
Thermal diffusion in a binary fluid
mixture flows due to a rotating disc
of uniform high suction in presence

of a weak axial magnetic field

B. R. Sharma ∗ R. N. Singh †

Theoret. Appl. Mech., Vol.37, No.3, pp. 161–187, Belgrade 2010

Abstract

The effect of a weak uniform axial magnetic field on separation of
a binary mixture of incompressible viscous thermally and electri-
cally conducting fluids flowing due to a rotating disc of uniform
high suction is examined. Neglecting the induced electric field the
equations governing the motion, temperature and concentration
are solved in cylindrical polar coordinate by expanding the flow
parameters as well as the temperature and the concentration in
powers of suction parameter. The solution obtained for concen-
tration distribution is plotted against the different axial distances
from the disc for various values of non-dimensional parameters.
It is found that the temperature gradient, axial magnetic field,
Reynolds number, Schmidt number, Prandtl number and suction
parameter effect the species separation significantly.
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1 Introduction

Separation processes of components of a binary fluid mixture wherein
one of the components is present in extremely small proportion are of
much interest due to their applications in science and technology. Sepa-
ration of isotopes from their naturally occurring mixture is one of such
examples. It is well known that only one part of heavy water which is
an isotope of water is found in 25000 parts of water in normal occur-
rence (Arnikar [1], Rastogy et al. [2]) but it is required for use as a
(i) moderator in nuclear reactions for slowing down the neutrons, (ii)
tracer compound for studying the mechanism of many chemical reac-
tion and (iii) heat transport medium i.e., a coolant in atomic power
plant. Because of their small relative mass difference isotopes of heavier
molecules offer the greatest practical challenge in attempts to isolate the
rarer component. Electromagnetic method of separation (Srivastava [3])
works only at relatively higher values of concentrations.

In a binary fluid mixture the diffusion of individual species takes
place by three-mechanisms namely ordinary diffusion, pressure diffusion
(or baro-diffusion) and thermal diffusion. The diffusion flux i of lighter
and rarer component is given by Landau and Lifshitz[4] as:

i =− ρD [ grad c1 + kp grad p+ kT grad T ], (1)

where ρ is the density of the binary fluid mixture, D is the diffusion coef-
ficient, c1 is the ratio of mass of the lighter component to the total mass
of the fluid, kpD is the pressure diffusion coefficient, p is pressure, kTD
is the thermal diffusion coefficient and T is temperature. The ordinary
diffusion contribution to the mass flux is seen to depend in a compli-
cated way on the concentration gradients of the components present
in the mixture. The baro-diffusion indicates that there may be a net
movement of the components in a mixture if there is a pressure gradient
imposed on the system. An example of baro –diffusion is the process
of diffusion in the binary mixture of different kinds of gases present
in the atmosphere. By reasons of variation of forces of gravity with
height thereby causing a density gradient, different constituents in the
atmosphere tend to separate out. The pressure gradient created by the
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gravity as well as the rotation of the earth separates various components
of air. The tendency for a mixture to separate under a pressure gradient
is very small but use is made of this effect in centrifuge separations in
which tremendous pressure gradient is established. Thermal diffusion
describes the tendency for species to diffuse under the influence of a
temperature gradient. In many practical problems dealing with flows
in porous media one encounters with a multiple component electrically
conducting fluids e.g. molten fluid in the earth’s crust, crude oil in the
petroleum. It is customary to consider one of the components as sol-
vent and the other components as solute. It is shown in ref. Groot and
Mazur [5] that if separation due to thermal diffusion occurs then it may
even render an unstable system to stable one. This effect is also quite
small, but devices can be arranged to produce very steep temperature
gradients so that separations of mixtures are effected.

Sarma [6] perhaps was the first to study the problem of baro-diffusion
in a binary mixture of incompressible viscous fluids set in motion due to
an infinite disk rotation. He obtained results on separation action in this
configuration for small baro–diffusion number taking the Schmidt num-
ber to be of the order unity and including the effect of separation at the
disk. Hurle and Jakeman [7] have discussed the effect of a temperature
gradient on diffusion of a binary fluid mixture. Many investigators ([3],
[6], [8]-[26]) analyzed the effect of baro-diffusion and thermal diffusion
on separation of a binary mixture in different geometry.

In many cases the fluid mixture is found to be electrically conducting
and so to study the effect of magnetic field on separation we have consid-
ered in this paper a binary mixture of incompressible viscous thermally
and electrically conducting fluids flowing due a rotating disc of uniform
high suction in presence of a constant uniform axial magnetic field. Ve-
locity distribution under such geometry was investigated by Pande [27].
We have investigated, in this paper, the effect of axial magnetic field on
the concentration distribution of the rarer component of a binary fluid
mixture.
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2 Governing equations and boundary con-

ditions

We consider here the case when one of the components of the binary
mixture of incompressible thermally and electrically conducting viscous
fluids is present in small quantity, hence the density and viscosity of
the mixture is independent of the distribution of the components. The
concentration c2 of heavier and more abundant component is given by
c2 = 1− c1. The flow problem of the binary mixture is identical to that
of a single fluid but the velocity is to be understood as the mass average
velocity V= (ρ1V1 + ρ2V2)/ρ and the density ρ = ρ1 + ρ2, where the
subscripts 1&2 denote the rarer and the more abundant components
respectively. The equation of continuity and the equation of motion of
an incompressible fluid in steady case are respectively,

∇ ·V = 0 (2)

and
ρ(V · ∇)V = −∇p+ µ∇2V + J×B, (3)

where µ is the coefficient of viscosity of the binary fluid mixture, J is
the current density vector and B is the magnetic flux density vector. In
steady motion the Maxwell equations are given by

curlH = 4πJ, (4)

curlE = 0, (5)

divH = 0, (6)

H is the magnetic field vector, E is the electric field vector,
It is well known that for most of the fluids used in engineering appli-

cations collision frequency exceed the cyclotron frequency for electrons.
As the Hall current factor is ratio of the cyclotron frequency to the col-
lision frequency, so, the Hall current is very small and hence we have
neglected it in our discussion. Consequently Ohm’s law is given by

J = σ[E+V ×B], (7)
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where
B = µeH, (8)

σ is the electric conductivity and µe is the magnetic permeability.
The energy equation in steady case is given by

ρcpV · ∇T = k∇2T + µϕ+ J2/σ, (9)

where cp is the specific heat at constant pressure, k is the thermal con-
ductivity of the fluid mixture, ϕ represents the heat due to viscous dissi-
pation and the last term J2/σ represents heat due to Joulean dissipation.

The equation for species conservation of the first component is given
by (see Landau and Lifshitz [28])

ρ(V · ∇)c1 = −∇ · i, (10)

where i is given by (1). The coefficients kp and kT may be determined
from the thermodynamic properties alone. Landau and Lifshitz [4] have
given the explicit expression for the baro-diffusion coefficients kp as

kp = (m2 −m1)[(c1/m1) + (c2/m2)]c1c2/p∞, (11)

where p∞ denotes the working pressure of the medium and m1, m2 are
masses of two kinds of particles. Neglecting c21 (since concentration of
rarer and lighter component c1 is very small) (11) becomes

kp = (m2 −m1)c1/(m2p∞) = Ac1, (12)

where
A = (m2 −m1)/(m2p∞). (13)

The expression for kT has been suggested by Hurl and Jakeman [3]
as kT = sT c1c2 , where sT is the Soret coefficient. For small values of
c1, kT becomes (kT =)sT c1. Substituting the expression for i from (1),
kp from (12) and kT = sT c1 in (10) we get the equation for c1 as

(V.∇)c1 = D[∇2c1 + A∇.(c1∇P ) + sT∇.(c1∇T )]. (14)

Boundary conditions for the flow field, temperature field and elec-
tromagnetic field are the same as in the usual magneto-hydrodynamic
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problems. The boundary conditions for the concentration c1 are differ-
ent in different cases. At the surface of a body insoluble in the fluid
mixture the total mass flux as well as the individual species flux normal
to the surface should vanish (see Srivastava [21]) i.e.,

ρc1V · n+ i · n = 0, (15)

where n is the unit normal drawn at the solid surface directed outwards.
Substituting the expression for i from (1) into (15), we get,

ρc1V · n− ρD[∇c1 · n+ kp∇p·n+ kT∇T ·n] = 0. (16)

If, however, there is diffusion from a body that dissolves in the fluid,
equilibrium is rapidly established near its surface, and the concentration
in the fluid adjoining the body in this case is the saturation concentration
c0 (say); the diffusion out of this layer takes place more slowly than the
process of solution. The boundary condition at such surface is, therefore,
c1 = c0.

3 Formulation of the problem

We consider here the steady flow of a binary mixture of thermally and
electrically conducting viscous incompressible fluids by using cylindrical
polar coordinate system (r, θ, z). The binary fluid mixture is flowing in
presence of an infinitely rotation heated disc of uniform high suction in
its surface at z = 0. The disc is maintained at a constant temperature T ∗

higher than the ambient temperature T0. The concentration of the rarer
and lighter component of the mixture maintained at a constant value c0
far away from the disc. A weak axial magnetic field of uniform strength
B0 is applied. The induced magnetic field due to the uniform magnetic
B0 is neglected and the physical justification regarding the neglect of
induced electric and magnetic fields, we have followed Sparrow and Cess
[29]. It is assume that the disc at z = 0 rotates with a constant angular
velocity Ω in its own plane. Let u, v, w be the velocity components in
the directions of r, θ, z respectively.
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In axisymmetric case, the governing equations (2), (3) and (9) for
the steady flow of a binary mixture of incompressible thermally and
electrically conducting viscous fluids due to the rotation of a disc of
uniform high suction at its surface in the fluid in presence of a uniform
axial magnetic field becomes

∂u

∂r
+

u

r
+

∂w

∂z
= 0, (17)

u
∂u

∂r
+ w

∂u

∂z
− v2

r
= −1

ρ

∂p

∂r
+ ν

(
∇2u− u

r2

)
− σB2

0u

ρ
, (18)

u
∂v

∂r
+ w

∂v

∂z
+

uv

r
= ν

(
∇2v − v

r2

)
− σB2

0v

ρ
, (19)

u
∂w

∂r
+ w

∂w

∂z
= −1

ρ

∂p

∂z
+ ν∇2w, (20)

u
∂T

∂r
+ w

∂T

∂z
=

k

ρcp
∇2T +

νϕ

cp
+

σB2
0

ρcp
(u2 + v2), (21)

where the viscous dissipation function ϕ is given by

ϕ = 2

{(
∂u

∂r

)2

+
u2

r2
+

(
∂w

∂z

)2
}

+

(
∂v

∂r
− v

r

)2

+

(
∂v

∂z

)2

+

(
∂u

∂z
+

∂w

∂z

)2

,

(22)

∇2 =
∂2

∂r2
+

1

r

∂

∂r
+

∂2

∂z2
(23)

and ν (= µ/ρ) is the kinematic coefficient of viscosity.
In the flow of binary mixture if we ignore the pressure gradient,

the diffusion of the individual species takes place by two mechanisms,
namely, the concentration gradient and the temperature gradient. Under
this condition the equation (14) of the species conservation for solving
the mass transfer problem can be written as

u
∂c1
∂r

+ w
∂c1
∂z

= D

[
∇2c1 + sT

{
c1∇2T +

∂c1
∂r

∂T

∂r
+

∂c1
∂z

∂T

∂z

}]
. (24)
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The boundary conditions of the problem are given by

u = 0, v = rΩ, w = −w0, T = T ∗ at z = 0 (25)

and

u = v = 0, T = T0, c1 = c0,
∂c1
∂z

= 0 at z → 0. (26)

Following Evans [30] we define a suction parameter by means of a ≡=
w0/

√
νΩ.

In view of the boundary conditions (25)-(26) we assume the following
form for the velocity components, the temperature, the pressure and the
concentration within the boundary layer region as

u = rΩF (ζ) , v = rΩG (ζ) , w =
√
νΩ [−a+H (ζ)] , p = µΩ p1 (ζ) ,

T = T0 + (νΩ/cp)
[
f1 (ζ) +R2f2 (ζ)

]
, c1 = c0

[
g1 (ζ) +R2g2 (ζ)

]
where

ζ =
√
Ω/νz and R =

√
Ω/νr. (27)

On physical grounds, H may be assumed to be nearly constant for
large values of suction parameter a, and consequently H ′ = F = 0.
Following Stuart [31] we get as a first approximation G = e−aζ . This
suggest that a solution may be obtained in descending powers of suction
parameter a, and that aς is more suitable than ς as an independent
variable. We therefore define a new parameter η = aζ .

Using (27) and η = a ζ in (17)-(21), (24) and equating the coefficient
of like powers of suction parameter a from both sides, we get

aH ′ + 2F = 0, (28)

a2 (F ′′ + F ′) = F 2 −G2 + aF ′H +M2F, (29)

a2 (G′′ +G′) = 2FG+ aG′H +M2G, (30)

a2 (f ′′
1 + Prf

′
1) = −4f2 + Pr

(
aHf ′

1 − 12F 2
)
, (31)
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a2
[
f ′′

2 + Prf
′
2 +

(
G′2 + F ′2

)
Pr

]
= Pr

[
2Ff2 + af ′

2H −M2
(
F 2 +G2

)]
,

(32)

a2
[
g′′1 + α (g1f

′
1)

′
+ Smg

′
1

]
= −4g2 + SmaHg′1 − 4αg1f2, (33)

a2
[
g′′2 + α

{
(g2f

′
1)

′
+ (g1f

′
2)

′}
+ Smg

′
2

]
= Sm (2Fg2 + aHg′2)− 8αg2f2,

(34)

where α = tdEc, M = B0

√
σ/ρΩ is the Hartmann number, Pr =

ρcpν/κ is the Prandtl number, Sm = ν/D is the Schmidt number, td =
ST (T ∗ − T0) is the thermal diffusion number and Ec = νΩ/cp(T

∗ − T0)
is the Eckert number.

The boundary conditions (25)- (26) under the forms in (27) become,

F = 0, G = 1, H = 0, f1 = N, f2 = 0 at η = 0. (35)

Here
N = cp (T

∗ − T0)/νΩ

and
F = 0, G = n, f1 → 0, f2 → 0, g1 → 1, g2 → 0,

g′1 → 0, g′2 → 0 at η → ∞. (36)

For large values of suction parameter a, a regular perturbation scheme
can be developed by expanding F,G,H, f1, f2, g1 and g2 in descending
powers of the suction parameter a. We assume,

F (η) =
∞∑
i=0

a−iFi (η), G (η) =
∞∑
i=0

a−iGi (η), H (η) =
∞∑
i=0

a−iHi (η),

f1 (η) =
∞∑
i=0

a−if1i (η), f2 (η) =
∞∑
i=0

a−if2i (η),
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g1 (η) = 1 + α
∞∑
i=0

a−ig1αi
(η) and g2 (η) = α

∞∑
i=0

a−ig2αi
(η). (37)

Substituting the expansions (37) in the equations (28)-(34) and equat-
ing the coefficients of various powers of suction parameter a on both
sides, we get

H ′
0 = 0, H ′

1 = −2F0, H ′
2 = −2F1, H ′

3 = −2F2, (38)

F ′′
0 + F ′

0 = 0, F ′′
1 + F ′

1 = F ′
0H0,

F ′′
2 + F ′

2 = −G2
0, F ′′

3 + F ′
3 = 0,

(39)

G′′
0 +G′

0 = 0, G′′
1 +G′

1 = 0, G′′
2 +G′

2 = M2G0,

G′′
3 +G′

3 = 0, G′′
4 +G′

4 = 2F2G0 +H3G
′
0 +M2G2,

(40)

f ′′
10 + Prf

′
10 = 0, f ′′

11 + Prf
′
11 = 0, f ′′

12 + Prf
′
12 = −4f20,

f ′′
13 + Prf

′
13 = 0, f ′′

14 + Prf
′
14 = −4f22, (41)

f ′′
20 + Prf

′
20 + PrG

′
2

2
= 0, f ′′

21 + Prf
′
21 = 0,

f ′′
22 + Prf

′
22 + 2PrG

′
0G

′
2 = −PrM

2G2
0, f ′′

23 + Prf
′
23 = 0,

f ′′
24 + Prf

′
24 + Pr

(
F ′
2

2
+ 2G′

0G
′
4 +G′

2

2
)
=

Pr [2F2f20 + f ′
20H3 − 2M2G0G2] ,


(42)

g′′1α0
+ Smg

′
1α0

+ f ′′
10 = 0, g′′1α1

+ Smg
′
1α1

= 0,

g′′1α2
+ Smg

′
1α2

+ f ′′
12 = −4 (g2α0 + f20) ,

g′′1α3
+ Smg

′
1α3

+ f ′′
13 = 0, g′′1α4

+ Smg
′
1α4

+ f ′′
14 =

SmH3g
′
1α0

− 4f22,

 (43)
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g′′2α0
+ Smg

′
2α0

+ f ′′
20 = 0, g′′2α1

+ Smg
′
2α1

= 0,

g′′2α2
+ Smg

′
2α2

+ f ′′
22 = 0, g′′2α3

+ Smg
′
2α3

+ f ′′
23 = 0,

g′′2α4 + Smg
′
2α4

+ f ′′
24 = Sm

(
2F2g2α0 +H3g

′
2α0

)
.


(44)

Also, the boundary conditions (35)-(36) under the assumptions (37)
become

Fi = 0, G0 = 1, Gi+1 = 0, Hi = 0,

f10 = N, f1(1+i) = 0, f2i = 0 at η = 0 (45)

and

Fi = 0, G0 = n, Gi+1 = 0, f1i = 0, f1i = 0, g1αi
= 0,

g2αi
= 0, g′1αi

= 0, g′2αi
= 0 at η → ∞, (46)

∀i ∈ W, where W represents the set of whole numbers.

4 Solutions of the problem

The solutions of equations (38) to (44) under boundary conditions (45)-
(46) are obtained as

F0 = 0, H0 = 0, G0 = e−η, f10 = Ne−Prη,

f20 = {Pr/2 (Pr − 2)}
(
e−2η − e−Prη

)
,

g1α0 = {NPr/ (Sm − Pr)} e−Prη,

 (47)

F1 = 0, G1 = 0, H1 = 0,

f11 = 0, f21 = 0, g1α1 = 0, g2α1 = 0,
(48)
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F2 =
1

2
(e−η − e−2η) , H2 = 0, G2 = −M2ηe−η,

f12 = − 1

(Pr − 2)2
[
−Pre

−2η + e−Prη {2η (Pr − 2) + Pr}
]
,

f22 = − PrM
2

(Pr − 2)2
[e−2η {(Pr − 2) (1− η) + 1}

− (Pr − 1)e−Prη
]
,

g1α2 = − P 2
r

(Pr − 2)2 (Sm − Pr)
e−Prη

+
Pr (PrSm − 4)

(Pr − 2)2 (Sm − 2)2
e−2η

− 2Pr

(Pr − 2) (Sm − Pr)
ηe−Prη,

g2α2 =
PrM

2

(Pr − 2)2

[{
2 (Pr − 2) (1− η) + Pr

(Sm − 2)

+
2(Pr − 2)

(Sm − 2)2

}
e−2η − Pr(Pr − 1)

(Sm − Pr)
e−Prη

]
,



(49)

F3 = 0, G3 = 0, H3 = e−η − 1

2
e−2η − 1

2
,

f13 = 0, f23 = 0, g1α3 = 0, g2α3 = 0,
(50)

G4 =

(
−1

2
η +

1

12

)
e−η − e−3η

12
+M4

(
η +

η2

2

)
e−η, (51)

H4 = 0, (52)
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f14 =− PrM
2

(Pr − 2)3

[
{2 (Pr − 2) η − (Pr + 2)} e−2η

+
4 (Pr − 2) (Pr − 1)

Pr

ηe−Prη + (Pr + 2) e−Prη

]

− P 2
r N

[
e−(Pr+1)η

(Pr + 1)
− e−(Pr+2)η

4 (Pr + 2)

+
1

2Pr

ηe−Prη − 3Pr + 7

4(Pr + 1)(Pr + 2)
e−Prη

]
,

(53)

f24 = Pr

[
5

24 (Pr − 2)
e−2η +

B

6 (Pr − 1) (Pr − 3)
e−3η

+
1

8 (Pr − 4)
e−4η − BPr

2 (Pr + 1) (Pr − 4)
e−(Pr+1)η

+Ae−Prη − Pr

8 (Pr + 2)
e−(Pr+2)η

+
Pr

4 (Pr − 2)
ηe−Prη − 1

2 (Pr − 2)
ηe−2η

+M4

{
1

Pr − 2
η2e−2η− Pr

(Pr − 2)2
ηe−2+η

+
B

(Pr − 2)2
e−2η −Be−Prη

}]
,

(54)
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g1α4 =
PrM

2

(Pr − 2)3

[
De−2η − Pr (Pr + 2)

(Sm − Pr)
e−Prη

−2 (Pr − 2) (PrSm + 2Sm − 6) + Pr

(Sm − 2)2
ηe−2η+

−4 (Pr − 1) (Pr − 2)

(Sm − Pr)
ηe−Prη

]
−PrN

[
Ee−(Pr+1)η − Fe−(Pr+2)η −Ge−Prη

+
Pr

2 (Sm − Pr)
ηe−Prη

]
,

(55)

g2α4 = Pr

[
5e−2η

12 (Pr − 2) (Sm − 2)
+

e−4η

2 (Pr − 4) (Sm − 4)

+
Sm(−Pr + 6) + 6(Pr − 4)

6(Pr − 2)(Sm − 2)(Pr − 3)(Sm − 3)
e−3η

+
Pr

(Sm − Pr)

{
A− Sm

4 (Pr − 2) (Sm − Pr)

}
e−Prη

− P 2
r B

2 (Pr − 4) (Sm − Pr) (Pr + 1)
e−(Pr+1)η

− P 2
r

8 (Sm − Pr) (Pr + 2)
e−(Pr+2)η

+
P 2
r

4 (Sm − Pr) (Pr − 2)
ηe−Prη − ηe−2η

(Sm − 2) (Pr − 2)

]

+M4

[
2η2e−2η

(Sm − 2) (Pr − 2)
+

4 (SmPr − Sm − Pr)

(Sm − 2)2 (Pr − 2)2
ηe−2η

(56)



Thermal diffusion in a binary fluid mixture flows... 175

−4 (SmPr − Sm − Pr) + (2B + Pr) (Sm − 2)2

(Sm − 2)3 (Pr − 2)2
e−2η

+
BPr

(Sm − Pr)
e−Prη

]
,

where

A = − 5

24 (Pr − 2)2
+

Pr − 2

6 (Pr − 2) (Pr − 3)
− 1

8 (Pr − 4)

− Pr (Pr − 1)

2 (Pr − 2) (Pr + 1)
+

Pr

8 (Pr + 2)
,

B = −(Pr − 4) (Pr − 1)

(Pr − 2)
,

D =
2SmP

2
r + 2S2

mPr − 20SmPr + 4Pr + S2
mP

2
r + 24

(Sm − 2)2
,

E =
1

(Sm − Pr − 1)

{
Pr −

Sm

(Sm − Pr) (Pr + 1)

}
, (57)

F =
1

(Sm − Pr − 2)

{
Pr

4
− Sm

2 (Sm − Pr) (Pr + 2)

}
,

G =
Sm (Pr − 1)

2 (Sm − Pr)
2 Pr

+
P 2
r (3Pr + 7)

4 (Pr + 1) (Pr + 2) (Sm − Pr)
.

To get an estimate of mass concentration of the lighter and rarer com-
ponent of the mixture the average value of concentration {c̄1 (η)}average
is calculated from

{c̄1 (η)}average =
1

πτ 2

τ∫
0

2πrc1 (η) dr , (58)

where ‘τ ’ is the radius of the finite disc.

Substituting c1 (η) from (27) in (58) by making the use of (47)-(56),
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we get,

{
c̄1 (η)

c0

}
average

= 1 +
α

a

+ α

[
NPr

Sm − Pr

e−Prη +
RePr

4 (Pr − 2)

(
2

Sm − 2
e−2η − Pr

Sm − Pr

e−Prη

)]
+

α

a2

[
− P 2

r

(Sm − Pr) (Pr − 2)2
e−Prη +

Pr (SmPr − 4)

(Sm − Pr)
2 (Pr − 2)2

e−2η

− 2Pr

(Sm − Pr) (Pr − 2)
ηe−Prη − RePrM

2

2 (Pr − 2)2{
2 (Pr − 2) (1− η) + Pr

Sm − 2
e−2η +

2 (Pr − 2)

(Sm − 2)2
e−2η − Pr (Pr − 1)

Sm − Pr

e−Prη

}]
+

α

a3
+

α

a4

[
Pr

{
5Re

24 (Sm − 2) (Pr − 2)2
e−2η+

ReSm (−Pr + 6) + 6Re (Pr − 4)

12 (Pr − 2) (Pr − 3) (Sm − 2) (Sm − 3)
e−3η

+
Re

4 (Sm − 4) (Pr − 4)2
e−4η +

RePrA

2 (Sm − Pr)
e−Prη

− ReSmPr

8 (Sm − Pr)
2 (Pr − 2)

e−Prη +NGe−Prη

− ReP
2
r B

4 (Sm − Pr) (Pr − 4) (Pr + 1)
e−(Pr+1)η −NEe−(Pr+1)η

− ReP
2
r

16 (Sm − Pr) (Pr + 2)
e−(Pr+2)η+NFe−(Pr+2)η

+
ReP

2
r

8 (Sm − Pr) (Pr − 2)
ηe−Prη − NPr

2 (Sm − Pr)
ηe−Prη

− 1

(Sm − 2) (Pr − 2)2
ηe−2η

}
+

PrM
2

(Pr − 2)3{
−2 (Pr − 2) (SmPr + 2Sm − 6)

(Sm − 2)2
ηe−2η

(59)
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+De−2η − 4 (Pr − 1) (Pr − 2)

Sm − Pr

ηe−Prη
Pr (Pr + 2)

Sm − Pr

e−Prη

}
+

ReM
4

2

{
− 2

(Sm − 2) (Pr − 2)
η2e−2η +

4 (SmPr − Sm − Pr)

(Pr − 2)2 (Sm − 2)2
ηe−2η

− 4 (SmPr − Sm − Pr) + (2B + Pr) (Sm − 2)2

(Pr − 2)2 (Sm − 2)3
e−2η +

PrB

Sm − Pr

e−Prη

}]
,

where Re = Ωa2/ν is the Reynolds number.

5 Results

If we put α = 0 in expressions (59) for average concentration of the first
component of the binary fluid mixture we get c̄1 (η) = c0 for all values
of η. From this we can conclude that the separation of species of rarer
and lighter component present in the binary fluid mixture ceases to take
place if we neglect the effect of temperature gradient. Our results are
found to be in good agreement with the results of the researchers ([3],
[6], [8]-[26]).

Fig.1, fig.2 and fig.3 reveal that the separation of species of rarer and
lighter component of the binary fluid mixture increases with decrease
of the magnetic parameter M , Prandtl number Pr and the Reynolds
number Re. Fig.4 and fig.6 reveal that the separation of species of the
binary mixture increases with the increase of the Schmidt number Sm

and the product of Eckert number and the thermal diffusion number i.e.
Ectd. From Fig.5 it clear that the concentration of the rarer and lighter
component of the binary fluid mixture is remains constant on the disc
and at the infinite from the disc for all values of the suction parameter.
The separation of the species in between the disc and the infinity from
the disc increases with the increase of the suction parameter.

6 Conclusions

The problem of mass transfer due to the flow of an electrically and ther-
mally conducting, viscous incompressible binary fluid mixture in pres-
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Figure 1: Graph of c1(η)/c0 for various values of Hartmann Number
against the normal distance η from the disc taking N = 10, Pr = 0.07,
Sm = 0.224, Re = 1, a = 1.5, α = −0.01.

ence of an infinitely rotating heated disc of uniform high suction on its
surface, in presence of a uniform axial magnetic field, has been investi-
gated under the assumption that one of the components, which is rarer
and lighter, is present in the mixture in a very small quantity. Analytical
solutions of the governing equations have been obtained by expanding
the flow parameters as well as the temperature and the concentration in
powers of suction parameter. Different analytic expressions are obtained
for non-dimensional velocity, temperature and concentration profile in
presence of the magnetic field. The specific conclusions derived from
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Figure 2: Graph of c1(η)/c0 for various values of Prandtl number against
the normal distance η from the disc taking N = 10,M = 0.6, Sm =
0.224, Re = 1, a = 1.5, α = −0.01.

this study can be listed as follows:

• the effect of the temperature gradient is to separate the species of
the binary fluid mixture i. e. separation of species ceases to take
place in absence of the temperature gradient.

• the effect of increase in the values of the product of the thermal dif-
fusion number and the Eckert number is to increase the separation
of species of the binary fluid mixture.
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Figure 3: Graph of c1(η)/c0 for various values of Reynolds number
against the normal distance η from the disc taking N = 10, Pr=0.07,
Sm = 0.224, M = 0.6, a = 1.5, α = −0.01.

• the effect of decrease in the values of the magnetic parameter,
the Prandtl number and the Reynolds number is to increase the
separation of species of the binary fluid mixture.

• the effect of increase in the values of the Schmidt number is to
increase the species separation.

• the effect of increase in the values of the suction parameter is
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Figure 4: Graph of c1(η)/c0 for various values of Schmidt number against
the normal distance η from the disc taking N = 10, Pr = 0.07, Re =
1,M = 0.6, a = 1.5, α = −0.01.

to increase the species separation in between the disc and the
infinity from the disc but the concentration of the rarer and lighter
component of the binary fluid mixture remains constant at the disc
as well as at the infinity from the disc.

• there is no separation of species of the lighter and rarer component
of the binary mixture far away from the disc.
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Figure 5: Graph of c1(η)/c0 various values of suction parameter against
the normal distance η from the disc taking N = 10, Pr=0.07, Sm =
0.224, M = 0.6, a = 1.5, α = −0.01.

Thus the effect of temperature gradient is to separate the compo-
nents of the binary fluid mixture by throwing the lighter component
away from the rotating heated disc and collect the heavier component
towards the rotating disc and thus affect the process of separation. The
influence of the axial magnetic field is to retard the process of separation.
Taking into account the conclusions derived in this paper gas separating
instruments can be installed, as an engineering application, in big cities
where the harmful gases are present in very small quantities that can be
sucked after separating them and thus pollutants can be removed.
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Figure 6: Graph of c1(η)/c0 various values of the product of Eckert and
thermal diffusion number against the normal distance η from the disc
taking N = 10, Pr = 0.07, Sm = 0.224, M = 0.6, a = 1.5, Re = 1.
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Termalna difuzija u binarnoj mešavini fluida
tekućih zbog obrtnog diska sa jakim uniformnim

usisavanjem u prisustvu slabog uzdužnog
magnetnog polja

Proučava se efekat nekog slabog uniformnog uzdužnog magnetnog polja na
razdvajanje binarne mešavine nestǐsljivih viskoznih termo i elektroprovodnih
fluida čije tečenje potiče od obrtnog diska sa inuformnim snažnim usisavan-
jem. Zanemaruje se indukovano električno polje pa se jednačine koje krak-
terǐsu kretanje, temperaturu i koncentraciju rešavaju u cilindričnim polarnim
koordinatama razvijanjem parametara tečenja kao i temperature pa i kon-
centracije u stepene redove po prametru usisavanja. Rešenje dobijeno za
raspored koncentracije je grafički prikazano za različita uzdužna rastojanja
od diska pri raznim vrenostima bezdimenzionih parametara. Nadjeno je da
na razdvajanje vrsta značajno utiču tempearturski gradijent, uzdužno mag-
netno polje, Reynolds-ov broj, Schmidt-ov broj, Prandtl-ov broj i parametar
usisavanja.
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