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Abstract

An unsteady, two-dimensional, hydromagnetic, laminar mixed
convective boundary layer flow of an incompressible and electri-
cally-conducting fluid along an infinite vertical plate embedded
in the porous medium with heat and mass transfer is analyzed,
by taking into account the effect of viscous dissipation. The di-
mensionless governing equations for this investigation are solved
analytically using two-term harmonic and non-harmonic func-
tions. Numerical evaluation of the analytical results is per-
formed and graphical results for velocity, temperature and con-
centration profiles within the boundary layer are discussed. The
results show that increased cooling (Gr > 0) of the plate and
the Eckert number leads to a rise in the velocity profile. Also,
an increase in Eckert number leads to an increase in the temper-
ature. Effects of Sc on velocity and concentration are discussed
and shown graphically.
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1 Introduction

Combined buoyancy-generated heat and mass transfer due to temper-
ature and concentration variations, in fluid- saturated porous media,
have several important applications in variety of engineering processes
including heat exchanger devices, petroleum reservoirs, chemical cat-
alytic reactors, solar energy porous wafer collector systems, ceramic
materials, migration of moisture through air contained in fibrous insu-
lations and grain storage installations and the dispersion of chemical
contaminants through water-saturated soil, super convecting geother-
mic etc. The vertical free convection boundary layer flow in porous me-
dia owing to combined heat and mass transfer has been investigated
by Bejan and Khair [2]. Lai and Kulacki [1] used the series expan-
sion method to investigate coupled heat and mass transfer in natural
convection from a sphere in a porous medium.

There has been a renewed interest in studying magnetohydrody-
namic (MHD) flow and heat transfer in porous medium due to the
effect of magnetic fields on the boundary layer flow control and on
the performance of many systems using electrically conducting fluids.
In addition, this type of flow finds applications in many engineering
problems such as MHD generators, plasma studies, nuclear reactors
and geothermal energy extractions. Soundalgekar [3] analysed the ef-
fects of variable suction and the horizontal magnetic field on the free
convection flow past infinite vertical porous plate and made a compar-
ative discussion of different parameters and the free convection flow
of mercury and ionized air. Many works on heat and mass transfer
have focused mainly on regular geometries, the recent studies of them
such as heat and mass transfer along a vertical plate with variable sur-
face temperature and concentration in the presence of the magnetic
field studied by Elbashbeshy [4]. Similarity solutions for hydromag-
netic simultaneous heat and mass transfer by natural convection from
an inclined plate with internal heat generation or absorption studied
by Chamkha and Khaled [5]. Soundalgekar [6] presented an exact so-
lution to the flow of a viscous fluid past an impulsively started infinite
isothermal vertical plate with mass transfer. Muthucumaraswamy and
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Ganesan [7] have studied numerical solution of flow past an impulsively
started semi-infinite isothermal vertical plate with uniform mass dif-
fusion. Das et al. [8] have considered the effects of homogeneous first
order chemical reaction on the flow past an impulsively started infinite
vertical plate with constant heat flux and mass transfer. Chaudhary
et al. [9] & [10] have considered the effect of radiation on MHD heat
transfer past vertical plate. A study of Hall effects over the heat and
mass transfer flow of visco-elastico fluid is made by Chaudhary et al.
[11]. Recently Singh and Kumar [12] have investigated the heat and
mass transfer MHD flow through porous medium.

The objective of the present paper is to analyze the heat and mass
transfer effects on an unsteady two dimensional laminar mixed con-
vective boundary layer flow of viscous, incompressible, electrically con-
ducting fluid, along a vertical plate with suction, embedded in porous
medium, in the presence of transverse magnetic field, by taking into
account the effects of the viscous dissipation. The equation of conti-
nuity, motion, energy and mass transfer, which govern the flow field
are solved by using a regular perturbation method. The behaviour of
velocity, temperature, concentration has been discussed for variations
in the governing parameters.

2 Mathematical analysis

An unsteady two-dimensional hydromagnetic laminar mixed convective
boundary layer flow of a viscous incompressible electrically conducting
fluid past an infinite vertical flat plate in a uniform porous medium, in
the presence of thermal and concentration buoyancy effects has been
considered. The x′-axis is taken in the upward direction along the
plate and y′-axis normal to it. A uniform magnetic field is applied in
the direction perpendicular to plate. Assume the suction velocity to
be time dependent. Now, under the usual Boussinesq’s approximation,
the governing boundary layer equations are:

Equation of Continuity:

∂v′

∂y′
= 0 (1)
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Equation of Motion:

υ
∂2u′

∂y′2
− v′

∂u′

∂y′
=

∂u′

∂t′
− gβ (T ′ − T ′

∞)− gβ∗ (C ′ − C ′
∞) +

σB2
0u

′

ρ
+

υu′

K ′ (2)

Equation of Energy:

∂T ′

∂t′
+ v′

∂T ′

∂y′
= a

∂2T ′

∂y′2
+

µ

ρCp

(
∂u′

∂y′

)2

(3)

Equation of Mass Transfer:

∂C ′

∂t′
+ v′

∂C ′

∂y′
= D

∂2C ′

∂y′2
, (4)

where, u′, v′− denote the components of velocity in the boundary layer
in x′ and y′ direction respectively; T ′− the temperature in the bound-
ary; T ′

∞− the temperature of the free stream; t′− the time; β and β∗−
the volumetric coefficient of thermal and concentration expansion re-
spectively; ρ− the density of the fluid; µ− the coefficient of viscosity;
g− the acceleration due to the gravity; υ− the kinematics viscosity; σ−
the electrical conductivity; Cp− the heat capacity of the fluid; a = κ

ρCp

(the thermal diffusivity); κ− the coefficient of thermal conductivity;
B0− the magnetic induction; C ′− the concentration in the boundary
layer; C ′

∞− the concentration in the fluid far away from the plate; D−
the mass diffusivity.

The boundary conditions for the velocity, temperature and concen-
tration fields are:

y′ = 0, u′ = 0, T ′ = T ′
∞ + T0 (t) (T

′
0 − T ′

∞) ,

C ′ = C ′
∞ + C0 (t) (C

′
0 − C ′

∞)

y′ → ∞, u′ → 0, T ′ → T ′
∞, C ′ → C ′

∞

(5)
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Non-dimensional quantities are defined as:

u =
u′

v0
, y =

v0y
′

υ
, t =

v20t
′

4υ
, Sc =

υ

D
, K =

K ′v20
υ2

,

w =
4υw′

v20
, T0 (t) = 1 + εeiωt, θ =

T ′ − T ′
∞

T ′
0 − T ′

∞
,

φ =
C ′ − C ′

∞
C ′

0 − C ′
∞
, M =

σB2
0υ

ρv20
, Pr =

µCp

κ
,

Gr =
gβυ (T ′

0 − T ′
∞)

v30
, Gc =

gβ∗υ (C ′
0 − C ′

∞)

v30

(6)

From equation of continuity (1), it is clear that the suction velocity
normal to the plate is either a constant or a function of the time.
Hence, it is assumed in the form

v′ = −v0
(
1 + εαeiωt

)
, (7)

where, α is a real positive constant, ε and εα are small less than unity
and v0 is a non-zero positive constant suction velocity, the negative
sign indicates that the suction is towards the plate.

In terms of (6), equations (2), (3) and (4) become

∂2u

∂y2
+
(
1 + εαeiωt

) ∂u
∂y

=
1

4

∂u

∂t
−Grθ −Gcθ +

(
M +

1

K

)
u (8)

∂2θ

∂y2
+ Pr

(
1 + εαeiωt

) ∂θ
∂y

=
1

4
Pr

∂θ

∂t
− EPr

(
∂u

∂y

)2

(9)

∂2φ

∂y2
+ Sc

(
1 + εαeiωt

) ∂φ
∂y

=
1

4
Sc

∂φ

∂t
(10)

and the boundary conditions are

y = 0, u = 0, θ = T0 (t) , φ = C0 (t)

y → ∞, u → 0, θ → 0, φ → 0,
(11)
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where, T0 (t)− the temperature at the wall; M− the Magnetic param-
eter; Pr− the Prandtl number; K− the Porosity parameter; Gr−the
thermal Grashof number; Gc− the solutal Grashof number; E−the
Eckert number; ω− the frequency of the suction velocity; Sc− the
Schmidt number.

3 Solution of the problem

For the solution of equations (8), (9) and (10), we assume

u (y, t) = u1 (y) + εeiωtu2 (y)

θ (y, t) = 1 + εeiωt − θ1 (y)− εeiωtθ2 (y) (12)

φ (y, t) = 1 + εeiωt − φ1 (y)− εeiωtφ2 (y)

Substituting equation (3) in equations (8), (9) and (10), equating
harmonic terms and neglecting coefficient of ε2, we get

u′′
1 (y) + u′

1 (y)−
(
M +

1

K

)
u1 (y) =

−Gr (1− θ1 (y))−Gc (1− φ1 (y)) (13)

u′′
2 (y) + u′

2 (y)−
(
M +

1

K
+

iω

4

)
u2 (y) =

−Gr (1− θ2 (y))−Gc (1− φ2 (y))− αu′
1 (y) (14)

θ′′1 (y) + Prθ
′
1 (y) = EPr (u

′
1 (y))

2
(15)

θ′′2 (y) + Prθ
′
2 (y)−

iω

4
Prθ2 (y) =

− iω

4
Pr + 2EPru

′
1 (y)u

′
2 (y)− αPrθ

′
1 (y) (16)

φ′′
1 (y) + Scφ

′
1 (y) = 0 (17)

φ′′
2 (y) + Scφ

′
2 (y)−

iω

4
Scφ2 (y) = −iω

4
Sc − αScφ

′
1 (y) , (18)



MHD free convection and mass transfer over... 269

where, primes denote differentiation with respect to y.
The corresponding conditions are

y = 0, u1 = 0, u2 = 0, θ1 = 0, θ2 = 0, φ1 = 0, φ2 = 0,

y → ∞, u1 → 0, u2 → 0, θ1 → 1, θ2 → 1, φ1 → 1, φ2 → 1
(19)

Solving equations (17) and (18), under the boundary conditions (19),
we get

φ1 (y) = 1− e−Scy (20)

φ2 (y) = (iI0 − 1) e−λ1Scy + 1− iI0e
−Scy, (21)

where I0 =
4αSc

ω
.

The equations (13) to (16) are still coupled and non-linear, whose
exact solution are not possible, so we can expand u1, u2, θ1, θ2 in terms
of E (Eckert no.) in following form, as the Eckert number is very small
for incompressible flows.

u1 (y) = u11 (y) + Eu12 (y)

u2 (y) = u21 (y) + Eu22 (y)

θ1 (y) = θ11 (y) + Eθ12 (y)

θ2 (y) = θ21 (y) + Eθ22 (y)

(22)

Introducing equations (22) into (13) to (16), we obtain the following
systems of equations.

u′′
11 (y) + u′

11 (y)−
(
M +

1

K

)
u11 (y) =

−Gr (1− θ11 (y))−Gc (1− φ1 (y)) (23)

u′′
12 (y) + u′

12 (y)−
(
M +

1

K

)
u12 (y) = Grθ12 (y) (24)

u′′
21 (y) + u′

21 (y)−
(
M +

1

K
+

iω

4

)
u21 (y) =

−Gr (1− θ21 (y))−Gc (1− φ2 (y))− αu′
11 (y) (25)
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u′′
22 (y)+u′

22 (y)−
(
M +

1

K
+

iω

4

)
u22 (y) = Grθ22 (y)−αu′

12 (y) (26)

θ′′11 (y) + Prθ
′
11 (y) = 0 (27)

θ′′12 (y) + Prθ
′
12 (y) = Pr (u

′
11 (y))

2
(28)

θ′′21 (y) + Prθ
′
21 (y)−

iω

4
Prθ21 (y) = −iω

4
Pr − αPrθ

′
11 (y) (29)

θ′′22 (y) + Prθ
′
22 (y)−

iω

4
Prθ22 (y) =

− αPrθ
′
12 (y) + 2Pru

′
11 (y)u

′
21 (y) (30)

and the corresponding boundary conditions are

y = 0, u11 = 0, u12 = 0, u21 = 0, u22 = 0,

θ11 = 0, θ12 = 0, θ21 = 0, θ22 = 0

y → ∞, u11 → 0, u12 → 0, u21 → 0, u22 → 0,

θ11 → 1, θ12 → 0, θ21 → 1, θ22 → 0

(31)

Solving the equations (23) to (30), under the boundary conditions, we
get

u11 (y) = (I3 + I4) e
−a1y − I3e

−Pry − I4e
−Scy (32)

u12 (y) = I25e
−a1y + I18e

−Pry + I19e
−2Pry

+ I20e
−2Scy + I21e

−2a1y + I22e
−(Pr+Sc)y

− I23e
−(a1+Sc)y − I24e

−(a1+Pr)y

(33)

u21 (y) = I30e
−d1y − A26e

−b1Pry − A27e
−Pry

− A28e
−λ1Scy − A29e

−Scy + A30e
−a1y

(34)
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u22 (y) = I56e
−d1y + A9GrI46e

−b1Pry − A84e
−(a1+Sc)y

− A85e
−(a1+Pr)y + A63e

−Pry + A86e
−2Pry

+ A87e
−2Scy + A88e

−2a1ye−2Scy + A89e
−(Pr+Sc)y

+ A75e
−(d1+Pr)y + A76e

−(d1+Sc)y − A77e
−(a1+d1)y

+ A78e
−(1+b1)Pry + A79e

−(b1Pr+Sc)y − A80e
−(a1+b1Pr)y

+ A81e
−(Pr+λ1Sc)y + A82e

−(1+λ1)Pry − A83e
−(a1+λ1Sc)y

(35)

θ11 (y) = 1− e−Pry (36)

θ12 (y) = I11e
−Pry + I5e

−2Pry + I6e
−2Scy + I7e

−2a1y

+I8e
−(Pr+Sc)y − I9e

−(a1+Sc)y − I10e
−(a1+Pr)y (37)

θ21 (y) = 1− e−b1Pry + iI26
(
e−b1Pry − e−Pry

)
(38)

θ22 (y) = I46e
−b1Pry − Pr[A44e

−(a1+Sc)y − A45e
−(a1+Pr)y

+ A33e
−Pry + A46e

−2Pry + A47e
−2Scy

+ A48e
−2a1y + A49e

−(Pr+Sc)y − A50e
−(d1+Pr)y

− A51e
−(d1+Sc)y + A52e

−(a1+d1)y − A53e
−(1+b1)Pry

− A54e
−(b1Pr+Sc)y + A55e

−(a1+b1Pr)y − A56e
−(Pr+λ1Sc)y

− A57e
−(1+λ1)Pry + A58e

−(a1+λ1Sc)y]

(39)

The constants are given in Appendix.
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4 Results and discussion

The formulation of the problem that accounts for the effect of viscous
dissipation on the flow of an incompressible viscous fluid along an in-
finite vertical flat plate embedded in a porous medium in the presence
of an uniform magnetic field was accomplished. The governing equa-
tions of the flow field were solved analytically, using a perturbation
method, and the expressions for the velocity, temperature, concentra-
tion were obtained. In order to get a physical insight of the problem,
the above physical quantities are computed numerically for different
values of the governing parameters viz. the thermal Grashof number
(Gr), the solutal Grashof number (Gc), the Prandtl number (Pr), the
Schmidt number (Sc), the Eckert number (E), the Magnetic parameter
(M) and the Porosity parameter (K).

Figure 1: Velocity distribution for various values of M and Pr. (K =
0.1, Gr = 5, E = 0.001, ω = 10, α = 0.5, ε = 0.01, Gc = 5, Sc = 0.30)

Fig. 1 shows the typically velocity profiles in the boundary layer
for various values of the parameters M and Prandtl number (Pr). Fig.
1 illustrates the influence of magnetic parameter on the velocity u for
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the case of air (Pr = 0.7) and water (Pr = 7.0). It is observed that
the velocity increases rapidly near to the wall of the porous plate ,
reaches a maximum and then decays to the free stream value of y. It is
concluded that in case of air (Pr = 0.7), the fluid velocity u decreases
with increasing the Magnetic parameter M and in case of water (Pr =
7.0), the fluid velocity decreases with increasing the parameter M as
shown in fig. 1. This is because of the fact that the application of the
transverse magnetic field to an electrically conducting fluids gives rise
to a respective type of force known as Lorentz force. This force has the
tendency to slowdown the motion of the fluid in the boundary layer.

Fig. 2 presents the typical velocity profiles in the boundary layer for
various values of the thermal Grashof number (Gr). It is observed that
an increase in Gr leads to a rise in the values of velocity due to enhance-
ment in buoyancy force. Here, the positive values of Gr correspond to
cooling of the plate. In addition, it is observed that the velocity in-
creases sharply near the wall of the porous plate as Gr increases and
then decays to the free stream value. For the case of different values of
the solutal Grashof number, the velocity profiles in boundary layer are
shown in fig. 3. The velocity distribution attains a distinctive maxi-
mum value in the vicinity of the plate and then decreases properly to
approach a free stream value. As expected, the fluid velocity increases
and the peak value becomes more distinctive due to increase in the
buoyancy force represented by Gc.

The effects of the viscous dissipation parameter i.e. the Eckert
number on the velocity and temperature are shown in fig. 4 and 5.
It is observed that the fluid velocity increases sharply and attains a
distinctive maximum value near to the wall of the porous plate and
then decays continuously with increasing y as shown in fig. 4. In
fig. 5, the temperature decreases exponentially with increasing y. It is
also concluded that greater viscous dissipative heat causes a rise in the
velocity as well as the temperature.
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Figure 2: Velocity distribution for various values Gr. (K = 0.1, M =
2, Pr = 0.7, E = 0.001, ω = 10, α = 0.5, ε = 0.01, Gc = 5, Sc = 0.30)

Figure 3: Velocity distribution for various values of Gc. (K = 0.1,M =
2, Pr = 0.7, Gr = 5, E = 0.001, ω = 10, α = 0.5, ε = 0.01, Sc = 0.30)
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Figure 4: Velocity distribution for various values of E. (K = 0.1, M =
0, Pr = 0.7, Gr = 5, ω = 10, α = 0.5, ε = 0.01, Gc = 5, Sc = 0.30)

Figure 5: Temperature distribution for various values of E. (K =
0.1, M = 0, Pr = 0.7, Gr = 5, ω = 10, α = 0.5, ε = 0.01, Gc =
5, Sc = 0.30)
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Fig. 6, shows velocity profiles for different values of the porosity
parameter K. It is observed that the fluid velocity increases sharply and
a peak value near to the plate and decays continuously as increasing y.
It is also observed that the fluid velocity increases with increasing the
porosity parameter K.

Figure 6: Velocity distribution for various values of K. (M = 2, Pr =
0.7, Gr = 5, E = 0.001, ω = 10, α = 0.5, ε = 0.01, Gc = 5, Sc = 0.30)

Fig. 7, shows the behaviour of temperature for different values
of Prandtl number. It is observed that an increase in the Prandtl
number results a decrease of the thermal boundary layer thickness and
in general lower average temperature with in the boundary layer. The
reason is that smaller values of Pr are equivalent to increase in the
thermal conductivity of the fluid and therefore, heat is able to diffuse
away from the heated surface more rapidly for higher values of Pr.
Hence, in the case of smaller Prandtl number as the thermal boundary
layer is thicker and the rate of heat transfer is reduced.

Fig. 8 and 9, show the effects of Schmidt number on the veloc-
ity and concentration respectively. As the Schmidt number increases,
the concentration decreases. This causes the concentration buoyancy
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Figure 7: Temperature distribution for various values of Pr. (K =
0.1, M = 2, Gr = 5, E = 0.001, ω = 10, α = 0.5, ε = 0.01, Gc =
5, Sc = 0.30)

effects to decrease yielding a reduction in the fluid velocity. Reduc-
tions in the velocity and concentration distributions are accompanied
by simultaneous reductions in the velocity and concentration buoyancy
layers.

In Fig. 10 and 11, it is observed that the value of temperature and
concentration remain same for increasing the frequency of the suction
velocity ω.

5 Conclusion

The governing equations for unsteady MHD convective heat and mass
transfer flow past an infinite vertical plate embedded in a porous medium
was formulated. Viscous dissipation effects were also included in the
present work. The plate velocity is maintained at constant value and
the flow was subjected to a transverse magnetic field. The resulting
partially differential equations were transformed into a set of ordinary
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Figure 8: Velocity distribution for various values of Sc. (K = 0.1, M =
0, Pr = 0.7, Gr = 5, E = 0.001, ω = 10, α = 0.5, ε = 0.01, Gc = 5)

Figure 9: Concentration distribution for various values of Sc. (K =
0.1, M = 0, Pr = 0.7, Gr = 5, E = 0.001, ω = 10, α = 0.5, ε =
0.01, Gc = 5)
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Figure 10: Temperature distribution for various values of ω. (K =
0.1, M = 4, Pr = 0.7, Gr = 5, E = 0.001, α = 0.5, ε = 0.01, Sc =
0.30, Gc = 5)

Figure 11: Concentration distribution for various values of ω. (K =
0.1, M = 4, Pr = 0.7, Gr = 5, E = 0.001, α = 0.5, ε = 0.01, Sc =
0.30, Gc = 5)
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differential equations using two- term series and solved in closed form.
Numerical evaluations of the closed form results were performed and
graphical results were obtained to illustrate the details of the flow
and heat and mass transfer characteristics and their dependence on
some physical parameters. It was found that when thermal and solutal
Grashof numbers were increased, the thermal and concentration buoy-
ancy effects were enhanced and thus, the fluid velocity increased. Also,
when the Schmidt number was increased, the concentration level was
decreased resulting in decreased fluid velocity. In addition, it found
that the temperature as well as velocity increased due to increase in
viscous dissipative parameter.
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Appendix

λ1 =
1

2

(
1 +

√
1 +

iω

Sc

)
, n = M +

1

K
, a1 =

1
2

(
1 +

√
1− 4n

)
,

b1 =
1

2

(
1 +

√
1 +

iω

Pr

)
, d1 =

1

2

(
1 +

√
1 + n+

iω

4

)
,

I0 =
4αSc

ω
, I1 = P 2

r − Pr − n, I2 = S2
c − Sc − n, I3 =

Gr

I1
,

I4 =
Gc

I2
, I5 =

I23Pr

2
, I6 =

I24ScPr

4Sc − 2Pr

, I7 =
a1Pr (I3 + I4)

2

4a1 − 2Pr

,

I8 =
2I3I4P

2
r

Pr + Sc

, I9 =
2a1I4ScPr (I3 + I4)

(a1 + Sc)
2 − Pr (a1 + Sc)

, I10 =
2I3 (I3 + I4)P

2
r

a1 + Pr

,

I11 = I9+I10−I5−I6−I7−I8, I12 = 4P 2
r −2Pr−n, I13 = 4S2

c−2Sc−n,

I14 = 4a21 − 2a1 − n, I15 = (Pr + Sc)
2 − (Pr + Sc)− n,

I16 = (a1 + Sc)
2 − (a1 + Sc)− n, I17 = (a1 + Pr)

2 − (a1 + Pr)− n,

I18 = I3I11, I19 =
GrI5
I12

, I20 =
GrI6
I13

,

I21 =
GrI7
I14

, I22 =
GrI8
I15

, I23 =
GrI9
I16

, I24 =
GrI10
I17

,

I25 = I23 + I24 − I18 − I19 − I20 − I21 − I22, I26 =
4αPr

ω
,

I27 = b21P
2
r − b1Pr − n, I28 = λ2

1S
2
c − λ1Sc − n,

I29 = a21 − a1 − n, I30 = A26 + A27 + A28 + A29 − A30,

I31 =
ωPr

4
, I32 = (a1 + Sc)

2 − Pr (a1 + Sc) , I33 = a1 (a1 + Pr) ,
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I34 = 4S2
c − 2ScPr, I35 = 4a21 − 2a1Pr, I36 = Sc (Sc + Pr) ,

I37 = d1 (d1 + Pr) , I38 = (d1 + Sc)
2 − (d1 + Sc)Pr,

I39 = (a1 + d1)
2 − (a1 + d1)Pr, I40 = b1P

2
r (1 + b1) ,

I41 = (b1Pr + Sc)
2 − (b1Pr + Sc)Pr, I42 = (a1 + b1Pr)

2 − (a1 + b1Pr)Pr,

I43 = λ1Sc (Pr + λ1Sc) , I44 = (1 + λ1)
2 S2

c − (1 + λ1)ScPr,

I45 = (a1 + λ1Sc)
2 − (a1 + λ1Sc)Pr,

I47 = (d1 + Pr)
2 − (d1 + Pr)−

(
n+

iω

4

)
,

I48 = (d1 + Sc)
2 − (d1 + Sc)−

(
n+ iω

4

)
,

I46 = Pr (A44 − A45 + A33 + A46 + A47 + A48 + A49 − A50 − A51

+A52 − A53 − A54 + A55 − A56 − A57 + A58) ,

I49 = (a1 + d1)
2 − (a1 + d1)−

(
n+

iω

4

)
,

I50 = (1 + b1)
2 P 2

r − (1 + b1)Pr −
(
n+

iω

4

)
,

I51 = (b1Pr + Sc)
2 − (b1Pr + Sc)−

(
n+

iω

4

)
,

I52 = (a1 + b1Pr)
2 − (a1 + b1Pr)−

(
n+

iω

4

)
,
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I53 = (Pr + λ1Sc)
2 − (Pr + λ1Sc)−

(
n+

iω

4

)
,

I54 = (1 + λ1)
2 S2

c − (1 + λ1)Sc −
(
n+

iω

4

)
,

I55 = (a1 + λ1Sc)
2 − (a1 + λ1Sc)−

(
n+

iω

4

)
, A0 =

1

2Pr −
iω

4

,

A1 =
1

I1 −
iω

4

, A2 =
1

I2 −
iω

4

,

I56 = −A9GrI46 + A84 + A85 − A63 − A86 − A87 − A88 − A89

− A75 − A76 + A77 − A78 − A79 + A80 − A81 − A82 + A83,

A3 =
1

I12 −
iω

4

, A4 =
1

I13 −
iω

4

, A5 =
1

I14 −
iω

4

,

A6 =
1

I14 −
iω

4

, A6 =
1

I15 −
iω

4

, A7 =
1

I16 −
iω

4

,

A8 =
1

I17 −
iω

4

, A9 =
1

I27 −
iω

4

, A10 =
1

I28 −
iω

4

,

A11 =
1

I29 −
iω

4

, A12 =
1

I32 − iI31
,

A13 =
1

I33 − iI31
, A14 =

1

I34 − iI31
, A15 =

1

I35 − iI31
,

A16 =
1

I36 − iI31
, A17 =

1

I37 − iI31
,
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A18 =
1

I38 − iI31
, A19 =

1

I39 − iI31
, A20 =

1

I40 − iI31
,

A21 =
1

I41 − iI31
, A22 =

1

I42 − iI31
,

A23 =
1

I43 − iI31
, A24 =

1

I44 − iI31
, A25 =

1

I45 − iI31
,

A26 = GrA9 (1− iI26) , A27 = A1 (iI26Gr + αI3Pr) ,

A28 = GcA10 (1− iI0) , A29 = A2 (iI0Gc + αI4Sc) ,

A30 = αa1 (I3 + I4)A11,

A31 = αI9 (a1 + Sc) + 2a1 (I3 + I4) [iI0GcScA2 + αI4Sc (ScA2 + a1A11)] ,

A33 = (4αiI11)/ω, A34 = 2αI5 + 2I3PrA27,

A32 = αI10 (a1 + Pr) + 2a1Pr (I3 + I4) [iI26GrA1 + αI3 (A1Pr + a1A11)] ,

A35 = 2αScI6 + 2I4S
2
cA29, A36 = 2αa1

[
I7 + a21 (I3 + I4)

2A11

]
,

A37 = α (Sc + Pr) I8 + 2I4ScPrA27 + 2I3PrScA29,

A38 = a1 (I3 + I4) , A39 = I3Pr, A40 = I4Sc, A41 = −I30d1,

A42 = b1PrGrA9 (1− iI26) , A43 = λ1GcScA10 (1− iI0) ,

A44 = A12A31, A45 = A13A32, A46 = A0A34, A47 = A14A35,

A48 = A15A36, A49 = A16A37, A50 = 2A41A17A39,

A51 = 2A41A18A40, A52 = 2A41A19A38, A53 = 2A42A20A39,

A54 = 2A42A21A40, A55 = 2A42A22A38, A56 = 2A43A23A39,

A57 = 2A43A24A40, A58 = 2A43A25A38,
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A59 = A7A12GrPr [α (a1 + Sc) I9 + 2iA2A38I0GcSc

+2αA40A38 (A2Sc + a1A11)] ,

A60 = α (a1 + Sc)A7I23, A62 = α (a1 + Pr)A8I24,

A61 = A8A13GrPr [α (a1 + Pr) I10 + 2iA1A38I26GrPr

+2αA38A39 (A1Pr + a1A11)] ,

A63 = αPrA1 (4iI11Gr + I18) , A65 = 2αPrA3I19,

A64 = 2GrPrA0A3 [αI5 + A1I3Pr (iI26Gr + αA39)] ,

A66 = 2ScGrPrA4A14 [αI6 + A2A40 (iI0Gc + αA40)] ,

A67 = 2αScA4I20, A68 = 2αa1GrPrA5A15 (I7 + A11A
2
38) ,

A70 = GrPrA6A16 [α (Pr + Sc) I8 + 2A1A40Pr (iI26Gr + αA39)
+2A2A39Sc (iI0Gc + αA40)] ,

A69 = 2αa1A5I21, A71 = α (Pr + Sc) I22A6, A72 = 2A41GrPr,

A73 = 2A42GrPr, A74 = 2A43GrPr, A75 =
A17A39A72

I47
,

A76 =
A18A40A72

I48
, A77 =

A19A38A72

I49
, A78 =

A40A39A73

I50
,

A79 =
A40A21A73

I51
, A80 =

A22A38A73

I52
, A81 =

A23A39A74

I53
,

A82 =
A24A40A74

I54
, A83 =

A25A38A74

I55
, A84 = A59 + A60,

A85 = A61 + A62, A86 = A64 + A65, A87 = A66 + A67,

A88 = A68 + A69, A89 = A70 + A71,
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MHD slobodna konvekcija i prenos mase preko
beskonačne vertikalne porozne ploče sa viskoznom

disipacijom

Analizirano je 2D nestacionarno hidromagnetsko laminarno konvek-
tivno tečenje u graničnom sloju nestǐsljivog elektroprovodnog fluida
duž beskonačne vertikalne ploče potopljene u poroznu sredinu sa preno-
som toplote i mase. Uzima se u obzir viskozna disipacija. Bezdimen-
zione jednačine problema su analitički rešene korǐsénjem dvočlanih har-
monijskih i neharmonijskih funkcija. Numerička procena analitičkih
rezultata je izvedena i diskutovani su grafički rezultati za profile brzine,
temperature i koncentracije unutar graničnog sloja. Rezultati pokazuju
da povećanje hladjenja (Gr > 0) ploče i Ekertovog broja vodi ka po-
rastu u profilu brzine. Takodje, porast Ekertovog broja vodi ka porastu
u temperaturi. Uticaji Sc na brzinu i koncentraciju su diskutovani i
prikazani grafički.
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