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Abstract

The algebraic proof of the fundamental theorem concerning
pure shear, by making use only of the notion of orthogonal pro-
jector, is presented. It has been shown that the state of pure
shear is the same for all singular symmetric traceless tensors in
E3, up to the rotation.
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1 Introduction

It is known that in classical continuum mechanics the Cauchy stress
tensor T is symmetric. By definition, a state of stress is said to be one
of pure shear if there is an orthogonal basis pi (i = 1, 2, 3) for which

pi·Tpi = 0, no sum over indices i = 1, 2, 3. (1)
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Note that, if pi satisfies (1), so does −pi. Therefore, these vectors
pi (i = 1, 2, 3) are unique up to their orientation. In what follows, we
shall use the term unique in this sense.

Theorem 1 A necessary and sufficient condition for T to be a state
of pure shear is

trT = 0. (2)

It is almost obvious that (1) is necessary condition for (2). Indeed,
from (1) and

3∑
i=1

pi ⊗ pi = I, (3)

where I is identity tensor, we have

0 =
3∑

i=1

pi·Tpi =
3∑

i=1

trT(pi ⊗ pi) = trT. (4)

As for the second part of the theorem it suffices for the proof to
exhibit just one orthonormal basis for which (2) ⇒ (1).

Belik and Fosdick [1], in order to exhibit all such bases, prove this
fundamental theorem from both the geometric and algebraic points of
view in three dimensional Euclidean space, E3.

Recently, Boulanger and Hayes [2] presented what they called an
even more elementary proof and gave an insightful geometrical ap-
proach in terms of elliptical sections of the stress ellipsoid.

They also stated that ”it may be shown that n·Tn = 0 for all
n lying in a plane, if and only if one of the eigenvalues is zero (say
σ2 = 0), and all the n lie in either one or other of the planes of central
circular section of ellipsoid E...” No proof was given.

Ting [3] provided a characterization of directions n such that σnn =
0 in terms of the total shear in the plane normal to n, τ = |Tn|.

Norris [4] discussed the pure shear basis vectors independent of the
values of principal stresses.

Here, making use only of the notion of orthogonal projector, we
present the proof of the theorem in E3 . It distinguishes the present
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discussion from the recent notes ([1]-[4]). The proof includes also the
case mentioned by Boulanger and Hayes [2]. In our approach, we do
not refer to any ellipsoid, nor do we determine the principal axes of an
elliptical section. In this sense our approach is direct and general. This
is shown in Section 3, where we analyze the n-dimensional Euclidean
space En.

Of course, 3-dimensional case is a special one. But in presenting the
paper in this order we wanted to emphasize two things some specific
feature of the 3-dimensional case as well as the role of the orthogonal
projector in solving the general n-dimensional case.

The organization of this paper is as follows. In Section 1, we estab-
lish the notation. In Section 2, we discuss only the algebraic approach
for the 3-dimensional case, since the geometrical approach is given in
[1].

Moreover, we show that the state of pure shear is the same for all
singular symmetric traceless tensors in E3, up to a rotation.

In Section 3 detailed analysis of the n-dimensional case is given.
The procedure consists of several steps. Each step is based on corre-
sponding Lemma. Although these lemmas are identical in form, we
stated them separately in order to clarified each step.

In Section 4, we extend our results to nonsymmetric tensors in En.
Finally, in Section 5, the summary and a brief discussion are given.

2 Notation

We use the following notations:

- π: p·x = 0 for the plane defined by unit outward normal vector
p, where x ∈ En,

- P = I−p⊗p ∈ Sym, P2 = P, for the orthogonal projector along
p onto π,

- v⋆ = Pv for the projection of a vector,

- S⋆ = PSP for the projection of a second order tensor S.
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S⋆ is singular for any P ̸= I. Particularly, Pp = 0 and S⋆p = 0.
Therefore, p is eigenvector of P and S⋆, corresponding to zero eigen-
value.

Also,
Pξ = ξP = ξ, ξ·S⋆ξ = ξ·Sξ, (5)

for any vector ξ ∈ π.
For symmetric S:

S⋆ = PSP = S− Sp⊗ p− p⊗ Sp+ (p·Sp)p⊗ p (6)

trS⋆ = trS− p·Sp. (7)

As a preliminary to the general definition of a projector, we remind
the reader of the definition of the decomposition of En into direct sum
of subspaces U and V , symbolized by

En = U ⊕ V. (8)

Then P is orthogonal projector, of En along V onto U , if P ∈ Sym and
U and V are orthogonal.

3 Algebraic Approach in E3

First, we confine our investigation to a tensor T ∈ Sym in E3. For
further reference we write its spectral form

T = σ1n1 ⊗ n1 + σ2n2 ⊗ n2 + σ3n3 ⊗ n3. (9)

Then, in view of (2)
σ1 + σ2 + σ3 = 0. (10)

We assume that
σ1 > 0, σ2 ≥ 0, σ3 < 0. (11)

We seek p(= p1), such that the component of T in the direction of
p is zero, i.e.

p·Tp = 0. (12)
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Accordingly, p lies along a generator of the elliptical cone

c : x· (Tx) = σ1x
2
1 + σ2x

2
2 + σ3x

2
3 = 0 (13)

through its tip. A solution to (13) certainly exists, i.e. xi = ±1,
i = 1, 2, 3. For any particular p, which satisfies (12), p2 and p3 must
lie in π. Therefore, π ∩ c defines directions of p2 and p3, if they are
orthogonal. To show that, we make use of (5)1 and write

0 = pα·Tpα = pα·PTPpα = pα·T⋆pα, α = 2, 3, (14)

where

T⋆ = PTP ∈ Sym (15)

is the projection of T along p onto π.
Moreover, in view of (6), (7) and (12) we have

T⋆ = PTP = T−Tp⊗ p− p⊗Tp, (16)

trT⋆ = trT, (17)

and

T⋆ = λ1ν1 ⊗ ν1 + λ2ν2 ⊗ ν2. (18)

But

trT = 0 ⇔ trT⋆ = 0, (19)

so that λ1 = −λ2(= λ) and accordingly we write (18) as

T⋆ = λ(ν1 ⊗ ν1 − ν2 ⊗ ν2). (20)

In view of (14) and (20), the corresponding pα must lie on the
”cone”

c⋆ : ξ·T⋆ξ = λ(ξ21 − ξ22) = 0, (21)

where ξ = ξανα.
We shall discuss all possible solutions of (21), which satisfy (1).

I) λ ̸= 0. In this case

ξ2 = ±ξ1,
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i.e.
ξ = ξ1(ν1 ± ν2).

But, p =
ξ

|ξ|
and thus

p2 =
1√
2
(ν1 + ν2),

p3 =
1√
2
(ν1 − ν2).

(22)

Thus obtained pi (i = 1, 2, 3) are orthonormal and represent the unique
solution to our problem.

It is easy to calculate λ. For instance, from (20) we have

T⋆2 = λ2(ν1 ⊗ ν1 + ν2 ⊗ ν2), (23)

and from this
2λ2 = trT⋆2. (24)

Next, in view of (15) and (12), we obtain

2λ2 = tr (PTP)2 = tr (PT)2 = trT2 − 2p·T2p (25)

(see (3.6) in [2]).
II) λ = 0. Then T⋆ = 0, and from (16) we have

T = Tp⊗ p+ p⊗Tp,

from which we conclude that either

detT = 0, (26)

(see for instance [5]), or
σ2 = 0.

In view of this and (19)1 we have

σ1 = |σ3|(= σ),
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Thus, from (9) we have

T = σ (n1 ⊗ n1 − n3 ⊗ n3) . (27)

Since (21) is identity for any ξ ∈ π, we are looking for p ∈ c, which
defines such plane π. But in view of (13)

c : x·Tx = σ(x2
1 − x2

3) = 0, (28)

so that
τ1 : x1 + x3 = 0 ⇒ t1·x = 0,

τ2 : x1 − x3 = 0 ⇒ t2·x = 0,
(29)

are the solutions of (28), where

t1 =
1√
2
(n1 + n3) ,

t2 =
1√
2
(n1 − n3) .

(30)

It is clear that c = τ1 ∪ τ2, where τ1 and τ2 represent two perpen-
dicular planes, which intersect along direction defined by n2.

In order to complete our discussion we consider the following pos-
sible cases.

a) Let p2, p3 ∈ τ1 be any two orthonormal vectors. Then p1 = t1 ∈
τ2 is the only unit vector perpendicular to the vectors p2 and p3. More
precisely, any such set of orthonormal vectors satisfying (1) is given by

p1 = t1,

p2 = n2 cosα+ t2 sinα,

p3 = −n2 sinα+ t2 cosα, 0 ≤ α ≤ π.

(31)

b) In the same way, we conclude that any two orthonormal vectors
p2, p3 ∈ τ2, and p1 = t1 ∈ τ1, given by

p1 = t2,

p2 = n2 cosα+ t1 sinα,

p3 = −n2 sinα+ t1 cosα, 0 ≤ α ≤ π,

(32)
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form a set of orthonormal vectors satisfying (1).
The sets of orthonormal vectors given by (31) and (32) include all

possible solutions to (1). Particularly, if cosα = 1, then the set of
vectors

n2, t2, t1 (33)

satisfies (1).
Finally, we go one step further and state

Lemma 1 Let T,S be any two symmetric singular traceless tensors.
Then the ”cones” that define their states of pure shear, differ by the
rotation of their eigenvectors.

Proof. According to the supposition of Lemma 1 Tn2 = 0 and Sf2 = 0.
Then (27) holds and

S = µ (f1 ⊗ f1 − f3 ⊗ f3) , (34)

where fi (i = 1, 2, 3) are orthonormal. Now, there is unique orthogonal
tensor R such that

Rfi = ni.

Hence,

RSRT = µ (Rf1 ⊗Rf1 −Rf3 ⊗Rf3) =

= µ (n1 ⊗ n1 − n3 ⊗ n3) =

=
µ

σ
T

where µ/σ ̸= 0.
In view of the above relation, the ”cone”

cT : x·Tx = 0,

transforms to the ”cone”

cS : y·Sy = 0

where
y = RTx.

Geometrically these ”cones” differ for rotation represented by R. �
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Corollary 1 Given two singular, symmetric and traceless tensors T
and S, define an orthogonal tensor R = ni ⊗ fi, where ni and fi,
i = 1, 2, 3, are eigenvectors of T and S, respectively.

Let pi, i = 1, 2, 3, be an orthonormal set of vectors satisfying (1).
Then the set of orthonormal vectors qi = RTpi satisfies qi·Sqi = 0.

This simply follows from the last three expressions. We shall illus-
trate it by the following

Example

Let,

T =

1 0 0
0 −1 0
0 0 0

 , S =

−3 6 0
6 0 −6
0 −6 3


with respect to the basis n1, n2, n3. Obviously,

trT = detT = 0 and trS = detS = 0.

It easy to show that is

s1 = 9, s2 = −9, s3 = 0

are the eigenvalues of S. Corresponding eigenvectors are

f1 =
1

3
(1, 2,−2), f2 =

1

3
(−2, 2, 1), f3 =

1

3
(2, 1, 2).

Then
S = 9(f1 ⊗ f1 − f2 ⊗ f2).

The orthogonal tensor
R = ni ⊗ fi,

which is represented by

1

3

 1 2 −2
−2 2 1
2 1 2

 ,
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on the basis (n1, n2, n3), transforms n1, n2, n3 into f1, f2, f3 so that

Rfi = ni.

It follows that RSRT = 9T. Then, for all x, for which

x·Tx = 0

transforms into
y = Rx,

so that
y·Sy = 0.

If pi·pj = δij and pi·Tpi = 0, i = 1, 2, 3, no sum with respect to i,
then, for all qi = Rpi, i = 1, 2, 3, qi·qj = δij and qi·Sqi = 0, no sum
with respect to i.

Further,
1√
2
(n1 ± n2) = R

1√
2
(f1 ± f2) .

Also, (31) and (32) are mapped by R into corresponding solutions of
S.

4 n-dimensional case

In investigating n-dimensional case, we shall make use of the following
notation

rxαr , rσαr , rnαr , αr = 1, . . . , k − r

their meaning will be clear from the context.
Let a tensor T ∈ Sym is given in Euclidean n-dimensional space

En. Then Theorem 1 holds, having in mind that now i = 1, 2, . . . , n,
in (1) and (3).

In order to include all possible cases, we write its spectral form as

T =
k∑

α=1

σαnα ⊗ nα, k ≤ n, (35)
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where

ni·nj = δij, i, j = 1, 2, . . . , n. (36)

Then from (2) and (35), we have

k∑
α=1

σα = 0.

If k < n, then there is a set of n− k orthonormal vectors nσ such that

Tnσ = 0, σ = k + 1, . . . , n. (37)

This set of vectors nσ spans n − k dimensional vector space V , so
that any unit vector v ∈ V satisfies (1). Hence, there is an infinity
of sets of n − k orthonormal vectors which satisfy (1). Remaining
k orthonormal vectors are in k-dimensional spaces U , spanned by k
orthonormal vectors nα, α = 1, . . . , k. Thus, En = U ⊕ V , where U
and V are mutually orthogonal spaces.

In order to complete the set of n orthonormal unit vectors satisfying
(1), we proceed in several steps.
A1. Let

x = xini.

Then x must lay on the cone

C : x·Tx =
k∑

α=1

σαx
2
α = 0. (38)

Obviously (38) does not impose any restrictions upon xσ, σ = k +
1, . . . , n. Therefore, it is sufficient to consider only x ∈ U , i.e. when
x = xαnα, α = 1, . . . , k or equivalently when x·nσ = 0.

Let x = xαnα ∈ U be any solution of (38), and p1 its unit vector.
Then, the set of orthonormal vectors p1 and nσ, σ = k+1, . . . , n, spans
the (n− k + 1) dimensional linear vector space V

(1)
1 . Accordingly, any

x ∈ V
(1)
1 satisfies (38). Therefore, there is infinite of sets of orthonormal

vectors in V
(1)
1 satisfying (1).
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A2. Now, let En = V
(1)
1 ⊕ U1. Then V

(1)
1 ∈ V , U1 ⊂ U , and dimU1 =

k − 1. Therefore, the orthogonal projection of En along V
(1)
1 onto U1

is defined by the orthogonal projector

P1 = I− p1 ⊗ p1 −
n∑

σ=k+1

nσ ⊗ nσ. (39)

Obviously, rankP1 = k − 1.

Lemma 2 x ∈ U1 iff P1x = x.

Proof. If x ∈ U1, then x·p1 = 0 and x·nσ = 0. Hence P1x = x.
Conversely, from x = P1x we have x·p1 = 0 and x·nσ = 0, i.e. x ∈ U1.

Thus, the remaining k−1 orthonormal vectors satisfying (39) must
lay in the intersection of U1 and the cone (38). Making use of Lemma
2, their intersection can be put in the following form:

x·Tx = P1x·TP1x = x·P1TP1x = x·T1x = 0, (40)

where
T1 = P1TP1, T1 ∈ Sym (41)

is the orthogonal projection of T by P1. According to the modified
forms of (6) and (7) we conclude that

trT1 = trT, and trT ⇔ trT1 = 0. (42)

But rankT1 ≤ k − 1. In general, its spectral form reads

T1 =
k−1∑
α1=1

1σα11nα1 ⊗ 1nα1 (43)

The set of n vectors 1nα1 , p1, nσ, α1 = 1, . . . , k − 1; σ = k + 1, . . . , n,
are orthonormal and thus linearly independent. They may be taken as
the basis of En. Then, we may write

x =
k−1∑
α1=1

1xα1 + p1p1 +
n−k∑
σ=1

xσnσ,
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for any x ∈ En. But, we need only those x which satisfy x = Px =∑k−1
α1=1 1xα1 ∈ U1.
Hence, in view of properties of T1, we have that

C1 : x·Tx = x·T1x =
k−1∑
α1=1

1σα11x
2
α1

= 0. (44)

Accordingly, any unit vector p2 ∈ U1 along the generator of the
above cone (44) is the solution of (1). Hence, we have n − k + 2
orthonormal vectors satisfying (1). They are p1, p2, nσ, σ = k +
1, . . . , n.

Moreover, in addition to V
(1)
1 , we have space V

(2)
1 of n − k + 1

dimensions, spanned by p2, nσ, σ = k + 1, . . . , n, such that any vector
in this space satisfies (1).

The space V2 of n − k + 2 dimension spanned by vectors p1, p2,
nσ, σ = k + 1, . . . , n, does not have this property. For instance, let
x = p1p1 + p2p2. Then, in general, x·Tx = 2p1p2p1·Tp2 ̸= 0, i.e. x is
not on the cone (44). Therefore, any set of orthonormal vectors in V

(1)
1 ,

together with p2 form a set of n− k+2 orthonormal vectors satisfying
(1). Likewise, any set of orthonormal vectors in V

(2)
1 , together with p1

form a set of n− k + 2 orthonormal vectors satisfying (1).
A3. Let En = V2 ⊕ U2. Then

P2 = I−
2∑

a=1

pa ⊗ pa −
n∑

σ=k+1

nσ ⊗ nσ, (45)

where P2 ∈ Sym, rankP2 = k− 2, represents an orthogonal projection
of En along V2 onto U2. Obviously, the remaining k − 2 orthonormal
vectors satisfying (1) must lay in the intersection of U2 and the cone
(38). But, vectors x ∈ U2 are subjected to the following restrictions:
x·pa = 0, and x·nσ = 0, a = 1, 2; σ = k + 1, . . . , n. Therefore, we
restate Lemma 2 in this case as:

Lemma 3 x ∈ U2 iff P2x = x.

The proof of this lemma is the same as for Lemma 2.
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Making use of the Lemma 3, we write the intersection of U2 and
(38) as

x·Tx = P2x·TP2x = x·P2TP2x = x·T2x = 0,

where
T2 = P2TP2, T2 ∈ Sym, rankT2 ≤ k − 2

trT2 = trT, trT = 0 ⇒ trT2 = 0.
(46)

The spectral form of T2, in general, now reads

T2 =
k−2∑
α2=1

2σα22nα2 ⊗ 2nα2 (47)

The set of n orthonormal vectors 2nα2 ; pa; nσ; α2 = 1, . . . , k − 2;
a = 1, 2; σ = k + 1, . . . , n; spans En.

Thus, any x ∈ En has the following representation

x =
k−2∑
α2=1

2xα22nα2 +
2∑

a=1

papa +
n−k∑
σ=1

xσnσ.

Then, in view of Lemma 3, we write for the intersection of U2 and
(38)

C2 : x·Tx = x·T2x =
k−2∑
α2=1

2σα22x
2
α2

= 0. (48)

Then, any unit vector p3 ∈ U2 of x =
∑k−2

α2=1 2xα22nα2 along the
generator of the cone (48) is the solution of (1). Hence we have
n − k + 3 orthonormal vectors satisfying (1). They are p1, p2, p3,
nσ, σ = k + 1, . . . , n.

Moreover, in addition to V
(1)
1 and V

(2)
1 of n− k + 1 dimensions, we

have the space V
(3)
1 , also of n − k + 1 dimension, spanned by p3, nσ,

σ = k+1, . . . , n, such that any vector in this space satisfies (1). Again,
no space of n− k + 2 dimension spanned by two of vectors p1, p2, p3

and nσ, σ = k + 1, . . . , n, has this property.
Therefore, any set of orthonormal vectors in V

(1)
1 together with p2

and p3 form a set of n − k + 3 orthonormal vectors satisfying (1).
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Likewise, any set of orthonormal vectors in V
(2)
1 together with p1 and

p3 form a set of n − k + 3 orthonormal vectors satisfying (1). Also,

any set of orthonormal vectors in V
(3)
1 together with p1 and p2 form

a set of n − k + 3 orthonormal vectors satisfying (1). More concisely,

any set of orthonormal vectors in V
(k)
1 , together with the set {pe} of

two vectors, e, k = 1, 2, 3, e ̸= k, form a set of n − k + 3 orthonormal
vectors satisfying (1).
A4. We may proceed further in the same way until

Pr = I−
r∑

a=1

pa ⊗ pa −
n∑

σ=k+1

nσ ⊗ nσ, (49)

where rankPr = k−r > 0; pa, nσ; a = 1, . . . , r; σ = k+1, . . . , n. From
the way we obtain pa, vectors pa; nσ; a = 1, . . . , r; σ = k + 1, . . . , n,
are orthonormal and satisfy (1). We shall denote the (n − k + r) -
dimensional space they span, by Vr. Then, we may write En = Vr⊕Ur,
where dimUr = k − r > 0, and thus Ur ⊂ · · · ⊂ U1 ⊂ U . As above,
we conclude that any x ∈ Ur must satisfy the following conditions:
x·pa = 0 and x·nσ = 0, a = 1, . . . , r; σ = k+1, . . . , n. Next, as above,
we write

Lemma 4 x ∈ Ur iff Prx = x.

Then the intersection of Ur and (38) reads as

x·Tx = Prx·TPrx = x·PrTPrx = x·Trx = 0,

where
Tr = PrTPr, Tr ∈ Sym, rankTr ≤ k − r

trTr = trT, trT = 0 ⇒ trTr = 0.
(50)

The spectral form of Tr, in general, now reads

Tr =
k−r∑
αr=1

rσαr rnαr ⊗ rnαr . (51)

The set of n orthonormal vectors rnαr ; pa; nσ; αr = 1, . . . , k − r;
a = 1, . . . , r; σ = k + 1, . . . , n; spans En.
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Thus any x ∈ En has the following representation

x =
k−r∑
αr=1

rxαr rnαr +
r∑

a=1

papa +
n−k∑
σ=1

xσnσ. (52)

Then, in view of Lemma r+1, we write for the intersection of Ur and
(38) as

Cr : x·Tx = x·Trx =
k−r∑
αr=1

rσαr rx
2
αr

= 0. (53)

Then any unit vector pr+1 ∈ Ur along the generator of the cone (48) is
the solution of (1). Hence we have n− k + r + 1 orthonormal vectors
satisfying (1). They are pb; nσ; b = 1, . . . , r + 1; σ = k + 1, . . . , n.

But now we have V
(b)
1 , b = 1, . . . , r + 1, linear vector spaces of

n− k+1 dimensions, spanned by each vector pb, b = 1, . . . , r+1, and
set of vectors nσ, σ = k + 1, . . . , n, such that any vector in this spaces
satisfies (1). Again, no space of n− k+2 or higher dimension spanned
by vectors pb, b = 1, . . . , r + 1 and set of vectors nσ, σ = k + 1, . . . , n
has this property.

Therefore, any set of orthonormal vectors in V
(b)
1 , b = 1, . . . , r + 1

and set {pc} of r vectors, b, c = 1, . . . , r + 1, b ̸= c, represents the set
of n− k + r + 1 orthonormal vectors satisfying (1).

It is clear that (51), (52) and (53) represent recurrent formulas.
Indeed, for r = 0, 1, . . . , k−2 we obtain all possible cases. Particularly,
for r = 0, with following identification: C0 = C, 0xα0 = xα, p0 = 0 we
obtain (38).

A5.

The final step is obtained for r = k − 2. Then, from (51), (52) and
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(53) we have

Tk−2 =
2∑

αk−2=1

k−2σαk−2k−2nαk−2
⊗ k−2nαk−2

x =
2∑

αk−2=1

k−2xαk−2k−2nαk−2
+

k−2∑
a=1

papa +
n−k∑
σ=1

xσnσ

Ck−2 : x·Tx = x·Tk−2x =
2∑

αk−2=1

k−2σαk−2k−2x
2
αk−2

= 0.

But since trTk−2 = 0, then

k−2σ1 + k−2σ2 = 0 or k−2σ1 = −k−2σ2 = k−2σ, (54)

and hence

Tk−2 = k−2σ (k−2n1 ⊗ k−2n1 − k−2n2 ⊗ k−2n2) , (55)

Ck−2 : x·Tx = x·Tk−2x = k−2σ
(
k−2x

2
1 − k−2x

2
2

)
= 0. (56)

¿From (55) we obtain that

k−2x2 = ±k−2x1. (57)

Then the last two vectors, which completes the set of n orthonormal set
vectors satisfying (1), are obtained as the unit vectors of set of vectors

x± = k−2x2 (k−2n1 ± k−2n2) +
k−2∑
a=1

papa +
n−k∑
σ=1

xσnσ. (58)

Clearly, Uk−2 ⊂ · · · ⊂ U1 ⊂ U . In Uk−2 we have that

x± = k−2x2 (k−2n1 ± k−2n2) ,

so that their unit vectors are given by very simple expressions

pk−1 =

√
2

2
(k−2n1 + k−2n2) ,

pk =

√
2

2
(k−2n1 − k−2n2)

(59)
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Obviously, pk−1·pk = 0.

Then we conclude that there are k linear spaces V
(α)
1 of n − k + 1

dimensions spanned by the set of {pβ,nσ}; α, β = 1, . . . , k, α ̸= β;
σ = k + 1, . . . , n. Thus, any other set of orthogonal vectors is formed
of any set of n − k + 1 vectors in V

(α)
1 , and the set of k − 1 vectors

{pβ}, α ̸= β.
In particular, when n = 3 and k = 2, we have the Case II.
The case k = n is included as the special one. Then xσ = 0. As a

consequence, there is no space of two and higher dimension in which
any vector will satisfies (1).

The orthonormal set of vectors satisfying (1) is just the set of vec-
tors {pα}, α = 1, . . . , k. Particularly, when n = 3 p1, p2, p3, are
orthonormal vectors, the Case I.

5 Non-symmetric tensor

It has long been known that non-symmetric stress tensors T may occur
in mechanics. Then, its unique decomposition in symmetric and skew-
symmetric tensors, denoted by T and TA, respectively, is given by

T = T+TA. (60)

But this decomposition holds for any second order tensor T in En.
Moreover, from (60), we have

p·Tp = p·Tp, (61)

where p is any unit vector.
Accordingly, we state the following

Theorem 2 A necessary and sufficient condition for T to be a state
of pure shear is

trT = 0. (62)

Obviously, in that case only symmetric part of any tensor of second
order matters. Therefore, the proof of the Theorem 1 holds generally
for any tensor T of second order in En.
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6 Discussion

Recently Hayes and Laffey in their paper [6], in Remark 2 stated: an-
other formulation of the Basic Result (in our paper equation (1)) in
matrix theory language (valid in all dimensions) is as follows: Let T
be an n× n matrix with trT = 0. Then there exists a real orthogonal
matrix Q such that QTTQ has all its diagonal entries zero.

To find this orthogonal matrix Q they proceed as follows. Since
trT = 0, T is not a scalar multiple of the identity matrix, so they
can choose a vector w such that w and Tw are linearly independent.
Let z = Sw − rw and note that w· z = 0. Let w1 = w/∥w∥ and
w2 = z/∥z∥, and extend these to an orthonormal basis w1,w2, . . . ,wn

of real n-space and let W be the corresponding orthogonal matrix
(w1,w2, . . . ,wn). Then

W TTW =

(
0 T12

T T
12 T22

)
(63)

where T22 is a symmetric (n− 1)× (n− 1) matrix with trS22 = 0.
Using induction on n, they can find an orthogonal (n− 1)× (n− 1)

matrix Y with Y T
2 T22 Y2 having zero entries on its diagonal. Let

Y =

(
1 0
0 Y2

)
and Q = WY. (64)

Then Q is orthogonal and

QTTQ =

(
0 T12Y2

Y T
2 T T

12 Y T
2 T22Y2

)
(65)

has zero diagonal, as desired.
The proof of this statement, in our opinion, is at least incomplete.

Besides missprint where instead r = z·Sw/w·w should bee written
that r = w·Sw/w·w, the expression for z is missleading.

For instance, zero element in (63) means that w1·Tw1 = 0. Hence,
this is the only condition which has to be satisfied by w1. There is no
any need for z at this stage to be define by T and w.
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In the next step, of induction, we have to choose w2 such that
w2·Tw2 = 0 and w1·w2 = 0 and so on.

In fact, the problem of finding Q reduces to the process of finding qi
which has to satisfy the condition that qiTqi = 0. One of the procedure
for this problem is given in our Chapter 3.

7 Conclusion

We prove Theorem 1 in general form for any tensor T of second order
in En, making use of the notation of orthogonal projector. In E3 we
derive some general conclusion concerning singular traceless tensors of
second order. The generalization of this problem to the decomposition
of a large incompressible deformation in E3 has been done by He and
Zheng [7].

We did not discuss some special cases, such as T has some eigen-
values of the multiplicity of higher order then one. In these cases, the
problem simplifies a lot, but the procedure is same.

Also, we did not discus the applications of these representation for
such a state of pure shear in continuum mechanics. This has been inves-
tigated in several papers, among them we refer the reader to Boulanger
and Hayes [8], and Norris [4].
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O stanju čistog smicanja

U radu se dokazuje fundamentalna teorema, koja se odnosi na čisto
smicanje, koristeći samo pojam ortogonalnog operatora. Pokazano je
da je stanje čistog smicanja isto, do na rotaciju, za sve singularne
simetrične tenzore u E3, čiji je trag jednak nuli.
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