
Thermophoresis effects on
non-darcy mhd mixed convective
heat and mass transfer past a

porous wedge in the presence of
suction/ injection

P.Loganathan∗ P.Puvi Arasu†

Theoret. Appl. Mech., Vol.37, No.3, pp. 203–227, Belgrade 2010

Abstract

An analysis is presented to investigate the effect of thermophore-
sis particle deposition and variable viscosity on non-Darcy MHD
mixed convective heat and mass transfer of a viscous, incompress-
ible and electrically conducting fluid past a porous wedge in the
presence of suction/injection. The wall of the wedge is embed-
ded in a uniform non-Darcian porous medium in order to allow
for possible fluid wall suction or injection. The governing partial
differential equations of the problem, subjected to their boundary
conditions, are solved numerically by applying an efficient solution
scheme for local nonsimilarity boundary layer analysis. Numerical
calculations are carried out for different values of dimensionless
parameter in the problem and an analysis of the results obtained
show that the flow field is influenced appreciably by the applied
magnetic field. The results are compared with those known from
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the literature and excellent agreement between the results is ob-
tained.

Keywords: Non similarity transformation, thermophoresis, non-
Darcy flow, Forchheimer number, mixed convection and magnetic
effect.

NOMENCLATURE

u, v velocity components in x and y direction
g Acceleration due to gravity
k Thermophoretic coefficient
Pr Prandtl number
Tw Temperature of the wall
β Coefficient of thermal expansion
C Species concentration of the fluid
C∞ Species concentration away from the wall
σ Electric conductivity of the fluid
U Flow velocity away from the wedge
β∗ Concentration expansion coefficients
K Permeability of the porous medium
T Temperature of the fluid
T∞ Temperature far away from the wall
F Forchheimer number
Cw Species concentration away from the wall
ρ Density of the fluid
α Thermal diffusivity

1 Introduction

Thermophoresis occurs because of kinetic theory in which high energy
molecules in a warmer region of liquid impinge on the molecules with
greater momentum than molecules from a cold region. This leads to a
migration of particles in the direction opposite the temperature gradient,
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from warmer areas to cooler areas. Thermophoresis is of practical im-
portance in a variety of industrial and engineering applications including
aerosol collection (thermal precipitators), nuclear reactor safety, corrosion
of heat exchangers, and micro contamination control. Thermophoresis
has important current applications in the production of optical fibers. A
modified chemical vapor deposition process is used to build up layers of
glass (GeO2 and SiO2) by deposition of particles on the tube wall. Ther-
mophoresis can be used in clean rooms to inhibit the deposition of small
particles on electronic chips. As the dimensions of the circuit elements
are reduced, the potential failures due to micro contamination by particle
deposition increase.

The use of thermophoretic heaters has led to a reduction in chip fail-
ures. In the same vein there is the potential application of thermophoresis
to remove radioactive aerosols from containment domes in the event of a
nuclear reactor accident. Thermophoresis principle is utilized to manu-
facture graded index silicon dioxide and germanium dioxide optical fiber
performs used in the field of communications. In light of these various
applications, England and Emery [1] studied the thermal radiation effect
of an optically thin gray gas bounded by a stationary vertical plate. Rap-
tis [2] studied radiation effect on the flow of a micro polar fluid past a
continuously moving plate. Hossain and Takhar [3] analyzed the effect of
radiation using the Rosseland diffusion approximation on mixed convec-
tion along a vertical plate with uniform free stream velocity and surface
temperature. Duwairi and Damesh [4, 5], Duwairi [6], Damesh et al. [7]
studied the effect of radiation and heat transfer in different geometry for
various flow conditions.

In certain porous media applications such as those involving heat
removal from nuclear fuel debris, underground disposal of radioactive
waste material, storage of food stuffs, and exothermic and/or endother-
mic chemical reactions and dissociating fluids in packed-bed reactors, the
working fluid heat generation (source) or absorption (sink) effects are
important. In the application of pigments, or chemical coating of met-
als, or removal of particles from a gas stream by filtration, there can
be distinct advantages in exploiting deposition mechanisms to improve
efficiency. Goldsmith and May [8] first studied the thermophoretic trans-
port involved in a simple one-dimensional flow for the measurement of the
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thermophoretic velocity. thermophoresis in laminar flow over a horizontal
flat plate has been studied theoretically by Goren [9]. Thermophoresis
in natural convection with variable properties for a laminar flow over a
cold vertical flat plate has been studied by Jayaraj et al.[10]. Selim et
al.[11] studied the effect of surface mass flux on mixed convective flow
past a heated vertical flat permeable plate with thermophoresis. The
first analysis of thermophoretic deposition in geometry of engineering in-
terest appears to be that of Hales et al.[12]. They have solved the laminar
boundary layer equations for simultaneous aerosol and steam transport to
an isothermal vertical surface situated adjacent to a large body of an oth-
erwise quiescent air-steam-aerosol mixture. Simon [13] studied the effect
of thermophoresis of aerosol particles in the laminar boundary layer on
a flat plate. Recently, Chamkha and Pop [14] studied the effect of ther-
mophoresis particle deposition in free convection boundary layer from a
vertical flat plate embedded in a porous medium.

Effects of heat and mass transfer on non-Darcy mixed convection flow
in the presence of suction / injection have been studied by many authors
in different situations. But so far no attempt has been made to analyze the
effects of thermophoresis particle deposition on non-Darcy MHD mixed
convective heat and mass transfer past a porous wedge in the presence
of suction or injection and hence we have considered the problem of this
kind. The order of chemical reaction in this work is taken as first-order
reaction. It is hoped that the results obtained will not only provide
useful information for applications, but also serve as a complement to the
previous studies.

2 Formulation of the problem

Let us consider a steady, laminar, hydromagnetic coupled heat and mass
transfer by mixed convection flow in front of a stagnation point on a wedge
plate embedded in porous medium. The fluid is assumed to be Newtonian,
electrically conducting and its property variations due to temperature are
limited to density and viscosity. The density variation and the effects of
the buoyancy are taken into account in the momentum equation (Boussi-
nesq’s approximation) and the concentration of species far from the wall,
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Figure 1: Flow analysis along the wall of the wedge

C∞, is infinitesimally small. Let the x-axis be taken along the direction
of the wedge and y-axis normal to it. A uniform transverse magnetic
field of strength B0 is applied parallel to the y-axis. The chemical reac-
tion is taking place in the flow and the effect of thermophoresis is being
taken into account to help in the understanding of the mass deposition
variation on the surface. Fluid suction or injection is imposed at the
wedge surface, see Fig.1. The viscous dissipation effect and Joule heat
are neglected on account of the fluid is finitely conducting. It is assumed
that the induced magnetic field, the external electric field and the electric
field due to the polarization of charges are negligible. Under these condi-
tions, the governing boundary layer equations of momentum, energy and
diffusion for mixed convection flow neglecting Joule’s viscous dissipation
under Boussinesq’s approximation including variable viscosity, Lanndau
and Lifshitz [25].

The fundamental equations for steady incompressible flow can be de-
fined as follows:

Conservation of mass:

div V⃗ = 0 (1)
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Conservation of linear momentum:

(V⃗ . grad V⃗ ) = −1

ρ
grad p+ ν ∇2 V⃗ + F⃗ (2)

Conservation of energy:

(V⃗ . grad)T =
ke
ρ cp

∇2T (3)

Conservation of diffusion:

(V⃗ . grad)C = D ∇2 C − (div v⃗TC) (4)

where V⃗ the velocity vector, p is the pressure, ν is the kinematic coefficient
of viscosity and g⃗ is the acceleration due to gravity.

Under these conditions, the basic governing boundary layer equation
of momentum, energy and diffusion for mixed convection flow neglecting
Joule’s viscous dissipation under Boussinesq’s approximation including
variable viscosity, Lanndau and Lifshitz [25] can be simplified to the fol-
lowing equations:

∂u

∂x
+
∂v

∂y
= 0 (5)

u
∂u

∂x
+ v

∂u

∂y
=

1

ρ

∂

∂y
(µ
∂u

∂y
) + U

dU

dx
− σB2

0

ρ
(u− U)− ν

K
(u− U)−

F√
K

(u2 − U2) + (gβ(T − T∞) + gβ∗(C − C∞)) sin
Ω

2

(6)

u
∂T

∂x
+ v

∂T

∂y
= α

∂2T

∂y2
(7)

u
∂C

∂x
+ v

∂C

∂y
= D

∂2C

∂y2
− ∂(VTC)

∂y
(8)

The boundary conditions are,

u = 0, v = −v0, T = Tw, C = Cw at y = 0 (9)

u = U(x), T = T∞, C = C∞ at y → ∞ (10)
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where D is the effective diffusion coefficient; K is the permeability of the
porous medium, VT (= −k ν

T
∂T
∂y
) is the thermophoretic velocity, where k

is the thermophoretic coefficient and F is the empirical constant in the
second order resistance. As neglecting the convective term, viscous term
and setting F = 0 in Eq.(2) is reduced to the Darcy law, Bejan [20].
The fourth and fifth terms on the right-hand side of Eq. (2) stand for
the first-order (Darcy) resistance and second-order (porous inertia) resis-
tance, respectively. The first step was to predict the pressure and velocity
within the porous medium. The approach most commonly used for lam-
inar flows was first described by Darcy, who postulated that the pressure
drop within the medium is due to viscous stress and is proportional to the
velocity. However Darcy’s law is not valid for high-velocity flows and a
correction term must be included to take account of inertial effects. This
term, is known as the Forchheimer term and is a quadratic function of
the velocity.

Following the lines of Kafoussias et al., [5], the following change of
variables are introduced

η = (

√
(1 +m)U

2ν x
)y, ψ = (

√
2Uν x

1 +m
)f(x, η),

θ =
T − T∞
Tw − T∞

and ϕ =
C − C∞

Cw − C∞
(11)

Under this consideration, the potential flow velocity can be written as

U(x) = Axm, β1 =
2m

1 +m
(12)

where A is a constant and β1 is the Hartree pressure gradient parameter
that corresponds to β1 =

Ω
π
or a total angle Ω of the wedge.

The continuity equation (5) is satisfied by the stream function ψ(x, y)
defined by

u =
∂ψ

∂y
and v = −∂ψ

∂x
(13)



210 P.Loganathan, P.Puvi Arasu

The equations (6) to (8) become

∂3f

∂η3
= −f ∂

2f

∂η2
− 2m

1 +m
(1− (

∂f

∂η
)2)− 2

1 +m
γ1(θ +Nϕ) sin

Ω

2

+
2x

1 +m
(
∂f

∂η

∂2f

∂x∂η
− ∂f

∂x

∂2f

∂η2
) +

2x

m+ 1
(
σB2

0

ρU
)(
∂f

∂η
− 1 )+

2

m+ 1
λ(
∂f

∂η
− 1 ) +

2

m+ 1
(
Fx√
K

) ((
∂f

∂η
)2 − 1 ) +

∂θ

∂η

∂2f

∂η2

(14)

∂2θ

∂η2
= −Pr

∂θ

∂η
+

2Pr

1 +m
θ
∂f

∂η
+ Pr

2x

1 +m
(
∂f

∂η

∂θ

∂x
− ∂f

∂x

∂θ

∂η
) (15)

∂2ϕ

∂η2
= −Sc (f − τ

∂θ

∂η
)
∂ϕ

∂η
+

2 Sc

1 +m
ϕ
∂f

∂η
+

2xSc

1 +m
(
∂f

∂η

∂ϕ

∂x
− ∂f

∂x

∂ϕ

∂η
) + Scτ

∂2θ

∂η2
ϕ (16)

where the Grashof number Grx, Local buoyancy parameter γ1, Sustenta-
tion parameter N , Reynolds number Rex, Modified local Reynolds num-
ber Rek, Prandtl number Pr, Forchheimer number Fn, Schmidt num-
ber Scs magnetic parameter M2, suction/injection parameter S, ther-
mophoresis particle deposition parameter τ and porous medium parame-
ter λ, are defined as

Grx =
gβx3(Tw − T∞)

ν2
, γ1 =

Grx

Rex2
, Rex =

Ux

ν
, Rek =

U
√
K

ν
, Pr =

ν

α

(where α is the effective thermal diffusivity of the porous medium),

Fn =
FU

√
K

ν
, Sc =

ν

D
, M2 =

σB2
0

ρ A
,

S = v0

√
(1 +m)x

2 ν U
, τ = −k(Tw − T∞)

Tr
and λ =

α

K A
(17)
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The boundary conditions can be written as

η = 0 :
∂f

∂η
= 0,

f

2
(1 +

x

U

dU

dx
) + x

∂f

∂x
= −v0

√
(1 +m)x

2νU

θ = 1, ϕ = 1

η → ∞ :
∂f

∂η
= 1, θ = 0, ϕ = 0 (18)

where v0 is the velocity of suction if v0 < 0. Fn is the dimensionless
inertial parameter (Forchheimer number) and ξ = k x

1−m
2 Kafoussias and

Nanousis [5], is the dimensionless distance along the wedge (ξ > 0).
The equations (14) to (16) and boundary conditions (18) can be writ-

ten as

∂3f

∂η3
+ f

∂2f

∂η2
− 2

1 +m
M2ξ2(

∂f

∂η
− 1) +

2

1 +m
γ1(θ +Nϕ) sin

Ω

2
−

2

m+ 1
ξ2λPr(

∂f

∂η
− 1 )− 2

m+ 1
((
∂f

∂η
)2 − 1 )(

Rex

Re2k
Fn +m)−

2

1 +m

∂θ

∂η

∂2f

∂η2
= −1−m

1 +m

[
f ′′

(
ξ
∂f

∂ξ

)
− f ′

(
ξ
∂f ′
∂ξ

)]
(19)

∂2θ

∂η2
+ Pr f

∂θ

∂η
− 2Pr

1 +m
θ
∂f

∂η
= − Pr

1−m

1 +m

[
θ′

(
ξ
∂f

∂ξ

)
− f ′

(
ξ
∂θ

∂ξ

)]
(20)

∂2ϕ

∂η2
+ Sc (f − τ

∂θ

∂η
)
∂ϕ

∂η
− 2Sc

1 +m
ϕ
∂f

∂η
− Scτ

∂2θ

∂η2
ϕ =

−Sc1−m

1 +m

[
ϕ′

(
ξ
∂f

∂ξ

)
− f ′

(
ξ
∂ϕ

∂ξ

)]
(21)

η = 0 :
∂f(ξ, η)

∂η
= 0,

(1 +m)

2
f(ξ, η) +

1−m

2
ξ
∂f(ξ, η)

∂ξ
= −S,
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θ(ξ, η) = 1, ϕ(ξ, η) = 1

η → ∞ :
∂f(ξ, η)

∂η
= 1, θ(ξ, η) = 0, ϕ(ξ, η) = 0 (22)

where the prime denotes partial differentiation with respect to η, and the
boundary conditions (22) remain the same. This form of the system is
the most suitable for the application of the numerical scheme described
below.

It may be observed that Equations (19) – (21) remain partial differen-
tial equations after transformation, with ∂

∂ξ
terms on the right-hand side.

In this system of equations, it is obvious that the nonsimilarity aspects
of the problem are embodied in the terms containing partial derivatives
with respect to ξ. This problem does not admit similarity solutions.
Thus, with ξ-derivative terms retained in the system of equations, it is
necessary to employ a numerical scheme suitable for partial differential
equations for the solution. Formulation of the system of equations for the
local nonsimilarity model with reference to the present problem will now
be discussed.

At the first level of truncation, the terms accompanied by ξ ∂
∂ξ

are

small. This is particularly true when (ξ << 1). Thus the terms with ξ ∂
∂ξ

on the right-hand sides of equations (19) – (21) are deleted to get the
following systems of equations:

f ′′′ + ff ′′ − 2

1 +m
M2ξ2(f ′ − 1) +

2

1 +m
γ1(θ +Nϕ) sin

Ω

2

− 2

m+ 1
ξ2λPr(f ′ − 1)− 2

m+ 1
(f ′2 − 1)(

Rex

Re2k
Fn +m)− 2

1 +m
θ′ff ′′ = 0

(23)

θ′′ + Pr fθ′ − 2Pr

1 +m
f ′θ = 0 (24)

ϕ′′ + Sc(f − τθ′) ϕ′ − 2Sc

1 +m
ϕ f ′ − Scτθ′′ ϕ = 0 (25)
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where f ′ = ∂f
∂η
, f ′′ = ∂2f

∂η2
and f ′′′ = ∂3f

∂η3
with boundary conditions

f ′(ξ, 0) = 0,
(1 +m)

2
f(ξ, 0) +

1−m

2
ξ
∂f(ξ, 0)

∂ξ
= −S,

θ(ξ, 0) = 1, ϕ(ξ, 0) = 1

f ′(ξ,∞) = 1, θ(ξ,∞) = 0, ϕ(ξ,∞) = 0 (26)

Equations (23) to (25) can be regarded as a system of ordinary dif-
ferential equations for the functions f, θ and ϕ with ξ as a parameter for
given pertinent parameters.

The major physical quantities of interest are the local skin friction
coefficient; the local Nusselt number and the local Sherwood number are
defined, respectively, by:

Cf =
f ′′(ξ, 0)

Re
1
2
x

; Nu = −θ
′(ξ, 0)

Re
1
2
x

and Sh = −ϕ
′(ξ, 0)

Re
1
2
x

(27)

This form of the system is the most suitable for the application of the
numerical scheme described below.

3 Numerical solution

The MHD boundary layer over the wedge, subjected to a velocity of suc-
tion or injection, is described by the system of partial differential equa-
tions (19) - (21), and its boundary conditions (22). In this system of
equations f(ξ, η) is the dimensionless stream function; θ(ξ, η) be the di-
mensionless temperature; ϕ(ξ, η) be the dimensionless concentration; Pr,
the Prandtl number; Rex, Reynolds number etc. which are defined in
(17). It is obvious that the nonsimilarity aspects of the problem are
embodied in the terms containing partial derivatives with respect to ξ.
Thus, with ξ derivative terms retained in the system of equations (23)
- (25), it is necessary to employ a numerical scheme suitable for partial
differential equations for the solution. In addition, owing to the coupling
between adjacent streamwise locations through the ξ derivatives, a lo-
cally autonomous solution, at any given streamwise location, cannot be
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obtained. In such a case, an implicit marching numerical solution scheme
is usually applied preceding the solution in the ξ-direction, i.e., calculat-
ing unknown profiles at ξι+1 when the same profiles at ξι are known. The
process starts at ξ = 0 and the solution proceeds from xiι to ξι+1 but
such a procedure is time consuming.

However, when the terms involving ∂f
∂ξ
, ∂θ
∂ξ

and ∂ϕ
∂ξ

and their η deriva-
tives are deleted, the resulting system of equations resembles, in effect, a
system of ordinary differential equations for the functions f, θ and ϕ with
ξ as a parameter and the computational task is simplified. Furthermore
a locally autonomous solution for any given ξ can be obtained because
the stream wise coupling is severed.

So, in this work, a modified and improved numerical solution scheme
for local nonsimilarity boundary layer analysis is used. The scheme is
similar to that of Minkowycz et al. [2], but it deals with the differential
equations in lieu of integral equations. In each level of truncation, the
governing coupled and nonlinear system of differential equations is solved
by applying the common finite difference method, with central differenc-
ing, a tridiagonal matrix manipulation, and an iterative procedure. The
whole numerical scheme can be programmed and applied easily and has
distinct advantages compared to that in Minkowycz et al. [22] with re-
spect to stability, accuracy, and convergence speed. The details of this
scheme are described in Kafoussias and Karabis [23] and Kafoussias and
Williams [24].

To examine the behavior of the MHD boundary layer over the wedge,
numerical calculations were carried out for different values of the dimen-
sionless parameters. The numerical results are shown in Figures 2–8 for
the velocity, temperature, and concentration of the fluid along the wall
of the wedge.

4 Results and discussion

Numerical computations are carried out for

0 ≤ τ, M2 ≤ 5; 0.01 ≤ Fn ≤ 0.2; 0.1 ≤ λ ≤ 3.0;

−3.0 ≤ γ1 ≤ 1.0; −1.5 ≤ S ≤ 3.0.
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Typical velocity, temperature and concentration profiles are shown
in following Figures for Pr = 0.71 and some values for the parameters
γ, M2, τ, γ1, Sc, m, N and λ. The case γ1 >> 1.0 corresponds to pure
free convection, γ1 = 1.0 corresponds to mixed convection and γ1 << 1.0
corresponds to pure forced convection. Throughout this calculation we
have considered γ1 = 1.0 unless otherwise specified. The velocity, tem-
perature and concentration profiles obtained in the dimensionless form
are presented in the following Figures for Pr = 0.71 which represents air
at temperature 200C and Sc = 0.62 which corresponds to water vapor
that represents a diffusion chemical species of most common interest in
air. Grashof number for heat transfer is chosen to be Grx = 9, since these
values corresponds to a cooling problem, and Reynolds numberRex = 3.0.

The computations have been carried out for various values of magnetic
parameter (M2), Forchheimer number (Fn), Thermophoresis particle de-
position parameter (τ) and porous medium (λ). In the absence of diffu-
sion equation, in order to validate our method, we have compared steady
state results of skin friction f ′′(ξ, 0) and rate of heat transfer −θ′(ξ, 0)
for various values of ξ (Table.1) with those of Minkowycz et al. [22] and
found them in excellent agreement.

Minkowycz et al.[22] Present works

ξ f
′′
(ξ, 0) −θ′

(ξ, 0) f
′′
(ξ, 0) −θ′

(ξ, 0)

0 0.33206 0.29268 0.33206 0.29268
0.2 0.55713 0.33213 0.55707 0.33225
0.4 0.75041 0.35879 0.75007 0.35910
0.6 0.92525 0.37937 0.92449 0.37986
0.8 1.08792 0.39640 1.08700 0.39685
1.0 1.24170 0.41106 1.24062 0.41149
2.0 1.92815 0.46524 1.92689 0.46551
10.0 5.93727 0.64956 5.93502 0.64968

Table 1: Comparison with previous Literature

The velocity and temperature profiles are shown in Fig. 2. It is observed
that the absence of diffusion equations, in order to ascertain the accuracy
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of our numerical results, the present study is compared with the available
exact solution in the literature. The velocity profiles for ξ are compared
with the available exact solution of Minkowycz et al. [22], is shown in
Fig.2. It is observed that the agreements with the theoretical solution of
velocity and temperature profiles are excellent.

Figure 2: Comparison of the effect of ξ on velocity and temperature
profiles

The effects of thermophoretic parameter τ on velocity, temperature
and concentration field are shown in Fig.3. It is observed that the veloc-
ity, temperature and concentration of the fluid decrease with increase of
thermophoretic parameter. In particular, the effect of increasing the ther-
mophoretic parameter τ is limited to increasing slightly the wall slope of
the concentration profiles but decreasing the concentration. This is true
only for small values of Schmidt number for which the Brownian diffusion
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effect is large compared to the convection effect. However, for large values
of Schmidt number (Sc > 100) the diffusion effect is minimal compared
to the convection effect and, therefore, the thermophoretic parameter τ
is expected to alter the concentration boundary layer significantly. This
is consistent with the work of Goren [12] on thermophoresis of aerosol
particles in flat plate boundary layer.

Figure 3: Thermophoretic effect on velocity, temperature and concentra-
tion profiles γ1 = 1.0, m = 0.0909, N = 3, Rek =M2 = 1.0, Fn, λ = 0.1,
S = 3.0, ξ = 0.01 and Ω = 300

Figure 4 presents typical profiles for velocity, temperature and con-
centration for different values of magnetic parameter. Due to the uniform
suction effects, it is clearly shown that the velocity of the fluid increases
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and the temperature and concentration of the fluid slightly decrease with
increase of the strength of magnetic field. The effects of a transverse
magnetic field to an electrically conducting fluid gives rise to a resistive-
type force called the Lorentz force. This force has the tendency to slow
down the motion of the fluid and to reduce its temperature and concen-
tration profiles. This result qualitatively agrees with the expectations,
since magnetic field exerts retarding force on the mixed convection flow.
Application of a magnetic field moving with the free stream has the ten-
dency to induce a motive force which decreases the motion of the fluid
and increases its boundary layer. This is accompanied by a decrease in
the fluid temperature and concentration.

Figure 5 shows the influence of the inertial parameter Fn on the dimen-
sionless velocity, temperature and concentration profiles, respectively. It
is observed that, the velocity increases as the inertial parameter (Forch-
heimer number) increases. The reason for this behavior is that the inertia
of the porous medium provides an additional resistance to the fluid flow
mechanism, which causes the fluid to move at a retarded rate with reduced
temperature and concentration. These behaviors are shown in Fig.5. The
decreasing of thickness of the concentration layer is caused by the direct
action of suction at the wall of the surface. All these physical behavior
are the combined effect of thermophoresis particle deposition with suction
at the wall of the surface.

Figure 6 shows the effect of the porosity parameter on the dimension-
less velocity, temperature and concentration profiles, respectively. It is
observed that the velocity increases as the porosity increases. The reason
for this behavior is that the suction of the wall of the wedge provides an
additional effect to the fluid flow mechanism, which causes the fluid to
move at a retarded rate with reduced temperature. These behaviors are
shown in Fig.6. Also, it is observed that the concentration of the fluid is
almost not affected with increase of the porosity parameter.

Figure 7 depicts the dimensionless velocity, temperature and concen-
tration profiles for different values of buoyancy parameter. In the presence
of uniform magnetic effect, it is seen that the velocity for free convection is
more dominant to compare with the forced and mixed convection flow and
there is no significant effects on temperature and concentration boundary
layer.
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Figure 4: Magnetic effect on velocity, temperature and concentration
profiles γ1 = 1.0, m = 0.0909, N = 3, Rek = 1.0, Fn = λ = 0.1, τ = 0.5,
S = 3.0, ξ = 0.01 and Ω = 300

Figure 8 illustrates the influence of the suction / injection parameter
S on the velocity, temperature and concentration profiles, respectively.
The imposition of wall fluid suction for this problem has the effect of
increasing the entire hydrodynamic and reduces the thermal and con-
centration boundary layers causing the fluid velocity to increase while
decreasing its temperature and concentration for suction / injection. It
is interesting to note that the velocity of the fluid decreases with increase
of injection (S < 0). The decreasing of thickness of the concentration
layer is caused by two effects; (i) the direct action of suction, and (ii)
the indirect action of suction causing a thicker thermal boundary layer,
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Figure 5: Forchheimer number on velocity, temperature and concentra-
tion profiles γ1 = 1.0, m = 0.0909, Rek = M2 = 1.0, λ = n = 0.1,
τ = 0.5, S = 3.0, N = 3.0, ξ = 0.01 and Ω = 300

which corresponds to lower temperature gradient, a consequent increase
in the thermophoretic force and higher concentration gradient. From
the Table 2, it is observed that the skin friction increases and the rate
of heat and mass transfer decrease with increase of magnetic and suction
parameters respectively, whereas the skin friction and the rate of mass
transfer decrease and the rate of heat transfer increases with increase of
thermophoretic parameter. It is interesting to note that the skin friction
and the rate of mass transfer of forced convection flow is more signifi-
cant to compare with free and mixed convection whereas the rate of heat
transfer of free convection flow is faster to compare with the other two
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Figure 6: Porosity effects on velocity, temperature and concentration
profiles γ1 = 1.0,m = 0.0909, Rek= M 2= 1.0, S = 3.0, τ = 0.5, N
=3.0,ξ=0.01 and Ω = 300

convection flows.

5 Conclusions

In the present paper, the effect of thermophoresis particle deposition on
non-Darcy MHD mixed convection boundary layer flow over a porous
wedge in the presence of suction or injection has been studied numeri-
cally. There are many parameters involved in the final form of the math-
ematical model. The problem can be extended on many directions, but
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Figure 7: Buoyancy effects on velocity, temperature and concentration
profiles γ1 = 1.0,m = 0.0909, Rek= M 2= 1.0, S = 3.0, τ = 0.5, N
=3.0,ξ= 0.01 and Ω = 300

the first one seems to be to consider the effects of thermophoresis parti-
cle deposition. In mixed convection regime, the concentration boundary
layer thickness decreases with increase of the thermophoretic parameter.
So, the thermophoretic effects in the presence of magnetic field have a
substantial effect on the flow field and, thus, on the heat and mass trans-
fer rate from the sheet to the fluid. As the suction and inertial parameter
increase, the hydrodynamic boundary layer increases and the thermal and
concentration boundary layers decrease. Thermophoresis is an important
mechanism of micro-particle transport due to a temperature gradient in
the surrounding medium and has found numerous applications, especially
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Figure 8: Suction/injection effects on velocity, temperature and concen-
tration profiles γ1 = 1.0,m = 0.0909, Rek= M 2= 1.0, τ = 0.5, N =3.0,ξ=
0.01 and Ω = 300

in the field of aerosol technology. It is expected that this research may
prove to be useful for the study of movement of oil or gas and water
through the reservoir of an oil or gas field, in the migration of under
ground water and in the filtration and water purification processes.
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Thermophoresis effects on non-darcy mhd mixed
convective heat and mass transfer past a porous

wedge in the presence of suction/ injection

An analysis is presented to investigate the effect of thermophoresis particle
deposition and variable viscosity on non-Darcy MHD mixed convective heat
and mass transfer of a viscous, incompressible and electrically conducting fluid
past a porous wedge in the presence of suction/injection. The wall of the
wedge is embedded in a uniform non-Darcian porous medium in order to allow
for possible fluid wall suction or injection. The governing partial differential
equations of the problem, subjected to their boundary conditions, are solved
numerically by applying an efficient solution scheme for local nonsimilarity
boundary layer analysis. Numerical calculations are carried out for different
values of dimensionless parameter in the problem and an analysis of the re-
sults obtained show that the flow field is influenced appreciably by the applied
magnetic field. The results are compared with those known from the literature
and excellent agreement between the results is obtained.

doi:10.2298/TAM1003203L Math.Subj.Class.: 76W05, 76S05


