j − vn

i, j−1

∆yj

) (4)

wn+1
i, j − wn

i, j

∆t
=

2

∆xi + ∆xi+1

(
vn+1

i+1, j − vn+1
i, j

∆xi+1

− vn
i, j − vn

i−1, j

∆xi

)
+

2

∆yj + ∆yj+1

(
vn

i, j+1 − vn
i, j

∆yj+1

− vn+1
i, j − vn+1

i, j−1

∆yj

) (5)

Now we define the space interval ratios

αi ≡ ∆xi+1

∆xi

, βj ≡ ∆yj+1

∆yj

the mesh Fourier numbers

fi ≡ ∆t

(∆xi)
2 , gj ≡ ∆t

(∆yj)
2

and the modified Fourier numbers.

f̂i ≡ 2fi

αi (1 + αi)
, ĝj ≡ 2gj

βj (1 + βj)

Using the space interval ratios and modified Fourier numbers, Eqs. (2)-(5)
may be arranged in the following form.

(
1 + αif̂i + βj ĝj

)
rn+1
i,j =

(
1− f̂i − ĝj

)
rn
i,j

+f̂ir
n
i+1,j + αif̂ir

n+1
i−1,j

+ĝjr
n
i,j+1 + βj ĝjr

n+1
i,j−1

(6)
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(
1 + f̂i + ĝj

)
sn+1

i,j =
(
1− αif̂i − βj ĝj

)
sn

i,j

+f̂is
n+1
i+1,j + αif̂is

n
i−1,j

+ĝjs
n+1
i,j+1 + βj ĝjs

n
i,j−1

(7)

(
1 + αif̂i + ĝj

)
vn+1

i,j =
(
1− f̂i − βj ĝj

)
vn

i,j

+f̂iv
n
i+1,j + αif̂iv

n+1
i−1,j

+ĝj v
n+1
i,j+1 + βj ĝj v

n
i,j−1

(8)

(
1 + f̂i + βj ĝj

)
wn+1

i,j =
(
1− αif̂i − ĝj

)
wn

i,j

+f̂iw
n+1
i+1,j + αif̂iw

n
i−1,j

+ĝjw
n
i,j+1 + βj ĝjw

n+1
i,j−1

(9)

Larkin [2] showed the five computing schemes as described below.

1. Consider that the variable r is equivalent to the dimensionless tem-
perature θ, use Eq.(6) only, and proceed calculation from the grid
point i = 1 and j = 1 in a sequence of increasing i and j (see Fig.2).

2. Consider that the variable s is equivalent to the dimensionless tem-
perature θ, use Eq.(7) only, and proceed calculation from the grid
point i = imax and j = jmax in a sequence of decreasing i and j (see
Fig.2).

3. Consider that the variables r and s are equivalent to the dimen-
sionless temperature θ, use Eqs.(6) and (7) alternately as follows.
Proceed calculation from the grid point i = 1 and j = 1 in a se-
quence of increasing i and j by using Eq.(6) at the time level n + 1,
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Figure 2: Schematic of a grid system, starting points for calculation, and
directions of calculation

substitute the value of rn+1
i,j into the variables sn+1

i,j , and proceed cal-
culation from the grid point i = imax and j = jmax in a sequence of
decreasing i and j by using Eq.(7) at the time level n + 2.

4. Consider that the variables r and s are equivalent to the dimen-
sionless temperature θ, use Eqs.(6) and (7) at every time level, and
average the results:

θn+1
i, j =

rn+1
i, j + sn+1

i, j

2
(10)

Next, substitute the value of θn+1
i,j into the variables rn+1

i,j and sn+1
i,j .

The Barakat-Clark method is similar to this scheme, but the vari-
ables r, s, and θ are calculated separately [3]. In the Barakat-Clark
method, the variables rn+1

i,j and sn+1
i,j are not replaced by θn+1

i,j .

5. Consider that the variables v and w are equivalent to the dimension-
less temperature θ and use Eqs. (8) and (9) alternately as follows.
Proceed calculation from the grid point i = 1 and j = jmax in a
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sequence of increasing i and decreasing j by using Eq. (8) at the
time level n+1, substitute the value of rn+1

i,j into the variables sn+1
i,j ,

and proceed calculation from the grid point i = imax and j = 1 in
a sequence of decreasing i and increasing j by using Eq. (9) at the
time level n + 2.

It is clear that the fifth scheme is a variation of the third scheme. We
can make more schemes with combinations of Eqs.(6)-(9). These equations
are symmetric, and we therefore primarily discuss Eq.(6) in the following
sections.

3 Stability Analyses

3.1 Larkin’s first scheme

The stability of Larkin’s first scheme is examined using the von Neumann
method [11]. This method assumes that the solution of the discretized
equations can be represented by Fourier expansion. The general term of
the expansion can be written as

θg (t, x, y) = exp (γ0 t) exp (i γ1 x) exp (i γ2 y) (11)

Substituting this into Eq. (6) and arranging it, the complex amplifica-
tion factor G for Larkin’s first scheme is derived as

G =
θg (t + ∆t, x, y)

θg (t, x, y)
= exp (γ0 ∆t)

=
1− f̂i { 1− exp (i γ1αi∆xi) } − ĝj { 1− exp (i γ2βj∆yj) }

1 + αif̂i { 1− exp (−i γ1∆xi) }+ βj ĝj { 1− exp (−i γ2∆yj) }
(12)

If we call the numerator and denominator at the far right side of this
equation N and D, respectively, the absolute value of G is derived by

|G| = |N |
|D| =

√
{Re (N)}2 + {Im (N)}2

√
{Re (D)}2 + {Im (D)}2

(13)

The finite-difference methods are stable if the absolute value of G is
less than or equal to unity:

|G| ≤ 1 (14)
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Substituting Eq. (13) into inequality (14), we obtain the following
inequality:

|D|2 − |N |2 =
[{Re (D)}2 + {Im (D)}2]− [{Re (N)}2 + {Im (N)}2] ≥ 0

(15)

By expansion of { Re(D) }2, { Im(D) }2, { Re(N) }2, and |D|2 − |N |2 is
derived as follows.

|D|2 − |N |2 = 2f̂i

{
αi

(
1 + αif̂i − βj ĝj

)
(1− cos γ1∆xi)

+
(
1− f̂i − ĝj

)
(1− cos γ1αi∆xi)

}

+2ĝj

{
βj

(
1− αif̂i + βj ĝj

)
(1− cos γ2∆yj)

×
(
1− f̂i − ĝj

)
(1− cos γ2βj∆yj)

}

+2f̂iĝj [αiβj {3− 2 cos γ1∆xi − 2 cos γ2∆yj

+ cos (γ1∆xi − γ2∆yj)}+ {1− cos (γ1αi∆xi − γ2βj∆yj)}]
(16)

The values of (1− cos γ1∆xi), (1− cos γ1αi∆xi), (1− cos γ2∆yj),
(1− cos γ2βj∆yj) and {1− cos (γ1αi∆xi − γ2βj∆yj)} are positive or equal
to zero for all γ1 and γ2.

The value of {3− 2 cos γ1∆xi − 2 cos γ2∆yj + cos (γ1∆xi − γ2∆yj)} is
also positive or equal to zero for all γ1 and γ2 (see appendix). Therefore, the
following three inequalities have a sufficient condition to satisfy inequality
(15).

1 + αif̂i − βj ĝj ≥ 0

1− αif̂i + βj ĝj ≥ 0

1− f̂i − ĝj ≥ 0

These are rewritten as

1 +
2fi

1 + αi

− 2gj

1 + βj

≥ 0 (17)
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1− 2fi

1 + αi

+
2gj

1 + βj

≥ 0 (18)

1− 2fi

αi (1 + αi)
− 2gj

βj (1 + βj)
≥ 0 (19)

Solving these inequalities for gi, we obtain the following criteria for the
stability of Larkin’s first scheme.

gj ≤ 1 + βj

2
+

1 + βj

1 + αi

fi (20)

gj ≥ −1 + βj

2
+

1 + βj

1 + αi

fi (21)

gj ≤ βj (1 + βj)

2
− βj (1 + βj)

αi (1 + αi)
fi (22)

The solution of this system of equalities for the space interval ratios
αi, βj 6= 1(i.e., the grid system is non-uniform) is shown in Fig. 3. When
the space interval ratios αi and βj are equal to unity (i.e., the grid system
is uniform), we obtain

|D|2 − |N |2 = 4fi (1− cos γ1∆xi) + 4gj (1− cos γ2∆yj)

It obviously satisfies inequality (15) for all γ1 and γ2. This means that
the Larkin methods with a uniform grid system are unconditionally stable.

3.2 Larkin’s second scheme

By substituting Eq. (11) into Eq. (7) and arranging it, the complex
amplification factor G for Larkin’s second scheme is derived as

G =
1− αif̂i

{
1− exp

( −√−1 γ1∆xi

) }− βj ĝj

{
1− exp

( −√−1 γ2∆yj

) }

1 + f̂i

{
1− exp

(√−1 γ1αi∆xi

) }
+ ĝj

{
1− exp

(√−1 γ2βj∆yj

) }
(23)

Let the numerator and denominator on the right side of this equation
be N and D, respectively; then we obtain |D|2 − |N |2 as follows.
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Figure 3: Solution of the stability criteria for Larkin’s first scheme

|D|2 − |N |2 = 2f̂i

{(
1 + f̂i − ĝj

)
(1− cos γ1αi∆xi)

+αi

(
1− αif̂i − βj ĝj

)
(1− cos γ1∆xi)

}

+2ĝj

{(
1− f̂i + ĝj

)
(1− cos γ2βj∆yj)

+βj

(
1− αif̂i − βj ĝj

)
(1− cos γ2∆yj)

}

+2f̂iĝj [{3− 2 cos γ1αi∆xi − 2 cos γ2βj∆yj + cos (γ1αi∆xi − γ2βj∆yj)}

+αiβj {1− cos (γ1∆xi − γ2∆yj)}]
(24)
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In order to satisfy the inequality (15), the following inequalities are
required.

1 + αif̂i − βj ĝj ≥ 0

1− αif̂i + βj ĝj ≥ 0

1− f̂i − ĝj ≥ 0

Solving these inequalities for gi, we obtain the following criteria for the
stability of Larkin’s second scheme.

gj ≤ βj (1 + βj)

2
+

βj (1 + βj)

αi (1 + αi)
fi (25)

gj ≥ −βj (1 + βj)

2
+

βj (1 + βj)

αi (1 + αi)
fi (26)

gj ≤ 1 + βj

2
− 1 + βj

1 + αi

fi (27)

Now, we define the new variables α′i ≡ ∆xi/∆xi+1 = 1/αi, β′j ≡
∆yj/∆yj+1 = 1/βj, f ′i ≡ ∆t/(∆xi+1)

2 = α
′2
i fi and g′j ≡ ∆t/(∆yj+1)

2 =

β
′2
j gj. By substituting them into the inequalities (20), (21), and (22), we

obtain the following inequalities.

g′j ≤
β′j

(
1 + β′j

)

2
+

β′j
(
1 + β′j

)

α′i (1 + α′i)
f ′i

g′j ≥ −β′j
(
1 + β′j

)

2
+

β′j
(
1 + β′j

)

α′i (1 + α′i)
f ′i

g′j ≤
1 + β′j

2
− 1 + β′j

1 + α′i
f ′i

These inequalities have the same forms as inequalities (25), (26), and
(27).



Conditional stability of Larkin methods with non-uniform grids 151

3.3 Larkin’s other schemes

Larkin’s third and forth schemes use both Eqs. (6) and (7). Therefore, the
stability criteria of these schemes are the six inequalities (20), (21), (22),
(25), (26), and (27). The ranges of the mesh Fourier numbers fi and gj

which satisfy the stability condition for the third and forth schemes may be
more limited than for the first and second ones due to increasing number
of the inequalities. By carrying out stability analyses for Eqs (8) and (9),
we can obtain the stability criteria for the fifth scheme.

4 Numerical Experiment

To verify the derived criteria, we will carry out a numerical experiment on
Larkin’s first scheme with non-uniform grids.

Now we seek the solution of Eq. (1) in the region bounded by 0 ≤
x ≤ 1 and 0 ≤ y ≤ 1, subject to the initial condition:

θ (x, y) = exp

(
−(x− 0.5)2 + (y − 0.5)2

4t0

)
. (28)

The boundary conditions are given by:

θ (t, y) =
t0
t

exp

(
−0.25 + (y − 0.5)2

4t

)
at (x = 0, 1) (29)

and

θ (t, x) =
t0
t

exp

(
−(x− 0.5)2 + 0.25

4t

)
at (y = 0, 1) (30)

where t0 > 0.
The analytical solution of this problem is

θ (t, x, y) =
t0
t

exp

(
−(x− 0.5)2 + (y − 0.5)2

4t

)
(31)

This is the instantaneous point heat source problem [12], and the solution
describes a two-dimensional Gaussian pulse.
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We will solve the two-dimensional Gaussian-pulse problem numerically
for t0 = 0.0001 and t = 0.0011 by using Larkin’s first scheme with the non-
uniform grid shown in Fig.4. The non-uniform grid has 841 calculating
points and 116 boundary-condition points. This non-uniform grid is gener-
ated by the rule that states αi and βj = 0.8 for i and j = 1, 2, . . . , 14, αi and
βj = 1.0 for i and j = 15, and αi and βj = 1.25 for i and j = 16, 17, . . . , 29
to concentrate the calculation points around the point heat source.

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

x

y

 
Figure 4: Grid system for the numerical experiment
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The analytical and numerical solutions for ∆t = 0.0002, 0.0001, and
0.000002 are shown in Figs.5 and 6. Figure 5 shows the three-dimensional
view of the dimensionless temperature distribution at t = 0.0011. The
numerical solutions for ∆t = 0.0002 and 0.0001 differ from the analytical
one while the numerical solution for ∆t = 0.000002 agrees well with the
analytical one. To discuss the accuracy of each numerical solution, we
investigate the temperature distribution on a line across the center of the
grid. Figure 6 shows the cross-sectional temperature distribution along

q q

q q

Figure 5: Three-dimensional view of the analytical and Larkin’s solutions
for the two-dimensional Gaussian pulse with the non-uniform grid at t =
0.0011

the line y = 0.5 at t = 0.0011. This figure shows the difference between
the analytical and Larkin’s solutions. Now we define the relative error by
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Figure 6: Sectional view of analytical and Larkin’s solutions along the
line y = 0.5 at t = 0.0011 for two-dimensional Gaussian pulse with the
non-uniform grid

the following equation:

relative error =

∣∣∣∣
θnumerical − θanalytical

θanalytical

∣∣∣∣× 100[%] (32)

The maximum difference between the analytical and Larkin’s solution
for ∆t = 0.0002 is 0.1877 at x = 0.4737 and the relative error is 241.6%. As
to the Larkin’s solution for t = 0.0001, the maximum difference is 0.0370
at x = 0.4487 and the relative error is 74.0%.

The numerical solution for ∆t = 0.0002 especially loses the physical
reality, that is, the dimensionless temperature at the calculating points
around the center of the grid shows a negative value. This is because the
stability criteria are violated at those calculating points. In contrast, Fig.
6 shows that the numerical solution for ∆t = 0.000002 agrees well with
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the analytical one. The maximum difference between the analytical and
Larkin’s solution for ∆t = 0.000002 is only 0.0027 at x = 0.5 and the
relative error is 3.0%.

Stability and accuracy of a numerical solution with Larkin’s first scheme
depend on whether the criteria (inequalities) (20), (21), and (22) are satis-
fied. In the calculations based on Larkin’s first scheme with t = 0.0002 and
0.0001, the criteria are violated at 657 calculating points (78.1% of all the
calculating points) and 550 calculating points (65.4%), respectively. By
contrast, in the calculation with ∆t = 0.000002, the criteria are satisfied
at all calculating points. The result of the numerical experiment showed
that the dimensionless time step ∆t should be sufficiently small to satisfy
the criteria.

In this chapter, we solve the two-dimensional Gaussian-pulse problem
numerically to demonstrate that solutions of the Larkin methods with non-
uniform grids lose stability and accuracy when the criteria are not satisfied.
The stability criteria can be applied to any other two-dimensional heat
conduction problem described by the equation (1) such as a finite rectangle
with non-homogeneous boundary, etc.

5 Discussion

Non-uniform grids are often used for practical problems. However, the
stability analyses and numerical experiment show that the Larkin methods
with non-uniform grids are conditionally stable. This is expected by the
result of the stability analysis of the one-dimensional ADE, i.e., Saul’yev
methods [10]. The stability criteria of Larkin’s first and second schemes
are more complicated than those of Saul’yev methods.

The primary focus of this paper was Larkin’s first scheme, but those
who investigate Larkin’s other schemes with non-uniform grids can con-
firm their conditional stability and derive similar stability criteria by the
same procedure as described in section 3.1, because the other schemes are
symmetrical to the first scheme or are combinations of these symmetrical
schemes.
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6 Conclusion

This paper has shown that the Larkin methods for two-dimensional heat
conduction with non-uniform grids are conditionally stable while they are
known to be unconditionally stable with uniform grids. The stability
of the Larkin methods depends on the dimensionless time step ∆t, the
space intervals ∆xi, ∆yj, and the ratios of neighboring space intervals
αi = ∆xi+1/∆xi, βj = ∆yj+1/∆yj. For Larkin’s first scheme, the stabil-
ity criteria are described as gj ≤ (1 + βj)/2 + (1 + βj) fi/ (1 + αi), gj ≥
−(1 + βj)/2 + (1 + βj) fi/ (1 + αi) and gj ≤ βj (1 + βj)/2− βj (1 + βj) fi/
{αi (1 + αi)}, where the mesh Fourier numbers fi = 2∆t/(∆xi)

2 and gj

= 2∆t/(∆yj)
2. The numerical experiment for two-dimensional Gaussian

pulse showed that the solutions by Larkin’s first scheme with non-uniform
grids lose stability and accuracy when the criteria are not satisfied.

Appendix

Figure 7 (a) shows the three-dimensional view of the value of h (x, y) =
3− 2 cos x− 2 cos y + cos (x− y) for −2π ≤ x ≤ 2π and −2π ≤ y ≤ 2π.
Figure 7 (a) shows the cross-sectional view along the diagonal line x= -
y. The value of h changes periodically. It takes maximum value (= 8)
or minimum value (= 0) at the points where x and y take the integral
multiple of π.

Substituting γ1∆xi and γ2∆yj into x and y, respectively, it is clear
that the value of {3− 2 cos γ1∆xi − 2 cos γ2∆yj + cos (γ1∆xi − γ2∆yj)} is
positive or equal to zero for all γ1 and γ2.
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(a) three-dimensional view

(b) cross-sectional view along the diagonal line (x=-y)

Figure 7: Value of h (x, y) = 3− 2 cos x− 2 cos y + cos (x− y)
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Uslovna stabilnost Larkinovih metoda sa
neuniformnim mrežama

Analiza stabilnosti zasnovana na Nojmanovom metodu je pokazala da su
Larkinove metode za dvodimenziono provodjenje toplote sa neuniform-
nim mrežama uslovno stabilne, što je suprotno poznatoj činjenici da su
bezuslovne stabilne za uniformne mreže. Kriterijumi stabilnosti koji se
sastoje od bezdimenzionog vremenskog koraka ∆t, prostornih opsega ∆x,
∆y, kao i razlomaka susednih prostornih intervala α, β su izvedeni u svrhu
analize stabilnosti. Jedan numerički eksperiment je pokazao da rešenja
izvedena Larkinovim metodama sa neuniformnim mrežama gube stabil-
nost i tačnost kada ovi kriterijumi nisu zadovoljeni.
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