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Abstract

In this communication, we summarize the current advances in
size-dependent continuum plasticity of crystals, specifically, the
rate-independent (quasistatic) formulation, on the basis of dislo-
cation mechanics. A particular emphasis is placed on relaxation
of slip at interfaces. This unsolved problem is the current fron-
tier of research in plasticity of crystalline materials. We outline
a framework for further investigation, based on the developed
theory for the bulk crystal.

The bulk theory is based on the concept of geometrically nec-
essary dislocations, specifically, on configurations where disloca-
tions pile-up against interfaces. The average spacing of slip planes
provides a characteristic length for the theory. The physical in-
terpretation of the free energy includes the error in elastic inter-
action energies resulting from coarse representation of dislocation
density fields.

Continuum kinematics is determined by the fact that disloca-
tion pile-ups have singular distribution, which allows us to repre-
sent the dense dislocation field at the boundary as a superdisloca-
tion, i.e., the jump in the slip filed. Associated with this jump is
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a slip-dependent interface energy, which in turn, makes this for-
mulation suitable for analysis of interface relaxation mechanisms.

Keywords: grain boundary dislocations, discrete to continuum,
long-range interactions, short dislocation-dislocation correlation.

1 Introduction

Investigation of mechanism of plastic deformation of metals, alloys and
composites has a long history. Two recent reviews (McDowell 2008,
2010) offer a very broad perspective on models which traverse multi-
ple length and time scales: atomic, dislocations, grain boundaries and
multiple phases; as well as rate and temperature dependence. The fo-
cus of this paper is much narrower: the relationship between mechanics
of discrete dislocations and time-independent (quasi-static) continuum
theory for a single crystal and its interfaces. The time-independence is
the consequence of time scale separation between two models. Disloca-
tion move very fast, until arrested at an obstacle. From the point of
view of experimental time scale of interest, the motion is practically in-
stantaneous. Thus, it is dislocation statics, rather than dynamics, that
is of primary interest. However, the separation of length scales, which
has been the bedrock of classical size-invariant continuum theories, fails
when the volume where dislocations move is restricted, resulting in size
effects. Moreover, the reactions of dislocations and interfaces have sig-
nificant effect on the energy of the system and plasticity with crystals.
Two problems are reviewed in this paper:

(1) How to formulate a size-dependent continuum theory starting
from mechanics of discrete dislocations?

(2) How to describe grain boundaries and interfaces, and their reac-
tions with dislocations within continuum framework?

The problem (2) is largely unsolved. The available information is
mostly qualitative; no general formulation encompassing various reac-
tions exists. It is fair to state that the problem (2) represents the cur-
rent frontier of knowledge in plasticity of crystalline materials. However,
significant advances in addressing problem (1) have been accomplished
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in the last two decades, and these provide a general framework to begin
the analysis of problem (2).

1.1 Bulk plasticity of crystals

Earliest indications of discrete nature of plastic deformation were re-
ported by Ewing & Rosenhain (1900), who observed the polycrystalline
structure of metals, and slip steps on the surfaces of crystals. Their
conclusion that the plastic deformation is pure shearing without vol-
ume change was later confirmed in numerous instances (e.g., Bridg-
man 1923, 1949). The first estimate of the shear strength of an ideal
crystal (Frenkel, 1926) brought to light orders-of- magnitude discrep-
ancy between this number and the experimentally observed yield stress.
The puzzle of plastic deformation mechanisms was resolved by Orowan
(1934), Polanyi (1934) and Taylor (1934), who independently discovered
that it is the motion of dislocations that produces plastic deformation
of crystals, rather than coherent sliding of atomic planes as assumed in
Frenkel’s calculations.

Study of dislocations as line defects in solids has grown into a theory
of its own. In this limited space, we only note major milestones. A re-
view of history as well as an extensive compendium of knowledge about
dislocations is given in the Hirth & Lothe (1992) monograph. The solu-
tions to elasticity problems, providing stress fields of dislocations with
various geometries, were moved forward by Kröner’s (1858) continuum
theory of dislocations. The generalized forces driving the motion of dis-
location lines have been studied by Peach & Koehler (1950), while the
mechanism of multiplication of dislocations has been discovered by Frank
& Read (1950). The wealth of knowledge was eventually combined into
a computational model - discrete dislocation dynamics (Zbib et al, 1996,
Hirth et al, 1996).

Once the mechanism of plastic deformation was discovered, the con-
tinuum theory of crystal plasticity was developed independently of dislo-
cation theory. The key variables are continuum slip fields, one associated
with each slip system. The slip systems are determined by the geometry
of crystal lattice. The early model (Taylor, 1938) has been generalized
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and given a rigorous mathematical form1. The first problem that re-
quired re-connection with dislocation theory is statistical hardening by
dislocation interactions. The theoretical developments (Ortiz & Popov,
1982) and extensive experimental results2 have yielded comprehensive
models3. The resulting theory is a simple continuum, without intrinsic
length scale.

That size of crystals determines its yield strength has been known
since 1950’s (Hall, 1951, Petch, 1953). Ashby’s (1970) analysis of size
effects in precipitation hardened metals, and development of the concept
of geometrically necessary dislocations provided new impetus to experi-
mental studies. The size effects were observed in numerous experiments4.
To model the size effects, a number of phenomenological mathematical
formulations have been proposed during the last two decades. The the-
ories include higher order kinematic gradients, which, in turn, require
characteristic length(s) (Mindlin, 1964, Aifantis, 1987), and inevitably
produce qualitative prediction of size effect. The higher order gradients
are typically related to Nye’s (1953) dislocation density tensor. While
this choice is intuitive, it is by no means unique. Moreover, the char-
acteristic lengths are typically phenomenological, without clear physical
meaning that can be connected to dislocation mechanics. After the pio-
neering models Fleck & Hutchinson5, the major contribution was made
by Gurtin (2000, 2002, 2003), who observed that the correct thermody-
namic formulation requires that work conjugate of slip be independent
from the stresses. More recently, the focus has been shifted to interfaces6,
with particular emphasis on dissipative models. However, analyses are
mostly on the continuum level; starting from phenomenological assump-
tions, mathematical consequences are explored.

1Hill (1966), Hill & Rice (1972), Asaro & Rice (1977), Hill & Havner (1982)
2Franciosi et al (1980), Franciosi & Zaoui (1982), Franciosi (1983, 1985)
3Bassani & Wu (1989), Cuitino & Ortiz (1993), Bassani (1994).
4Gane & Cox (1970), Pethica et al (1983), De Guzman et al (1993), Stelmashenko

et al (1993), Fleck et al (1994), Ma & Clarke (1995), Poole et al (1996), Stolken &
Evans (1998).

5Fleck & Hutchinson (1993, 1997), Smyshlyaev & Fleck (1996).
6Gudmundson (2004), Aifantis & Willis (2005), Frederiksson & Gudmundson

(2007), Fleck & Willis (2009).
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Attempts to fit the predictions of a theory to either experiments7 or
simulations8 indicate a need for more rigorous approach, i.e., a deriva-
tion of a continuum theory by systematically coarsening dislocation me-
chanics. Advances in statistical analysis of collective dislocation behav-
ior9 have resulted in statistical continuum dislocation dynamics formu-
lations10. Such formulations emphasize dynamics of dislocation motion,
while representing dislocations as continuum density fields. The key in-
gredient stems from the attempt to resolve the fundamental problem of
discrete dislocation dynamics: long-range interactions. This is achieved
by computing a local approximation to the driving force (the Peach-
Koehler force). The basis for this approximation is the assumption
that dislocation-dislocation correlation function is short-range (Groma,
1997).

1.2 Plasticity at crystal interfaces

The importance of grain boundaries has been long recognized and much
effort has been expanded to understand their structure and energies. The
accomplishments until mid-nineties have been compiled in the mono-
graph by Sutton & Balluffi (1995). Extensive studies of interface en-
ergies, texture evolution during grain growth and processing, solute-
interface interactions, grain boundary mobility, stress concentrations,
and other problems, have been done by the MIMP group. An extensive
list of references can be found on the group’s website11.

They have identified a number of boundaries that would be consid-
ered low-energy or high-energy structures. In general, the symmetric
boundaries with high density lattice planes along the boundary have
lower energy12.

Macroscopically, the geometric structure of an interface is described

7Fleck et al (1994), Nix & Gao (1998), Stolken & Evans (1998), Sun et al (2000).
8Bassani et al (2001), Shu et al (2001), Bittencourt at al (2003), Ohashi (2004).
9Groma (1997), Zaiser at al (2001), Groma et al (2003).

10Arsenlis et al (2004), Yefimov et al (2004), Groma et al (2006, 2007), Limkumnerd
& Van der Giessen (2008).

11http://mimp.mems.cmu.edu/publications/index.html
12Dillon et al (2010), Rohrer & Miller (2010), Adams et al (1999).
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by five parameters: three for relative orientation of two crystals and two
for interface orientation. Microscopically, a relaxation takes place within
the interface and up to 4 additional parameters are needed13. Several
description of interface structure are available, the most commonly used
being the coincidence site lattice (CSL) (Bollman, 1970) and structural
units (Sutton & Vitek, 1983). The most important for calculating the
elastic energy of the system is the representation based on a suitable
intrinsic defect structure which may include intrinsic dislocations, dis-
connections, and disclinations14.

While these intrinsic defects have received much attention as a de-
scription of the interface geometry, comparatively little has been done
to understand the reaction of an extrinsic dislocation with a given in-
terface defect structure. Notable exception is the work done by Priester
and coworkers15. Few computational atomistic studies have done for the
problem of dislocation approaching an interface (Pestman et al, 1991,
Chen et al, 1993). More recent work has been focused on nucleation
of dislocations from grain boundaries16. The computations are typically
limited to simple geometries, such as tilt boundaries with high sym-
metry. In summary, what is known is that dislocation impinging on a
boundary can interact with it in several ways, including absorption of
dislocation, core spreading, dissociation into sessile and mobile disloca-
tions, and transmission through the boundary with associated residual
defects. What is not known is: (i) if the set of possible reactions is
complete, and, (ii) except in few special cases of tilt boundaries, under
which conditions (stress, temperature) each of the mechanism operates.

Some possible dislocation-interface reactions are illustrated in Figure
1. Note that the reactions often involve non-conservative motion, and
that the paths in configurational space are unknown. Extensive atomistic
level studies are needed to map the space of possible dislocation-grain
boundary reactions.

13Fortes (1972), Adams & Field (1992), Field & Adams (1992)
14Pond & Vlachavas (1983), Clarke et al (1992), Priester (2001), Pond at al (2003,

2007), Hirth et al (2006, 2007), Akarapu et al (2008).
15Poulat et al ( 1998, 2001), Priester (2001), Couzinie et al (2003, 2004, 2005),
16Spearot et al (2005, 2007 a, b), Tschopp et al (2008).
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(a) Single dislocation impinging on a tilt boundary could
be accommodated within the interface and dissociate into
sessile and mobile components (up), or, it can transmit
(down), i.e. nucleate dislocation in the other crystal leaving
an interface dislocation and disconnection (X).

(b) Two dislocations im-
pinging on a tilt boundary
from different sides.

(c) A reaction that may occur on a twist bound-
ary, or on a tilt boundary if different slip systems
are active on two sides of the interface. Two sets of
dislocations impinge from different sides (thin solid
and dashed lines). The reaction product is shown
as network of thick lines. It has been observed in
Ni Σ11{311} boundary (Poulat et al, 2001, Priester,
2001).

Figure 1: Sketches of dislocation-interface reactions of increasing com-
plexity.
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The paper is organized as follows. In Section 2, a short summary of
dislocation theory is given, followed by summary of different kinematic
descriptions of dislocations in Section 3, and an overview of Kroner’s
continuum theory of dislocations in Section 4. Standard size-invariant
continuum crystal plasticity is summarized in Section 5, with emphasis
on results relevant for thermodynamic coarsening, which is described in
Section 6. In Section 7, the outline of the size-dependent continuum for-
mulation, without bulk or interface relaxations, is given. Finally, in Sec-
tion 8, relaxation and dissipation resulting from dislocation-dislocation
and dislocation-interface reactions is discussed.

The analysis is limited to isotropic elasticity, linearized kinematics
(“small strain” theory), and isothermal processes.

2 Selected elements of dislocation

mechanics

Dislocation is line across which a lattice discontinuity with respect to
the perfect crystal takes place. The discontinuity is quantified by the
Burgers vector. The standard local definition of the Burgers vector, b,
is not unique. It depends on the local direction of the dislocation line,
characterized by the unit tangent vector, ξ (Hirth & Lothe, 1992). The
pairs (b, ξ) and (−b,−ξ) describe the same discontinuity. Our current
purpose requires a more precise definition, such that can be uniquely
related to the continuum plasticity slip field. This definition is illustrated
in Figure 2.

A planar cut π through the solid is oriented by the unit normal m,
which points to the upper half space. The dislocation loop C is oriented
by unit tangent vector ξ so that it circles in the counterclockwise sense
when seen from the upper side. Within the region bounded by C, the
upper half space slips uniformly by b, commensurate with the lattice
periodicity in this particular direction, so that the crystal lattice inside
the loops remains unchanged and the discontinuity occurs only along the
dislocation line.

Dislocation segment ξds, with the Burgers vector orthogonal to ξ is
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Figure 2: Definition of dislocation line direction and Burgers vector.

an edge segment, while the one with Burgers vector parallel to ξ is a
screw segment. General segments can be thought of as having an edge
and a screw component.

Once the initial choice of directionm is made (which has to be done in
continuum theory anyway), the line direction and the Burgers vector are
defined uniquely. Moreover, as will be seen later, it provides a framework
for handling super-dislocations (i.e., multiple collinear dislocations) and
dislocation walls at the interfaces.

We consider the interaction energy of two dislocation loops, Cσ and
Cτ in an infinite isotropic elastic space with shear modulus µ and the
Poisson ratio ν. The position vectors of loop points are x ∈ Cσ and
x′ ∈ Cτ . The corresponding Burgers vectors are b and b′, respectively.
Let R be the magnitude of the relative position vector R = x′ − x. We
define the unit direction vector d = R/R and the rank-two tensor T:

Tij = δij − didj. (1)

Index notation with summation over repeated lower indices is used,
unless otherwise noted. The elastic interaction energy between the two
loops is given by (Hirth & Lothe, 1992):

Eστ =
µ

2π

∮
Cσ

∮
Cτ

dsds′

R
[(b′ · ξ) (b · ξ′)− (b · ξ) (b′ · ξ′)

+
1

2(1− ν)
(b× ξ) ·T · (b′ × ξ′)

]
. (2)
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The integrand represents the interaction energy between two seg-
ments ds and ds′. The self energy of a single loop is obtained as the
sum of elementary interaction energies between segments, i.e., the two
integrations in (2) are performed over the same line and the result is
multiplied by 1/2 to account for double counting of segment pairs.

It is evident from (2) that the interaction energy between segments
is dependent on the edge/screw character of segments. Therefore, this
distinction must be preserved in the continuum kinematics.

The long-range nature of interactions is clearly seen in (2). Segments
interaction energy is proportional to 1/R, which makes the total energy
of the system irreducibly non-local, i.e., there is no cutoff distance be-
yond which interactions can be neglected. Moreover, this non-locality
in an infinite space, implies the dislocation-boundary interactions in any
finite domain.

This has significant implications for calculating the total free energy
of solid with dislocations. It is also a major obstacle to application of
dislocation dynamics simulations to all but small domains and simple
boundary conditions (e.g., periodic).

Stresses caused by the existence of a segment of dislocation loop C,
scale with 1/R2. With the same notation as above (Hirth & Lothe,
1992):

σ(x′, C) =
µ

4π

∮
C

ds

R2

[
(d× b)ξ + ξ(d× b)− 1

2(1− ν)
(Q× b) · ξ

]
,

(3)
where the component of the rank-three tensor Q are: Qpqi = δpqdi −
δpidq − δqidp + dpdqdi.

Dislocations typically move within their slip plane. This motion is
called glide and produces a volume conserving plastic deformation. At
high temperature, dislocations can climb out of their slip planes. This
requires diffusion of vacancies and is not volume conserving. If the inter-
section of two slip planes is parallel to the Burgers vector in one plane,
screw segments can cross-slip, i.e., switch their glide plane. Typically,
the driving force for gliding in the original plane is larger so that the
second cross slip takes place. The new short segment is created in the
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plane parallel to the original plane and acts as the source which emits
further loops in the new plane. Such double cross-slip is the primary
mechanisms for multiplication of dislocations in a deforming body.

The driving force for dislocation motion depends on the stresses,
both externally applied and caused by other dislocation (3). The force
df acting on the segment ξdswith Burgers vector b is

df = (b · σ)× ξds. (4)

While moving through a crystal, dislocation segments:

(i) Interact elastically, i.e., the stress field of one repulses or attracts the
other, according to (4), and,

(ii) If close enough, react to form a new dislocation segment, with
a lower elastic energy. Two parallel segments: (ξ∆s,bI) and
(ξ∆s,bII), form the new segment: (ξ∆s,bR = bI + bII), if such
reaction is energetically favorable. Note that the segments must
be oriented in the same direction. Otherwise the signs in the sum
should be changed. Similar reaction can occur between disloca-
tions across the interface, and between a dislocation and an intrin-
sic grain boundary dislocation.

3 Kinematic coarsening

The densities of geometrically necessary (GN) dislocations can be rep-
resented by Nye’s (1953) dislocation density tensor field A(x). In an
infinitesimal volume element dV, about the point x, we consider seg-
ments of dislocations of type s, with the Burgers vector bs, and the
unit tangent vector ξs. Let ρs(x)dV be the total length of dislocation
segments of type s in dV. Then:

A =
∑

s
ρsbsξs. (5)

The expression bsζs denotes a dyadic product, so that the compo-
nents of A(x) are given by Aij =

∑
s ρ

sbsiξ
s
j .
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To illustrate different representations of GN dislocations, we consider
a simple two-dimensional problem: an infinite thin film sandwiched be-
tween elastic half-spaces, as shown in Figure 3. The only non-vanishing
component of Nye’s tensor for the case of edge dislocations piling-up in
slip planes orthogonal to the boundary is A13.

Figure 3: An elastic-plastic thin film with single slip system and slip
planes orthogonal to the boundary is sandwiched between elastic half
spaces. The interfaces are impenetrable to dislocations. Slip planes are
equidistant (h) and the film is infinite in x2 direction. All dislocations
are edge with the magnitude of Burgers vector b.

We differentiate between three types of kinematic representations of
the GN dislocations:

(i) Discrete representation is mathematically represented as

Â13(x1, x2) = −b
∑
j

∞∑
k=−∞

sign(xj
1)δ(x

j
1)δ(x2 − kh), (6)
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where xj
1 are x1- coordinates of individual dislocations, δgs the

Dirac delta function, and h is the distance between slip planes
(Figure 3).

(ii) Semi-discrete representation is obtained by smearing out the Burg-
ers discontinuity in the slip plane, but keeping the slip planes dis-
crete:

Ā13(x1, x2) = B(x1)
∞∑

k=−∞

δ(x2 − kh). (7)

(iii) Continuous representation is obtained from the semi-discrete one
by smearing out B in the direction normal to the slip planes. For
the simple problem shown in Figure 3, this representation is easily
related to the semi-discrete one:

A13(x1) = B(x1)/h. (8)

4 Continuum kinematics and incompati-

bility

Motion of dislocations in their slip planes, results in plastic deformation.
Slip system is characterized by the slip plane and slip direction. The
plastic deformation associated with a slip system is described by a scalar
fieldg− slip.

To emphasize the distinction between the screw and edge components
of dislocation segments, we use the notation different from the standard
crystal plasticity notation17. The slip system α is defined by the unit
normal mα, and two orthogonal in-plane unit vectors. The slip direction
ζα◦ is parallel to the Burgers vector of dislocations that move in the slip
system. It is the direction of a screw segment. The direction of an edge
segment ζα⊥ is orthogonal to the Burgers vector, so that (Figure 4):

ζα⊥ × ζα◦ = mα. (9)

17The triad (ζα◦ ,m
α, ζα⊥) is usually denoted as (sα,mα, tα).
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Figure 4: Base vectors for the slip system α.

The slip fields γα(x), on all active slip systems, combine to produce
the slip tensor:

γ(x) =
∑

α
γαζα◦ m

α, (10)

whose symmetric portion, S(γ) = 1
2
(γ + γT ), is the plastic strain.

Both, the elastic strain e, and the plastic strain S(γ), are incompat-
ible, i.e., taken separately, neither is a symmetric part of a gradient of a
single-valued displacement field. Kroner’s (1958) incompatibility tensor,
η, is the measure of incompatibility of elastic strain:

Inc(e) ≡ ∇× e×∇ = η ̸= 0,
ηij = ∈ipm∈jnq emn,pq,

(11)

where ∈ipm is the alternating symbol. The indices after a comma rep-
resents partial derivatives: ∂ai/∂xj = ai,j. The sum of the elastic and
plastic strains must be compatible:

Inc(e+ S(γ)) = 0 (12)

The Nye’s (1953) dislocation density tensor, A, quantifies the accu-
mulation of dislocations, i.e. the non-vanishing net Burgers vector in the
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volume element. Kroner (1981) showed that

A = −γ ×∇. (13)

The relation between the gradients of slip on the slip systemgα and
the Nye’s tensor can be specified more precisely, in a way that relates
components of the gradient to the densities of edge and screw GN dis-
locations. Define the in-plane unit tensor for the slip system α:

Pα = I−mαmα = ζα◦ ζ
α
◦ + ζα⊥ζ

α
⊥. (14)

It acts as a projection operator, such that the projection of an ar-
bitrary vector a on the slip plane α is Pα · a. The in-plane gradient
operator is then defined as

α

∇ = Pα · ∇. (15)

The in-plane slip gradient vector is

gα =
α

∇ γα = ∇ · (Pαγα) = gα⊥ζ
α
◦ + gα◦ ζ

α
⊥. (16)

The component, gα⊥, quantifies the density of edge dislocations, while
the componentgα◦ , quantifies the density of screw dislocations. The Nye’s
tensor is then obtained as

A = −
∑

α
(gα⊥ζ

α
◦ ζ

α
⊥ − gα◦P

α). (17)

In elastic-plastic crystals the incompatibility arises from the non-
vanishing net Burgers vector, so that Kroner’s incompatibility tensor
η, must be related to the Nye’s tensor. From (12, 13), and using the
linearity of operators Inc and S, Kroner (1958) obtained:

η = S(∇×A). (18)

It follows from (11, 13) that, if the Nye’s dislocation density field
A(x) is prescribed, then the stress σ must satisfy

Inc(C−1 : σ) = S(∇×A), (19)
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in addition to the standard equilibrium equations. In (19), C−1is the
elastic compliance tensor, i.e., the inverse of the elastic stiffness tensor,
C.

For given dislocation density field A, Kroner’s incompatibility equa-
tions (19) , are solvable in terms of stress potentials, with traction bound-
ary conditions. With other boundary conditions, the solution is more
difficult to obtain. Moreover, the field A can be given as discontinuous
and can represent an assembly of discrete dislocations. Indeed, many
of the solutions to discrete dislocation problems (Hirth & Lothe, 1992)
have been obtained using Kroner’s formalism, following from (19), and
applied to an infinite space.

5 Size-invariant crystal plasticity

In order to construct a size-dependent continuum theory, we begin with
thermodynamic analysis of the standard size-invariant crystal plasticity
formulation. More precisely, we analyze the free energy of a plastically
deformed crystal, as might be computed from different descriptions of
dislocations, listed in Section 3.

Consider the finite volume V , bounded by the surface S. The weak
form (principle of virtual work) of the classical crystal plasticity can be
written as:

δW =

∫
V

[
σ : δe+

∑
α
ταδγα

]
dV =

∫
S

t · δudS. (20)

The first term with elastic strain e, and the corresponding stress
σ = C : e, is the variation of the elastic strain energy:

Φ =
1

2

∫
V

e : C : e dV , (21)

The second term in (20) includes dissipation, as well as the sta-
tistically stored energy, which is considered mechanically irreversible
(Mesarovic, 2005). Standard analysis of the weak form implies that
the work conjugate of slip, τα, is equal to the resolved shear stress ταR:

τα = ταR = mα · σ · ζα◦ . (22)
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The last expression is also interpreted as the yield condition for slip
system α.

The total elastic strain e is incompatible in the sense of (11). In
general, there is infinity of partitions into the compatible strain E and
the incompatible strain ε:

e = E+ ε : Inc(E) = 0 and Inc(ε) = Inc(e) = η. (23)

However, the condition that Eand ε are orthogonal in V :∫
V

E : C : ε dV = 0 (24)

(i.e., that the stress corresponding to one does no work on the other),
renders a unique partition (23). The proof is given in Mesarovic et al
(2010).

Orthogonality implies that the strain energies corresponding to the
two fields are additive:

Φ = Φc + Φinc =
1

2

∫
V

E : C : E dV +
1

2

∫
V

ε : C : ε dV . (25)

In crystal plasticity, incompatibility is the result of non-vanishing
Nye’s tensor (4), so that the incompatible strain energy Φinc is, in fact,
identical to the microstructural energy (Mesarovic, 2005), defined as the
elastic interaction energy between the GN segments. Specifically, when
dislocated (elastic-plastic) solid is embedded in an infinite elastic matrix,
and with elastic moduli of the matrix identical to those of the dislocated
solid, the microstructural energy can be expressed as double convolution
of a quadratic form of either Kroner’s incompatibility tensor (Kosevich,
1979), or of Nye’s tensor (Rickman & LeSar, 2001, Mesarovic, 2005):

Φinc ≡ Wm =
1

2

∫
V

dx3

∫
V

dξ3A(x) : M(x− ξ) : A(ξ), (26)

where the two-point rank-four tensor field M is given as

Mijkl =
2µ

8πR
(2δjkδil − δijδkl) +

Ē

8πR
∈pij∈qkl (δpq − dpdq). (27)
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In (27), Ē is the plane strain modulus: Ē = 2µ/(1− ν). The formu-
lation (26) is convenient for computing energies of stacked dislocation
pile-ups (Yassar et al, 2007, Baskaran et al, 2010).

It bears emphasis that the elastic interaction energy of dislocations
(26), as computed using continuum field A(x), is already included in the
solution to the standard, size-invariant crystal plasticity (20, 25).

For other boundary conditions, the long-range nature of dislocation
interactions, implies that computation of the microstructural energy re-
quires computation of generalized image dislocations (Khraishi & Zbib,
2002a,b) which enforce the particular boundary condition. In general,
this amounts to solving singular integral equations, but simplifying ap-
proximations are possible. The formulations for various boundary con-
ditions are given in Mesarovic (2005), as are the simplifying approxima-
tions. At present, it suffices consider an elastic-plastic crystal embedded
into an infinite elastic medium with identical elastic properties. Later,
we will be able to generalize the conclusions.

Nye’s (1953) coarsening (5, 8), as well as the in-plane coarsening
(7), are purely kinematic. There is no a priori reason why the energies
computed from (7) or (8) should be good approximations to the energy
computed from (6). Roy et al (2007) demonstrated that the error result-
ing from such approach is significant. It is this difference in energies –
the coarsening error in microstructural energy that provides the physical
justification for the appearance of characteristic lengths.

Since Φinc ≡ Wm, the weak form of the crystal plasticity can be
written as

δW = δΦc +

∫
V

∑
α
ταδγαdV + δWm =

∫
S

t · δu dS. (28)

The discrete representation (6) gives the most accurate values of en-
ergy. Therefore, we seek the error in microstructural energy that results
from replacing the discrete dislocation distribution (6) with the contin-
uous field (5, 8).

∆Wm = Wm(Â)−Wm(A). (29)

This is the portion of free energy that is missing from the classical
crystal plasticity. The expression for the virtual work will then have the
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form:

δW =

∫
V

[
σ : δe+

∑
α
ταδγα

]
dV + δ∆Wm =

∫
S

t · δu dS. (30)

The continuum fields σ, e and γα in (24) are computed using the
continuous representation (5, 8).

Owing to the type of dependence M(x− ξ), the double convolution
(26) cannot be reduced to a local form, i.e., cannot be approximated by
a local expression of the type Wm =

∫
V
ω(A(x))dV , which would lead to

a local constitutive law. This property is the direct result of long-range
interactions, which are evident in the discrete form (2). Fortunately, the
error in microstructural energy (29) is reducible to a local form.

6 Approximation for the coarsening error

in microstructural energy

Consider the two-dimensional configuration shown in Figure 5: elastic-
plastic thin-film embedded into an elastic space, with identical prop-
erties. The inclined slip planes contain pile-ups of dislocations at the
boundary.

In isotropic elasticity, the problems of edge (plane strain) and screw
(anti-plane) dislocations are orthogonal and stresses, strains and energies
are additive (Hirth & Lothe, 1992). The general case with arbitrary
Burgers vectors is obtained by superposition of the two basic problems.
We consider pile-up configurations against the impenetrable boundaries.

The dislocation distribution in the pile-up has a crack tip type singu-
larity. Thus, when boundary surfaces have small curvatures, the prob-
lems are essentially two-dimensional, much like crack tip problems.

Finally, we consider equally spaced slip planes. This is, of course,
an approximation. We expect that it is the first order approximation,
and that the corrections will depend on the higher order moments of the
probability distribution of spacings. This approximation notwithstand-
ing, the solutions obtained using the configuration in Figure 5 can be
used to make general conclusions about interaction energies of pile-ups.
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Figure 5: Constrained shear of a thin film with a single slip system.

Using this configuration, Baskaran et al (2010) have recently shown
that, for a wide range of parameters, kinematic and thermodynamic
differences between the discrete (6) and semi-discrete (7) representations
are negligible. The major difference in energies arises from the coarsening
in the direction normal to the slip plane, i.e., as the difference between
energies computed from the continuous (5, 8) and the semi-discrete (7)
representation, so that (29) can be approxiamted as

∆Wm ≈ Wm(Ā)−Wm(A). (31)

Moreover, while the total microstructural energy is irreducibly non-
local [cf. (2, 26)], its error can be localized (Mesarovic et al, 2010). This
is readily understood if one considers a single dislocation represented
either as discrete (Dirac delta), or smeared into dislocation density over
a small region. At a distance much larger than the smearing region, the
stresses and elastic energy densities will be identical in both cases, but
will not vanish. Thus, while the influence of a dislocation is long-range,
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the error arising from approximating the dislocation with a smeared
distribution is short range, and consequently, subject to local approxi-
mation.

Away from the boundaries, where the dislocation densities vary slowly,
the energy error has a simple continuum representation as a quadratic
form of Nye’s components (5), or slip gradients (16) (Mesarovic at al,
2010). This contribution to the coarsening energy error (31) has the
form

1

2

∫
V

gα ·Dαα · gαdV .

Near the boundary, a different kinematic approximation is needed to
represent singular dislocation distribution fields.

In defining a continuum theory, the economy of computations must
be considered. After all, if continuum computations are not economi-
cal, then why not simply model the problem using discrete dislocation
mechanics? Should we keep the singular gradients near the boundary,
the required dense discretization in any numerical method would all but
defeat the purpose of defining the continuum theory. Therefore, an ap-
proximation that avoids dense meshing required for resolving singular
gradients is desired. Such approximation illustrated in Figure 6, where
the sharp concentration of slip gradients at boundaries is approximated
by a finite jump in slip at the boundary. The slowly-varying slip distri-
bution in the interior remains.

The characteristic length that emerges from these calculations is the
(average) spacing of slip planes, h in Figure 5. This length evolves during
deformation; dislocations spread to new parallel slip planes by means of
the double cross slip mechanism (Hirth & Lothe, 1992). Moreover, there
will be a characteristic length associated with each active slip system.
The initial value for an annealed crystal is large; it is of the order of
density for Frank-Read sources, As dislocations spread onto new planes,
the average spacing will be weighted average of two lengths: the initial
spacing of sources and the characteristic cross-slip distance, the latter
being the saturation value.

If the singular dislocation density gα (16) is to be replaced at the
boundary by the appropriate boundary value of slip, the geometry at
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(a) Typical slip distribution between
impenetrable boundaries using the
semi-discrete problem formulation. At
the boundaries, the slip gradient is sin-
gular.

(b) Approximation to the actual slip distribution. Singu-
lar gradients at the boundaries are approximated by jumps
(step functions), so that the approximate slip field consists
of slowly varying portion with non-vanishing boundary val-
ues.

Figure 6

the intersection of slip plane and the boundary must be defined. Let n
be the outer unit normal to the boundary. The slip plane is bounded
by the intersection with the boundary C. The outer unit normal to the
trace C can be written as

Nα =
Pα · n
|Pα · n|

= cosϕαζα◦ + sinϕαζα⊥, |Pα · n| = |n×mα| = cos θα,

(32)
where θα is the angle between the trace normal Nα and the surface
normal n, while ϕα determines edge/screw nature of dislocations piled-
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up against the boundary.

Figure 7: Geometry of an interface and the slip plane intersecting it.

Consider the configuration with stacked pile-ups (Figure 5). Densely
packed dislocations at the boundary are represented by the jump in the
slip, or equivalently, the Dirac delta function for the slip gradient. In
the discrete representation, this represents a wall of super-dislocations at
the boundary. Thus, the slip jump at the boundary, ∆γα, represents the
line density of Burgers vector, given per unit length of in the direction
ηα (Figure 7) orthogonal to the intersection of boundary and stacked
slip planes:

Bα = ∆γα cos θαζα◦ . (33)

The factor cos θα arises from the relation between the slip plane spac-
ing hα (Figure 5) and the spacing of boundary intersections of the same
slip planes. To compute the energy, we need the description that distin-
guishes between screw and edge pile-ups:

Γα = Bα · (ζα◦ Nα) = ∆γα cos θαNα. (34)

With such kinematic description, the coarsening error in microstruc-
tural energy can be represented in terms of continuum fields gα and Γα.
The expression for the total coarsening error in microstructural energy
for the single slip case can be written as:

∆Wm =
1

2

∫
V

gα ·Dαα · gαdV +
1

2

∫
S

Γα · Fαα · ΓαdS. (35)
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The constitutive tensors Dαα and Fαα have been derived from dis-
location mechanics (Mesarovic et al, 2010). They depend on elastic
constants and the slip plane spacing hα. The components of Fααare pro-
portional to the slip plane spacing, hα, Dαα are proportional to (hα)2 .
All components are given in the Appendix.

7 Size-dependent continuum theory without

relaxation

The problem of interaction energies between dislocations on multiple slip
systems is significantly simplified by the local nature of the coarsening
error in microstructural energy; the orientation dependence of interac-
tion energy between two segments can be separated from its distance
dependence. Such orientation dependence can be obtained either from
interaction of discrete dislocation segments (Hirth & Lothe, 1992), or
from the expression for microstructural energy used here (2, 26):

∆Wm =
1

2

∫
V

∑
α,β

gα ·Dαβ · gβdV +
1

2

∫
S

∑
α,β

Γα · Fαβ · ΓβdS

=
1

2

∫
V

∑
β

pβ · gβdV +
1

2

∫
S

∑
β

qβ · ΓβdS (36)

The energy conjugates are given as

pα =
∑

β
Dαβ · gβ, qα =

∑
β
Fαβ · Γβ. (37)

We note that for the multi-slip case, the energy conjugates pα and
qα do not, in general, lie in the slip plane α. The constitutive tensors
Dαβ and Fαβ are given in the Appendix.

The weak form (virtual work principle) of the size-dependent crystal
plasticity can be written as

δW =

∫
V

[
σ : δe+

∑
α
τα |δγα|+

∑
α
pα · δgα

]
dV

+

∫
S

∑
α
qα · δΓαdS =

∫
S

t · δudS. (38)
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The summations in the integrand take place over all currently active
slip systems. The definition of an active slip system will follow from
the analysis of (38). Following Gurtin’s (2000, 2002) analysis, the work
conjugate of slip, τα, is not directly related to the resolved shear stress
as in the size-invariant theory. It is considered independent material
parameter.

We note that virtual displacements δu, and virtual slips, δγα, cannot
be considered truly independent. More precisely, if one wishes to impose
a variation δγα ̸= 0, δγβ ̸=α = 0, δui = 0, the variation δγα must be
subject to additional constraint of constant average slip in each slip
plane. The average value can vary in the direction orthogonal to the slip
plane. The details of the analysis of the variational problem (38) are
given in Mesarovic et al (2010). The final result is the strong form of the
boundary value problem, which includes the standard, simple continuum
PDEs and boundary conditions:

∇ · σ = 0 in V,
n · σ = t on S,

(39)

and the additional set of differential equations for each active slip plane:
α

∇·pα = τα − ταR in V

Nα · (pα + qα) = 0 on S

 , α = 1, 2, ... (40)

We emphasize that the boundary conditions in (40) are, in fact, inter-
nal; they are determined by the constitutive equations (A2). No higher
order boundary conditions are needed.

Let the number of active slip systems be ns. Then (39, 40) represent
a set of (3 + ns) second order partial differential equations for (3 + ns)
unknown fields: ui(x), i = 1, 2, 3, and γα(x), α = 1, 2, ..., ns, endowed
with appropriate boundary conditions. For each slip system, equations
(38) taken alone, represent a two-dimensional problem in the slip plane,
with mixed boundary conditions.

Finally, to recast the formulation in the standard plasticity form with
the yield condition, we note that the first equation in (38) is valid for
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active slip systems (δγα ̸= 0). If∣∣∣ α∇ ·pα(x) + ταR(x)
∣∣∣ < τα(x), (41)

then the slip system α is inactive at point x, i.e., δγα(x) = 0. The case∣∣∣ α∇ ·pα + ταR

∣∣∣ > τα is not admissible. The dissipative term
∑

α τ
α |δγα| in

(38), includes the current flow stress for the slip system α, τα. In stan-
dard plasticity, the evolution of τα with slip is addressed by introducing
phenomenological models for statistical hardening, but such issues are
beyond scope of this paper.

Finally, consider an impenetrable interface between two plastically
deforming solids, with identical isotropic elastic properties. The localized
nature of the coarsening error in microstructural energy (36) enables
local representation of the interactions between pile-ups on both sides of
the boundary through the boundary slips Γα. All that is required is to
state that the sums over index βgn (36), and in constitutive laws (A2),
now include summation over all slip systems involved in pile-ups on both
sides of the interface. The theory is thus generalized to composites and
polycrystals, but with grain boundaries impenetrable to dislocations.

8 Boundary relaxation and dissipation

As discussed in Section 2, dislocation segments react in the bulk and
along the boundary. Moreover, dislocations piled-up against the bound-
ary may react with intrinsic defects which describe the structure of the
boundary, or be absorbed by the boundary and dissociate into various
sessile and mobile products. The dislocations in the bulk are represented
by densities gα, while those piled-up in thin boundary layer are repre-
sented by Γα/hα. Since, in general, gα ≪ Γα/hα, it seems reasonable to
assume that the reactions in the bulk occur will much smaller probabil-
ity then those at the interface, and may, as the first approximation, be
neglected. Consequently, we focus on interface reactions.

When two plastically deforming crystals are interfaced, dislocation
segments in boundary layers can undergo complex reactions. The typical
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result is partial annihilation of Burgers vectors on the two sides of the
interface and formation of extra dislocation walls. From the continuum
point of view, the conditions that preserve the total Burgers vector have
been studied by Gurtin & Needleman (2005).

In general, the criteria for reactions depend on the atomic scale con-
siderations. For twist boundaries, the reactions will strongly depend on
the mobility of atoms at the interface. Even at tilt boundaries, the slip
planes in general are out of register; recall that different slip systems
are characterized by different slip plane spacings hα. Therefore, there
will be kinetic barriers to interface reactions, i.e., threshold conditions in
rate-independent formulation. Such barriers/thresholds require atomic
scale analysis. In the present work, we ignore this class of problems
and concentrate on continuum thermodynamics. However, the resulting
theory does not preclude additional interface reaction conditions.

In the present case, the net Burgers vector density is defined directly
from (33) for each slip system. The duality between the Burgers vector
density and the slip jump vector follows from (33, 34):

Γα = Bα · (ζα◦ Nα), Bα = Γα · (Nαζα◦ ) (42)

Both, Γα and Bα are dimensionless quantities, since both represent
densities of Burgers vector per unit length in the direction ηα (Figure
7).

Consider two slip systems and two corresponding Burgers vector den-
sities, I and II, either on the same or on different sides of the interface.
The two Burgers vector densities are defined with respect to line direc-
tions (cf. Figure 2): (ξI ,BI) and (ξII ,BII). Since the numbers of actual
dislocation lines belonging to two slip systems are, in general, different,
only a portion of BI will relax by reacting with other system. Denote

the relaxed portion as
⌢

B
I

; the unrelaxed portion is then

B̄I = BI −
⌢

B
I

, Γ̄α = Γα −
⌢

Γ
α

. (43)

8.1 Slip systems with parallel traces

Consider first the case when slip plane traces of the two systems are
parallel. This is the simplest case, and the geometry of the product
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is easily established. In fact, the analysis presented below is, at the
continuum level equivalent to several different discrete events, illustrated
in Figure 8 (disconnection in Figure 8(a) notwithstanding).

The line direction of the product ξR will be parallel to the line direc-
tions of reacting dislocations. One can arbitrarily choose ξR = ξI . The
products Burgers vector is then:

BR =
⌢

B
I

+ (ξII · ξI)
⌢

B
II

. (44)

It is convenient to regard the product as belonging to a fictitious slip
system R:

ζR◦ = BR/
∣∣BR

∣∣ , mR =


ξR × ζR◦
|ξR × ζR◦ |

if ξR × ζR◦ ̸= 0

n otherwise

 ,

PR = I−mRmR, NR =
PR · n
|PR · n|

, ΓR = BR · (ζR◦ NR).

(45)
The free energy of the relaxed system is now determined by the un-

relaxed portions Γ̄α, and the product ΓR:

Φ =
1

2

∫
V

{
e : C : e+

∑
α,β

gα ·Dαβ · gβ

}
dV

+
1

2

∫
S

∑
α′,β′

Γ̄α′ · Fα′β′ · Γ̄β′
dS. (46)

Symbolically, the primed indices indicate that the summation is taken
over all slip systems on both sides of the interface (unrelaxed portions),
and over all fictitious systems (44, 45). The definition of constitutive
tensors Fα′β′

(A2) and work-conjugates qα′
(37) is extended accordingly

to include the fictitious systems. For that purpose a characteristic spac-
ing hR is needed. It can be determined as a weighted average of the
spacings in slip systems involved in reaction:∣∣∣∣⌢BI

∣∣∣∣hI +

∣∣∣∣⌢BII
∣∣∣∣hII =

∣∣BR
∣∣hR . (47)
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(a) Dislocation impinges on a boundary and nucleates dislocation
in the neighboring crystal, leaving a sessile dislocation and a dis-
connection. The latter produces steps on the interface, but we
ignore it at this level of analysis.

(b) Two disloca-
tions from the same
crystal meet at the
interface.

(c) Dislocations on two sides of
the interface impinge on the in-
terface and react.

Figure 8: The discrete events covered by the analysis presented in Section
8.1.
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On the level of dislocation mechanics, the boundary relaxation can
occur either as a reaction between piled-up dislocations on two slip sys-
tems, or, by nucleation of a dislocation loop at the boundary, on say, side
II, as a result of the pile-up at side I, and subsequent (fast) propagation
of nucleated loop through the solid II. From the point of view of contin-
uum kinematics, which is oblivious to the position of the source, these
two cases are equivalent. The relaxation occurs by a series of atomic level
steps which can only be quantified by atomic level calculations. Pending
such results, we assume that boundary relaxation occurs as soon as it is
kinematically possible and thermodynamically consistent.

Dissipative events in dislocation motion typically involve a passage
through a high energy configuration, followed by relaxation. The dif-
ference in energies between the peak energy configuration and the final
relaxed state is considered dissipated18. The relaxed portions of slip

steps
⌢

Γ
I

and
⌢

Γ
II

now enter the rate of dissipation, which is given as

D =

∫
V

∑
α
τα |γ̇α|dV +

∫
S

dS
∑

R

∑
I,II

[
kR,I ·

⌢̇

Γ
I

+ kR,II ·
⌢̇

Γ
II
]
(48)

The dissipation work conjugates kR,I and kR,II , derived in (Mesarovic
et al, 2010), are given in the Appendix.

The reaction between systems I and II will occur only if it lowers
the free energy of the system, i.e. if the dissipation rate is positive.

Consider small increments in relaxed boundary slips be denoted δ
⌢

Γ
I

and δ
⌢

Γ
II

. The free energy in the final (relaxed) state is the quadratic
form of (Γ̄I , Γ̄II , δΓR). The condition that dissipation must be positive
reads:

qI · δ
⌢

Γ
I

+ qII · δ
⌢

Γ
II

− qR · δΓR ≥ 0. (49)

This is the realization of the 2nd law of thermodynamics (Clausius-
Duhem inequality) for isothermal processes.

18Consider, e.g., the problem of a dislocation passing another parallel pinned dis-
location.
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The only remaining question is how to determine the portion of the
slip step increment that is relaxed. For that purpose, denote:

δ
⌢

Γ
I

= αIδΓI , δ
⌢

Γ
II

= αIIδΓII . (50)

Assuming that the system minimizes free energy, i.e., maximizes dis-
sipation, αI and αII can be found as the combination that maximizes
the left-hand-side of (49).

8.2 Slip systems of with non-parallel traces

The illustration of the problem is shown in Figure 1(c). Two non-parallel
sets of dislocations impinge on the interfaces. The increased mobility at
the interface allows the structure to relax, i.e., to lowers its energy. The
resulting structure could be periodic or quasiperiodic, as long as the
range of material transport is limited.

The 2D periodic structure is characterized by two translation vectors
(cf. Figures 5 and 7) (ηIhI

/
cos θI , hIIηII

/
cos θII), where

ηα = ξα × n. (51)

Any periodic structure that decreases the free energy of the system
is possible. The initial and the relaxed structure must satisfy the surface
conservation of total Burgers vector in the periodic cell. Let S0 be the
area of the parallelogram encompassed by the two translation vectors
(Figure 9). Then: ∫

S0

[
BIξI +BIIξII

]
dS0 = const. (52)

The free energy of the system is determined by the relaxed configura-
tion. The dissipation is the difference in free energy between the original
configuration and the relaxed one.

At present, we have no way of predicting the relaxed configuration,
except by atomistic studies. However, once the relaxed configuration
is determined, the free energy is easily estimated using the methods of
linear elasticity.
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Figure 9: Two sets of dislocations impinging on a boundary, and the
two translation vectors for the relaxed periodic lattice. The translation
vectors are orthogonal to dislocation lines and have a magnitude equal
to the spacings of slip planes in the two systems.

8.3 Dislocations absorbed by the boundary

The general case is shown in Figure 1(a) (down). Dislocation absorbed
by the boundary may (Priester, 2001):

(i) Relax by extending its core, or,

(ii) Dissociate into partials, one of which may be mobile.

As before, the prediction of the mechanism can only be affected by
atomistic simulations. Once that is accomplished, energies are computed
using linear elasticity.

Finally, it bears emphasis that the list of outcomes discussed in Sec-
tions 8.1-3 may not be complete. It is simply a list of reactions observed
at the boundaries so far. The main point of the above discussion is that
once criteria for determining the type of dislocation-interface reactions
are available, the continuum framework outlined above can accommo-
date them.
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9 Summary and discussion

We have summarized the recent advances in continuum plasticity of crys-
tals, and, discussed the unsolved problems in plasticity of interfaces.

First, we considered systems without boundary dissipation (relax-
ation). Once the energy landscape is defined, the dissipation model for
the boundaries is defined from the height of energy barriers (peak energy
configurations).

The resulting rate-independent (quasistatic) continuum crystal plas-
ticity theory is size-dependent. The characteristic lengths are the aver-
age slip plane spacing for each slip system. They may evolve through
the double-cross slip mechanism. The theory features the slip-dependent
interface free energy and interface dissipation for penetrable interfaces.

The analysis in this paper is based on linearized kinematics and
isotropic elasticity with no elastic mismatch between adjacent crystals.
The generalization to arbitrary kinematics should present no conceptual
problems. Consideration of elastic anisotropy first requires a mathemat-
ical development similar to the one in Mesarovic (2005), i.e., the integral
formulation of dislocation interaction energies. The exact treatment of
elastic mismatch is difficult, but an approximation is simple.

Plastic relaxation at grain boundaries and interfaces represent a more
difficult and yet unsolved problem. In this paper, we have only outlined
a framework in which the problems of dislocation-boundary interactions
can be considered. The criteria for deciding which interface reaction
takes place are not available at present. To produce such criteria, a
systematic investigation and mapping of the interface orientation space
is needed using atomistic simulations.
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Appendix

The constitutive tensors for the single slip t no relaxation theory (35)
are given by:

Dαα = hα2[d⊥ζ
α
◦ ζ

α
◦ + d◦ζ

α
⊥ζ

α
⊥],

(A1)

Fαα = hα[f2
⊥d⊥ζ

α
◦ ζ

α
◦ + f 2

◦d◦ζ
α
⊥ζ

α
⊥].

with: d⊥ = Ē
/
12, and d◦ = µ/12. The coefficients f⊥ ≈ 9/4 and f◦ ≈ 3

are computed by comparing the numerical solutions of the semi-discrete
problem to the solution of the continuum theory.

For multiple slip - no relaxation theory (36, 37, 46), the constitutive
tensors are ():

Dαβ =
1

2
hαhβ

[
Dαβ

⊥⊥ +Dαβ
⊥◦ +Dαβ

◦⊥ +Dαβ
◦◦

]
,

(A2)

Fαβ =
1

2

√
hαhβ

[
f2
⊥D

αβ
⊥⊥ + f⊥f◦D

αβ
⊥◦ + f◦f⊥D

αβ
◦⊥ + f 2

◦D
αβ
◦◦

]
,

for α ̸= β, with: Dαβ
⊥⊥ Dαβ

⊥◦

Dαβ
◦⊥ Dαβ

◦◦

 =

 d⊥(m
α ·mβ)ζα◦ ζ

β
◦ d⊥(ζ

α
◦ · ζβ◦ )(ζα⊥ · ζβ◦ )ζα◦ ζ

β
⊥

d⊥(ζ
β
◦ · ζα◦ )(ζ

β
⊥ · ζα◦ )ζα⊥ζβ◦ d◦

[
(ζα◦ · ζβ◦ )2 − 1

]
ζα⊥ζ

β
⊥


(A3)

Dissipative work-conjugates, for the case of parallel slip traces (48)
are:

kI,R = qI − qR · (NRζR◦ ) · (ζI◦NI),

(A4)

kII,R = qII + qR · (NRζR◦ ) · (ζII◦ NII).
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Plastičnost kristala i medjupovrši: od diskretnih
dislokacija ka teoriji kontinuuma zavisnoj od

veličine

Prikazani su nedavni istraživa cki rezultati u kontinualnoj plastičnosti kristala
(kvazistatička formulacija nezavisna od brzine) na osnovu mehanike dislokacija.
Poseban naglasak je stavljen na relaksaciju klizanja na medjupovrši. Ovaj
nerešeni problem je na sadašnjem frontu istraživanja u plastičnosti kristal-
nih materijala. Postavljamo ovde okvir za sledeća istraživanja zasnovana na
teoriji razvijenoj za trodimenzioni kristal.

Ova teorija je zasnovana na konceptu geometrijski potrebnih dislokacija,
posebno, na konfiguracijama gde dislokacije se nagomilavaju nasuprot med-
jupovrši. Prosečno rastojanje izmedju ravni klizanja obezbedjuje karakter-
ističnu dužinu teorije. Fizička interpretacija slobodne energije uključuje grešku
u energijama elastične relaksacije koje rezultijaju iz grube reprezentacije polja
dislokacione gustine.

Kinematika kontinuuma je odredjena činjenicom da dislokaciona nagomila-
vanja imaju singularni raspored koji nam dozvoljava da prikažemo gusto dis-
lokaciono polje na granici kao jednu superdislokaciju, tojest, skok u polju kl-
izanja. Pridružena ovom skoku je energija medjupovrši koja zavisi od klizanja,
što opet čini ovu formulaciju podesnom za analizu mehanizama relaksacije na
medjupovrši.
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