
On hydromagnetic thermosolutal
convection coupled with

cross-diffusion in completely
confined fluids

Hari Mohan∗ Pardeep Kumar†

Theoret. Appl. Mech., Vol.38, No.1, pp. 17–36, Belgrade 2011

Abstract

The instability of thermosolutal convection coupled with cross-
diffusion of an electrically conducting fluid completely confined
in an arbitrary region bounded by rigid wall in the presences
of a uniform magnetic field applied in an arbitrary direction
is investigated. Some general qualitatively results concerning
the character of marginal state, stability of oscillatory motions
and limitations on the oscillatory motions of growing amplitude
are derived. The results for the thermosolutal convection prob-
lems with or without the individual consideration of Dufour and
Soret effects follow as a consequence.
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Nomenclature

p growth rate, [1/s]
q⃗ velocity, [m/s]
σ Prandtl number, [−]
P Pressure, [Pa]
RT Thermal Rayleigh number, [−]
RS Solutal Rayleigh number, [−]
Q Chandrasekhar number, [−]

h⃗ Magnetic field, [Gauss]
DT Dufour number, [−]
ST Soret number, [−]
τ Lewis number, [−]
σ1 Magnetic Prandtl number [-]
g acceleration due to gravity, [m/s2]
d depth of layer, [m]
t time, [s]

Greek symbols

α coefficient of thermal expansion, [1/K]
α′ coefficient of solute expansion
β1 uniform temperature gradient, [K/m]
β2 uniform concentration gradient, [K/m]
η electrical resistivity, [m2/s]
κ thermal diffusivity, [m2/s]
η1 mass diffusivity,
ν kinematic viscosity, [m2/s]
ρ density, [kg/m3]
θ perturbation in temperature, [K]
ϕ perturbation in concentration, [Kg]
λ the ratio of two magnetic Prandtl numbers [-]
DT dimensionless Dufour number, [−]
ST dimensionless Soret number, [−]
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1 Introduction

Thermosolutal convection or more generally double-diffusive convec-
tion, like its classical counterpart, namely, single –diffusive convection,
has carved a niche for itself in the domain of hydrodynamic stabil-
ity on account of its interesting complexities as a double- diffusive
phenomenon as well as its direct relevance in the fields of Oceanog-
raphy, Asrophysics, Geophysics, Limnology and Chemical engineering
etc. can be seen from the review articles by Turner [1] and Brandt
and Fernando [2]. An interesting early experimental study is that of
Caldwell [3]. The problem is more complex than that of a single - dif-
fusive fluid because the gradient in the relative concentration of two
components can contribute to a density gradient just as effectively as
can a temperature gradient. Further, the presence of two diffusive
modes allows either stationary or overstable flow states at the onset
of convection depending on the magnitude of the fluid parameters, the
boundary conditions and the competition between thermal expansion
and the thermal diffusion. More complicated double- diffusive phe-
nomenon appears if the destabilizing thermal/concentration gradient
is opposed by the effect of a magnetic field or rotation.

The stability properties of binary fluids are quite different from
pure fluids because of Soret and Dufour [4, 5] effects. An externally
imposed temperature gradient produces a chemical potential gradient
and the phenomenon known as the Soret effect, arises when the mass
flux contains a term that depends upon the temperature gradient. The
analogous effect that arises from a concentration gradient dependent
term in the heat flux is called the Dufour effect. The coupling of the
fluxes of the stratifying agents is a prevalent feature in multicomponent
fluid systems. In general, the stability of such systems is also affected
by the cross-diffusion terms. Hurle and Jakeman [6] have studied the
effect of Soret coefficient on the double–diffusive convection. They
have reported that the magnitude and sign of the Soret coefficient
were changed by varying the composition of the mixture. McDougall
[7] has made an in depth study of double diffusive convection where in
both Soret and Dufour effects are important.



20 Hari Mohan, Pardeep Kumar

Mohan [8,9] has mollified the nastily behaving governing equations
of Dufour- driven thermosolutal convection and Soret – driven ther-
mosolutal convection problems of the Veronis [10] type by the con-
struction of a linear transformation and derived the desired results
concerning the linear growth rate and the behavior of oscillatory mo-
tions on the lines suggested by Banerjee et. al. [11, 12]. Almost all
the papers that are written on the subject are confined to horizontal
layer geometry on account of complexity of the problem for arbitrary
geometry. However, there do exist a class of results in the domain of
hydrodynamic and hydromagnetic stability theory that sparks of their
generalization to containers of arbitrary shape [13].

Motivated by these considerations, the present paper investigates
the instability of thermosolutal convection coupled with cross-diffusion
of an electrically conducting fluid completely confined in an arbitrary
region bounded by rigid wall in the presences of a uniform magnetic
field applied in an arbitrary direction and derives some general quali-
tatively results concerning the character of marginal state, stability of
oscillatory motions and limitations on the oscillatory motions of grow-
ing amplitude. The results for the thermosolutal convection problems
with or without the individual consideration of Dufour and Soret effects
follow as a consequence.

2 Mathematical formulation and analysis

The relevant governing non-dimensional linearized perturbation equa-
tions in the present case with time dependence of the form exp (pt)
(p = pr + ipi) are given by:

p

σ
q⃗ = −∇ (P )− curl curl q⃗ +RT θ k̂ −RSϕ k̂ +Q

(
curl⃗h

)
× l̂ (1)(

∇2 − p
)
θ +DT∇2ϕ = −q⃗ · k̂ (2)(

τ∇2 − p
)
ϕ+ ST∇2θ = −q⃗ · k̂ (3)

curlcurlh⃗+
pσ1h⃗

σ
= curl

(
q⃗ × ℓ̂

)
(4)
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and
∇ · q⃗ = 0 = ∇ · h⃗ (5)

In the above equations q⃗ (x, y, z) , P (x, y, z) , θ (x, y, z) , ϕ (x, y, z)

and h⃗ (x, y, z) respectively denote the perturbed velocity, pressure, tem-
perature, concentration and magnetic field and are complex valued

functions defined on V, RT =
gαβd4

κυ
is the thermal Rayleigh number,

RS =
gα′β′d4

κ′υ
is the concentration Rayleigh number, Q =

µeH
2
0d

2

4πρ0υη
is

the Chandrasekhar number, σ =
υ

κ
is the Prandtl number, τ =

η1
κ

is

the Lewis number, DT =
β2Df

β1κ
is the Dufour number, ST =

β1Sf

β2η
is

the Soret number, and k̂ is a unit vertical vector. Further, with d as
the characteristic length, the equations have been cast into dimension-

less forms by using the scale factors
κ

d
,
d2

κ
, βd,

ρυκ

d2
, β′d and

κH0

η
for velocity, time, temperature, pressure, concentration and magnetic
field respectively.

We seek solutions of equations (1)-(5) in the simply connected sub-
set V of R3 subject to the following boundary conditions:

either
q⃗ = 0 = θ = ϕ = n̂× curl h⃗ on S (6)

or
q⃗ = 0 = ∇θ · n̂ = ∇ϕ. n̂ = n̂× curl h⃗ on S (7)

where n̂ is a unit vector in the direction of the normal to boundary
surface S.

We now prove the following lemmas and theorems:

Lemma 1: (Poincare’s Inequality) – If f (x, y, z) is any smooth function
which vanishes on S and ℓ is the smallest distance between two parallel
planes which just contains V, then there exists a constant λ0(> 2) such
that ∫

∨

|∇f |2 dv ≥ λ0
ℓ2

∫
|f |2 dv (8)
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Proof: Joseph [14].

Lemma 2: If
(
p, q⃗, h⃗, θ, ϕ

)
is a non-trivial solution of equation (1)-

(5) together with either of the boundary conditions(6)-(7), then the
following integral relations hold :∫

∨

q⃗∗ · curl curl q⃗dv =

∫
∨

|curl q⃗|2dv, (9)

∫
∨

q⃗∗ · curl curl
(
q⃗ × ℓ̂

)
dv =

∫
∨

curl
(
q⃗ × ℓ̂

)
· curl q⃗∗dv, (10)

∫
∨

q⃗∗ · curl curl
(
θ k̂

)
dv = 0 =

∫
∨

q⃗∗ · curl curl
(
ϕ k̂

)
dv, (11)

∫
∨

q⃗∗ ·
[(
curl h⃗

)
× ℓ̂

]
dv = −

∫
∨

h⃗ · curl curl
(
q⃗∗ℓ̂

)
dv, (12)

∫
∨

q⃗∗ ·
[
ℓ̂ curl curl curl h⃗

]
dv = −

∫
∨

curl curl h⃗ · curl
(
q⃗∗ℓ̂

)
dv,

(13)∫
∨

h⃗∗ · curl curl curl h⃗ dv = −
∫
∨

∣∣∣ curl h⃗∣∣∣2 dv =

∫
∨

h⃗∗ · curl curl curl h⃗∗ dv, (14)

∫
∨

q⃗∗ · ∇ (P ) dv = 0, (15)

∫
∨

q⃗∗ ·
[
∇

(
div θ k̂

)]
dv = 0 =

∫
∨

q⃗∗ ·
[
∇

(
ϕ k̂

)]
dv, (16)

∫
∨

q⃗∗ ·
[
∇

(
ℓ̂ · curl curl h⃗

)]
dv = 0, (17)
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∫
∨

θ∗∇2θdv = −
∫
∨

|∇θ|2 dv =

∫
θ∗∇θ∗dv, (18)

and ∫
∨

ϕ∗∇2ϕdv = −
∫

|∇ϕ|2 dv =

∫
ϕ∗∇ϕ∗dv (19)

where ‘*’ denotes complex conjugate and
∣∣∣A⃗∣∣∣2 = A⃗ · A⃗∗ for any vector

A⃗.

Proof: If A⃗, B⃗ and C⃗ are smooth vector-valued functions and ψ is a
smooth scalar-valued function on V such that A⃗× B⃗ and ΨC⃗ vanish
on S, then using Gauss’ divergence theorem and the vector identities

div
(
A⃗× B⃗

)
= B⃗.curl A⃗− A⃗ · curlB⃗

and div
(
ΨC⃗

)
= ∇Ψ.C⃗ +Ψ div C⃗ it follows that∫

∨

B⃗ · curl A⃗ dv =

∫
∨

A⃗ · curl B⃗ dv, (20)

and ∫
∨

∇Ψ · C⃗ dv =−
∫
∨

Ψ div C⃗ dv . (21)

Now integral relations (9)–(14) follow from equation (20) by choos-

ing A⃗ and B⃗ appropriately and integral relations (15)-(19) follow from

equation (21) by choosing Ψ and C⃗ appropriately. This completes the
proof of the lemma.

Theorem 1: If
(
p, q⃗, h⃗, θ, ϕ

)
, p = pr + ipi is a non-trivial solution of

equations(1) - (5) together with either of the boundary conditions (6)

- (7), R′
T > 0, R′

S > 0 and
τ k2
k1

R′
T ≤ R′

S then pr = 0 ⇒ pi ̸= 0.

Proof: We introduce the transformations
⌣

q⃗ = (ST +B) q⃗, θ̃ = Eθ + Fϕ,
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ϕ̃ = ST θ +Bϕ, h̃z = ( ST +B) hz (22)

where

B = −1

τ
A, E =

ST +B

DT + A
A, F =

ST +B

DT + A
DT

and A is a positive root of the equation

A2 + (τ − 1)A − τ STDT = 0.

The systems of equations (1)-(5), upon using the transformations
(22) assume the following forms:

p

σ
q⃗ = −∇P − curl curl q⃗ +R′

T θ k̂ −R′
Sϕ k̂ +Q

(
curl h⃗

)
× ℓ̂, (23)

( k1∇2 − p ) θ = −q⃗ · k̂, (24)

( k2τ∇2 − p ) ϕ = −q⃗ · k̂, (25)

curlcurlh⃗+
pσ1h⃗

σ
= curl

(
q⃗ × ℓ̂

)
(26)

∇ · q⃗ = 0 = ∇ · h⃗ (27)

with
q⃗ = 0 = θ = ϕ = n̂× curl h⃗ on S (28)

or
q⃗ = 0 = ∇θ · n̂ = ∇ϕ · n̂ = n̂× curl h⃗ on S, (29)

where

k1 = 1 +
τ DTST

A
, k2 = 1− STDT

A
are positive constants

and R′
T =

(DT + A)(RTB +RSST )

BA− STDT

, R′
S =

(ST +B)(RSA+RTDT )

BA− STDT

are respectively the modified thermal Rayleigh number and the
modified concentration Rayleigh number.

The sign tilde has been omitted for simplicity.
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Suppose pr = 0 ⇒ pi = 0. Then, p = 0 and equations (23) – (26)
become

∇P + curl curl q⃗ = R′
T θ k̂ −R′

Sϕ k̂ +Q
(
curl h⃗

)
× ℓ̂, (30)

k1∇2 θ = −q⃗ · k̂, (31)

k2τ∇2 ϕ = −q⃗ · k̂, (32)

curlcurlh⃗ = curl
(
q⃗ × ℓ̂

)
(33)

If ζ = k1θ − τ k2ϕ , then it follows from equations (31)-(32) that

∇2ζ = 0 (34)

Further, in view of boundary conditions (28)-(29), we have either

ζ = 0 or ∇ζ · n̂ = 0 on S (35)

The only solution of equation (34) in V subject to either of the
boundary condition in (35) is ζ= 0. Consequently equation (30) assume
the form

∇P + curl curl q⃗ =

(
τ k2
k1

R′
T −R′

S

)
ϕ k̂ +Q

(
curl h⃗

)
× ℓ̂ (36)

Taking dot product of equation (36) with q⃗∗, integrating the result-
ing equation over the domain V and using lemma 2, we get∫

∨

|curl q⃗|2 dv +Q

∫
h⃗ · curl

(
q⃗ × ℓ̂

)
dv =

(
τ k2
k1

R′
T −R′

S

)∫
∨

ϕ
(
q⃗∗ · k̂

)
dv (37)

Equation (37) upon using equation (32) and (33) and then appeal-
ing to lemma 2 yields the equation∫

∨

|curl q⃗|2 dv +Q

∫
∨

∣∣∣curl h⃗∣∣∣2 = k2τ

(
τ k2
k1

R′
T −R′

S

)∫
∨

|∇ϕ|2dv.

(38)



26 Hari Mohan, Pardeep Kumar

It follows from equation (38) that
τ k2
k1

R′
T > R′

S, a result contrary

to the given hypothesis of the theorem. Hence pr = 0 ⇒ pi ̸= 0.

This completes the proof of the theorem.

Theorem 1, in the parlance of linear stability theory, may be stated
as follows:

PES is not valid for the hydromagnetic thermosolutal convection

coupled with cross-diffusion if
τ k2
k1

R′
T ≤ R′

S.

Cor.1. PES is not valid for thermosolutal convection coupled with
cross-diffusion if τ R′

T ≤ R′
S

Cor.2. PES is not valid for Dufour-driven hydromagnetic thermoso-

lutal convection (ST = 0, k1 = k2 = 1) if τ

(
RT +

RTDT

1− τ

)
≤ ( RS +

RTDT

1− τ
).

Cor.3. PES is not valid for Soret-driven hydromagnetic thermosolu-

tal convection (DT = 0, k1 = k2 = 1) if τ

(
RT − τRSST

1− τ

)
≤ ( RS −

τ RSST

1− τ
).

Theorem 2: If
(
p, q⃗, h⃗, θ, ϕ

)
, p = pr + ipi is a non-trivial solution of

equations (23) - (27) together with either of the boundary conditions
(28) - (29),R′

T > 0, R′
S > 0, k2 < k1, and R′

T ≤ R′
S and τ = 1 then

pr < 0

Proof: Since τ = 1, therefore it follows from equations (24) and (25)
and boundary conditions (28)-(29) that

(⟨k1 − k2⟩ ∇2 − p )χ = 0, (39)

where

χ = (θ − ϕ) and either χ = 0 or ∇χ.n̂ = 0 on S (40)



On hydromagnetic thermosolutal convection coupled... 27

Multiplying equation (39) by χ∗, integrating over the domain V,
using equation (21) with φ = χ∗ and q⃗ = ∇χ and equating the real
part of the resulting equation, we get

( k1 − k2 )

∫
v

|∇χ|2 dv + pr

∫
v

|χ|
2

dv = 0 (41)

Suppose pr ≥ 0. Then it follows from equation (41) that χ = 0
Consequently, taking the dot product of equation (23) with q⃗∗,

integrating the resulting equation over the domain V and invoking
lemma 2 and equations (25) - (26), we get

p

q

∫
v

|q⃗|2dv +
∫
v

|curlq⃗|2dv = (R′
T −R′

S)
∫
v

k2 |∇ϕ|2+

p ∗ |ϕ|2 dv −Q
∫
v

∣∣∣curl h⃗∣∣∣2dv − Qσ1
σ
p ∗

∫
v

∣∣∣⃗h∣∣∣2dv. (42)

Equating real parts of equation (42), we have

pr
q

∫
v

|q⃗|2dv +
∫
v

|curlq⃗|2dv +Q
∫
v

∣∣∣curl h⃗∣∣∣2dv + Qσ1
σ
pr

∫
v

∣∣∣⃗h∣∣∣2dv
= . (R′

T −R′
S)

∫
v

k2 |∇ϕ|2 + pr |ϕ|2 dv
(43)

It follows from equation (43) that R′
T > R′

S, a result contrary to
the given hypothesis of the theorem.

Hence, we must have pr < 0. This completes the proof of the
theorem.

Theorem 2 implies that hydromagnetic thermosolutal convection
coupled with cross-diffusion is stable if the Lewis number τ = 1

Cor.4. The thermosolutal convection coupled with cross-diffusion is
stable if the Lewis number τ = 1.

Cor.5. An initially bottom heavy (RT < RS) thermosolutal convection
of the Veronis type (RT > 0, RS > 0) is stable if τ = 1.
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Theorem 3: If
(
p, q⃗, h⃗, θ, ϕ

)
, p = pr + ipi is a non-trivial solution of

equations (23) - (27) together with either of the boundary conditions
(28) - (29),R′

T > 0, R′
S > 0, and k1 ≤ λ ≤ τ k2, then for large Q (or for

large RS if Q = 0)
pr ≥ 0 ⇒ pi = 0

where

λ =

{
τ, if RS > 0 and Q = 0
σ

σ1
, if RS ≥ 0 and Q > 0.

Proof: Operating on equation (23) by (λ curl curl + p) and using the
vector identities

curl
(
ΨA⃗

)
= Ψcurl A⃗+∇Ψ+ A⃗

curl
(
A⃗× B⃗

)
=

(
B⃗ · ∇

)
A⃗−

(
A⃗ · ∇

)
B⃗ + A⃗ div B⃗

and

∇
(
A⃗× B⃗

)
=

(
B⃗ · ∇

)
A⃗+

(
A⃗ · ∇

)
B⃗ + B⃗ curl A⃗ + A⃗× curl B⃗,

with an appropriate choice of Ψ, A⃗ and B⃗, it follows that

p

(
1 +

λ

σ

)
curl curl q⃗ +

p2

σ
q⃗ + p∇P +

R′
S

{
λ
[
∇
(
div ϕk̂

)
−∇2ϕ k̂

]
+ pϕ k̂

}
−R′

T

{
λ
[
∇
(
div θ k̂

)
−∇2θ k̂

]}
+ (44)

Q {λ
[
ℓ̂× curl curl curl h⃗−∇

(
ℓ̂× curl curl h⃗

)
−p

(
curl h⃗

)
× ℓ̂

}]
= −λ curl curl curl curl q⃗

Taking the dot product of equation (44) with q⃗∗, integrating the
resulting equation over the domain V and using lemma 2, we have

p

(
1 +

λ

σ

)∫
∨

|curl q⃗|2 +
p2

σ

∫
∨

|q⃗|2dv +R′
T

∫
∨

(
λ∇2θ − pθ

) (
q⃗∗ · k̂

)
dv
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−R′
S

∫
∨

(
λ∇2ϕ− pϕ

) (
q⃗∗ · k̂

)
dv + pQ

∫
∨

h⃗ curl
(
q⃗ · ℓ̂

)
dv

+Qλ

∫
∨

curl curl h⃗ curl
(
q⃗ · ℓ̂

)
dv

= − λ

∫
∨

q⃗ curl curl curl curl q⃗ dv (45)

Since Q (the ratio of magnetic to viscous forces) is very large, the
effect of viscosity is thus significant near the bounding surfaces and in
the above equation the integral on the right hand side (resulting from
the viscous forces) is negligible in comparison with the last integral on
the left hand side (resulting from the magnetic force) (c.f. Sherman and
Ostrach). Consequently, taking the right hand side of equation (45) to

zero, eliminating
(
q⃗∗.k̂

)
and

(
q⃗∗ × ℓ̂

)
from the resulting equation by

using equation (24)-(26) and then appealing to lemma 2, we get

p

(
1 +

λ

σ

)∫
∨

|curl q⃗|2dv +
p2

σ

∫
∨

|q⃗|2dv −

R′
T

∫
∨

((
k1λ

∣∣∇2θ
∣∣ + |p|2 |θ|2

)
dv −R′

T (p∗λ+ pk1)

∫
∨

|∇θ|2 dv +R′
S

∫
∨

(
λk2

∣∣∇2ϕ
∣∣2 + |p|2 |ϕ|2

)
dv+ (46)

R′
S (p

∗λ+ k2τ p)

∫
∨

|∇ϕ|2 dv +

Q

∫
∨

[
λ
∣∣∣curl curl h⃗ ∣∣∣2 + |p|2 σ1

σ

∣∣∣ h⃗ ∣∣∣2]dv+
Q

[
p∗λσ1
σ

+ p

] ∫
∨

∣∣∣curl h⃗ ∣∣∣2 dv = 0
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Equating the imaginary part of equation (46) to zero and assuming
pi ̸= 0, we get(

1 +
λ

σ

)∫
∨
|curl q⃗|2 +

2pr
σ

∫
∨
|q⃗|2dv −R′

T (k1 − λ)

∫
∨
|∇θ|2 dv +R′

S (τ k2 − λ)
∫
∨
|∇ϕ|2 dv = 0.

(47)

Equation (42) cannot obviously be satisfied under the conditions of
the theorem. Hence, we must have pi = 0.

This completes the proof of the theorem.
Theorem 3 implies that for the hydromagnetic thermosolutal con-

vection coupled with cross- diffusion, an arbitrary neutral or unstable
mode is definitely non-oscillatory in character and in particular PES
is valid if k1σ1 < σ ≤ σ1k2τ . Further, the theorem also implies the
validity of this result for the

i) thermosolutal convection coupled with cross-diffusion if τ >
k1
k2

;

ii) thermosolutal convection of the Veronis’ type if τ > 1.

The subsequent theorem provides limitations on the complex growth
rate of oscillatory motions of growing amplitude for the problem under
consideration, which may obviously exit if the sufficient conditions of
Theorem 3 are violated.

Theorem 4: If (p, q⃗, θ, ϕ, h⃗), p = pr + ipi, pr ≥ 0, pi ̸= 0 is a
non-trivial solution of equation (23)-(27) together with the boundary
conditions (28) and R′

T > 0, R′
S ≥ 0 and k2τ < λ < k1, then for large

Q (or for large RS if Q = 0)

|p| < λ̂ [τ R′
T (k1 − λ) +R′

S (λ− k2τ)] .

where λ̂ = l2

τλ0(σ+λ)
, λ is as in Theorem 3 and l and λ0 are as in lemma

1.
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Proof: It follows from equation (24) that∫
∨

(
k1∇2θ − pθ

) (
k1∇2θ∗ − p ∗ θ∗

)
dv =

∫
∨

∣∣∣q⃗ · k̂∣∣∣2 dv (48)

or

k21

∫
∨

∣∣∇2θ
∣∣2 dv + 2prk1

∫
∨

|∇θ|2 dv + |p|2
∫
∨

|θ|2 dv =

∫
∨

∣∣∣q⃗ · k̂∣∣∣2 dv
(49)

(using lemma 2)
Equation (49), upon using pr ≥ 0, pi ̸= 0 gives∫

∨

|θ|2 dv < 1

|p|2
∫
∨

∣∣∣q⃗ · k̂∣∣∣2 dv ≤ 1

|p|2
∫
∨

|q⃗|2 dv (50)

Again multiplying (24) by θ∗, integrating over the domain V, using
lemma 2 and equating the real parts of the resulting equation, we have

k1

∫
∨

|∇θ|2 dv + pr

∫
∨

|θ|2 dv = Real part of

∫
∨

θ∗
∣∣∣q⃗ · k̂∣∣∣ dv



≤

∣∣∣∣∣∣·
∫
∨

θ∗
(
q⃗ · k̂

)
dv

∣∣∣∣∣∣ ≤
∫
∨

θ∗
∣∣∣q⃗ · k̂∣∣∣ dv

which, upon using Schwartz’s inequality and the fact that pr ≥ 0 ,
gives

k1

∫
∨

|∇θ|2 dv ≤ ·

∫
∨

|θ|2 dv

1/2 ∫
∨

∣∣∣q⃗ · k̂∣∣∣2 dv
1/2

≤

∫
∨

|θ|2 dv

1/2 ∫
∨

|q⃗|2 dv

1/2

. (51)
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Combining inequalities (50) and (51), we get

k1

∫
∨

|∇θ|2 dv <
1

|p|

∫
∨

|q⃗|2 dv. (52)

Further, the solenoidal character of the velocity field q⃗ namely
divq⃗ = 0, implies that∫

∨

|curl q⃗|2 dv =

∫
∨

( q⃗∗ · curl curl q⃗) dv = −
∫
∨

q⃗∗∇2q⃗dv

which upon taking

q⃗ = (u, v, w) , gives

∫
∨

|curl q⃗|2 dv =

∫
∨

(
|∇u|2 + |∇v|2 + |∇w|2

)
dv

(53)
or ∫

∨

| q⃗|2 dv < ℓ2

λ0

∫
∨

|curl q⃗|2 dv (54)

(using lemma1)
Inequality (52) and (54) implies that∫

∨

|∇θ|2 dv < ℓ2

λ0k1 |p|

∫
∨

|curl q⃗|2 dv (55)

Similarly proceeding from equation (25), and emulating the steps
in the derivation of inequality (55), we have∫

∨

|∇ϕ|2 dv < ℓ2

λ0k2τ |p|

∫
∨

|curl q⃗|2 dv (56)

Using inequality (56) and (57) in equation (47), we get

(σ + λ)

σ |p|

{
|p| − λ̂ [τ R′

T (k1 − λ) +R′
S (λ− k2τ)]

}
(57)
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∫
v

|curl q|2 dv + 2pr
σ

∫
v

|q|2dv < 0

Inequality (57) clearly implies that

|p| < λ̂ [τ R′
T (k1 − λ) +R′

S (λ− k2τ)] .

This completes the proof of the theorem.
Theorem 4 implies that the complex growth rate of an arbitrary

oscillatory perturbation which may be neutral or unstable for the hy-
dromagnetic thermosolutal convection coupled with cross-diffusion lies
inside a semi- circle with centre at origin and

radius = λ̂ [τ R′
T (k1 − λ) +R′

S (λ− k2τ)] , ( λ =
σ

σ1
)

in the right half of the complex p-plane.

3 Conclusions

The instability of thermosolutal convection coupled with cross-diffusion
of an electrically conducting fluid completely confined in an arbitrary
region bounded by rigid wall in the presences of a uniform magnetic
field applied in an arbitrary direction is investigated in the present
paper. The principal conclusions from the analysis of this study are:

1. Principle of exchange of stabilities is not valid for the hydro-
magnetic thermosolutal convection coupled with cross-diffusion

if
τ k2
k1

R′
T ≤ R′

S.

2. Hydromagnetic thermosolutal convection coupled with cross- dif-
fusion is stable if the Lewis number τ = 1

3. For the hydromagnetic thermosolutal convection coupled with
cross- diffusion, an arbitrary neutral or unstable mode is defi-
nitely non-oscillatory in character and in particular principle of
exchange of stabilities is valid if k1σ1 < σ ≤ σ1k2τ .
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4. The complex growth rate of an arbitrary oscillatory perturba-
tion which may be neutral or unstable for the hydromagnetic
thermosolutal convection coupled with cross-diffusion lies inside
a semi- circle with centre at origin and

radius = λ̂ [τ R′
T (k1 − λ) +R′

S (λ− k2τ)] , ( λ =
σ

σ1
)

in the right half of the complex p-plane.

5. The results for the thermosolutal convection problems with or
without the individual consideration of Dufour and Soret effects
follow as a consequence.
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O hidromagnetskoj termo-rastvorljivoj konvekciji
spregnutoj sa unakrsnom difuzijom potpuno

zatvorenog fluida

Istražuje se nestabilnost of termo-rastvorljive konvekcije spregnute sa unakrs-
nom difuzijom elektroprovodnog fluida potpuno sadržanog u nekoj proizvoljnoj
oblasti ograničenoj krutim zidom u prisustvu proizvoljno usmerenog uni-
formnog magnetskog polja. Izvedeni su neki opšti kvalitativni rezultati koji
se odnose na kakrakter marginalnog stanja, stabilnost oscilatornih kretanja i
ograničenja na rastuću amplitudu. Rezultati za probleme termo-rastvorljive
konvekcije sa ili bez posebnog razmatranja Dufour-ovog i Soret-ovog efekta
dobijaju se kao posledica.
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