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Abstract

By using a method based on Pontryagin’s principle, formulated in [13],
and [14] we study optimal shape of an elastic column with constraints on
the minimal value of the cross-sectional area. We determine the critical
value of the minimal cross-sectional area separating bi from unimodal
optimization. Also we study the post-critical shape of optimally shaped
rod and find the preferred configuration of the bifurcating solutions from
the point of view of minimal total energy.

Keywords: Bimodal optimization, Stability of rods, Post-buckling be-
havior

1 Introduction

Lagrange [1] in 1773 formulated the problem of determining the shape of a
rod of given volume that is the strongest against buckling. Correct solution
of the problem, with the simply supported boundary conditions, leading to
the optimally shaped column, was obtained by Clausen [2] in 1851.

We recall the problem formulated by Tadjbakhsh and Keller [3] in which
Lagrange type of problem was treated but for the column with clamped-
clamped boundary conditions. Such boundary conditions lead, to bimodal
optimization. This means that the optimal structure may possess two linearly
independent buckling modes. It was shown by Olhoff and Rasmussen [4], in
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their seminal paper, that the unimodal solution presented in [3] for clamped-
clamped boundary conditions is not correct, and the bimodal formulation of
the optimization problem is required.

First bimodal optimal solutions for elastic columns were found in Olhoff
and Rasmussen [4]. Later the problem was treated by Seyranian [5],[6], and
Masur [7]. In [5],[6] the problem of an axially loaded column with clamped-
clamped boundary conditions was solved for three particular cases corre-
sponding to the second moment of inertia being proportional to the first
(α = 1), square (α = 2) and cubic power (α = 3) of the cross–sectional area.

The paper [4] contains another important result. For the column with
prescribed minimal cross–sectional area (constrained optimization problem)
it was found that optimization may be bimodal or unimodal, depending on
the value of the prescribed minimal cross-sectional area. In [4] the value
of the constraint that separates bimodal from the unimodal optimal shape,
was determined for a column with moment of inertia proportional to square
power of the cross-sectional area, i.e., α = 2. This result was later confirmed
by Tada and Wang [8]

Another important problem treated recently is the problem of post-buckling
analysis of bimodal optimum columns. It was analyzed by Seyranian and
Privalova [9], Seyranian [10] and Olhoff and Seyranian [11]. By using asymp-
totic expansion in the vicinity of trivial configuration (in which the rod axis is
straight) the authors concluded that for non-extensible column with clamped
ends in the general case the post-buckling behavior is governed by a fourth
order polynomial equation, i.e., near the bifurcation point there may be up to
four post-buckling equilibrium states emanating from the trivial equilibrium
state. Two of those solutions (corresponding to the symmetric and anti-
symmetric buckling modes) are stable while the other two (corresponding to
asymmetric buckling modes) are unstable. Let y (t) be a bifurcating solution
starting from the trivial configuration in which column axis is straight. Let
the normalized first buckling mode be denoted by x, and the second buck-
ling mode by x̂. Due to the symmetry conditions we have x (t) = x (1− t)
and x̂ (t) = −x̂ (1− t) , where t is the dimensionless arc-length of the col-
umn axis. The results presented in [11] show that y = γ1x + γ2x̂, with γ1
and γ2 satisfying certain system of algebraic equations (see [11] equations
(4.9),(4.15)). The stable bifurcating solutions correspond to values of (γ1, γ2)
given by (γ∗1 , 0) and (0, γ∗2) . It is important to note that in [9], [10] and [11]
it was not possible to state is any of two stable solutions preferred from the
point of view of minimum of the total potential energy.
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Our intention in this work is to generalize the optimization procedure
based on Ponrtyagin’s principle, see [12],[13] and [14] to the case when min-
imal value of the cross-sectional area is prescribed. Then, we shall solve the
following two problems: a) determine the critical value of the restriction on
cross-sectional area that separates bi from unimodal solution of the optimiza-
tion problem for moment of inertia proportional to the first (α = 1), and
cubic power (α = 3) of the cross–sectional area; b) to study numerically, the
post-critical behavior of the rod. We shall confirm the validity of the findings
presented in [11]. However, we shall introduce another criteria that will give
possibility to select one of the two stable solutions as a preferred one. Our
notation will follow work [14].

2 Formulation of the problem

Consider a column of length L shown in Figure 1. The column is clamped
at both ends, with end C having the possibility of sliding along the axis x.
At the end C the column is loaded by a compressive force F . Equilibrium
equations for the column are, see [15]

dH

dS
= 0,

dV

dS
= −qy,

dM

dS
= −V cos θ +H sin θ, (1)

where H and V are components of the contact force (i.e. the resultant force in
an arbitrary cross–section) along x and y axes, respectively, M is the bending
moment, θ is the angle between the tangent to the column axis and the x
axis of a rectangular Cartesian coordinate system x − B − y, and S is the
arc–length of the column axis measured from the origin of the coordinate
system B.

Figure 1: Coordinate system and load configuration
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We adjoin to (1) the geometrical equations

dx̄

dS
= cos θ,

dȳ

dS
= sin θ, (2)

and the constitutive equation

M = EI
dθ

dS
. (3)

In (2), (3) we used x̄ and ȳ to denote coordinates of an arbitrary point on the
rod axis in the coordinate system x−B−y, E is the modulus of elasticity and
I is the moment of inertia of the cross–section. Equations (2), (3) correspond
to the classical Bernoulli–Euler rod theory. The boundary conditions for the
column shown in Figure 1 are

ȳ (0) = ȳ (L) = 0, θ (0) = θ (L) = 0, H (L) = −F. (4)

Solving (1)1,2 and by using (4)3 we obtain

H = −F. (5)

The volume of the column is

W =

∫ L

0
A (S) dS, (6)

where A (S) is the cross–sectional area. We assume that

I = kAα, (7)

where k is a constant and α = 1, 2, 3. By introducing the dimensionless
quantities

t =
S

L
, a =

A

L2
, ζ =

x̄

L
, η =

ȳ

L
, v =

V

kEL2
,

w =
W

L3
, λ =

F

kEL2
, m =

M

kEL3
, (8)

we obtain from (1)–(7) the following system of differential equations that
describe small deformations of the column

v̇ = 0, ṁ = −v − λθ,

ζ̇ = 1, η̇ = θ, θ̇ =
m

aα
, (9)
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subject to

η (0) = 0, η (1) = 0, θ(0) = 0, θ(1) = 0. (10)

where
.

(·) = d
dt (·) . The dimensionless volume becomes

w =

∫ 1

0
a (ξ) dξ. (11)

We assume that the cross sectional area a (t) belongs to the set U called the
set of admissible cross-sectional area functions. In what follows we assume
thatU is the set of continuous functions on the interval [0, 1], i.e., U = C(0, 1)
that satisfy restriction 0 < amin ≤ a (t), where amin ≥ 0 is prescribed.

Suppose now that λ ∈ R is given. We define the optimal compressed
column as the column so shaped that any other column of the same length (in
our case equal to one) and smaller volume will buckle under load characterized
by λ. Thus, the problem of determining the shape of the optimal column may
be, mathematically, stated as follows:

Given λ, find a∗(t) ∈ U such that the integral (11) is a minimum for all
those a (t) ∈ U under the equations and boundary conditions (9), (10). Note
that this optimization problem is equivalent to the problem of maximization
of the critical load λ with the given volume constraint w = 1, see [16].

3 Solution to the problem

We introduce new dependent variables as

x1 = η, x2 = θ, x3 = v, x4 = m. (12)

Then, the system (9), (10) becomes

ẋ1 = x2, ẋ2 =
x4
aα

, ẋ3 = 0, ẋ4 = −x3 − λx2, (13)

and

x1 (0) = 0, x1 (1) = 0, x2 (0) = 0, x2 (1) = 0. (14)

In terms of the optimal control, the Problem now becomes: Given λ find the
control a∗ (t) ∈ U such that

min
a∈U

I = min
a∈U

∫ 1

0
a (t) dt =

∫ 1

0
a∗ (t) dt. (15)
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under differential constraints (13), (14).
Suppose that for given λ, p, t0 and for the optimal a(t) = a∗(t) the linear

boundary value problem (13), (14) has two linearly independent solutions,
(x1, ...x4) and (x̂1, ...x̂4) corresponding to two buckling modes. Since both
solutions correspond to the same λ and a(t) = a∗(t) we have, see [13]

.
x1 = x2,

.
x2 =

x4
aα

,
.
x3 = 0,

.
x4 = −x3 − λx2,

.

x̂1 = x̂2,
.

x̂2 =
x̂4
aα

,
.

x̂3 = 0,
.

x̂4 = −x̂3 − λx̂2, (16)

satisfying

x1 (0) = 0, x1 (1) = 0, x2 (0) = 0, x2 (1) = 0,

x̂1 (0) = 0, x̂1 (1) = 0, x̂2 (0) = 0, x̂2 (1) = 0, (17)

To determine a∗ (t) we use the standard procedure of Optimal control theory,
[17], [18]. The Pontryagin’s function H, taking into account that differential
constraints are given by (16), reads

H = a+p1x2+p2
x4
aα

+p4 (−x3 − λx2)+ p̂1x̂2+ p̂2
x̂4
aα

+ p̂4 (−x̂3 − λx̂2) , (18)

where the co–state variables pi, p̂i, i = 1, ..., 4 satisfy

.
p1 = − ∂H

∂x1
= 0,

.
p2 = − ∂H

∂x2
= −p1 + λp4,

.
p3 = − ∂H

∂x3
= p4,

.
p4 = − ∂H

∂x4
= − p2

aα
,

.

p̂1 = − ∂H
∂x̂1

= 0, p̂2 = − ∂H
∂x̂2

= −p̂1 + λp̂4,

.

p̂3 = − ∂H
∂x̂3

= p̂4,
.

p̂4 = − ∂H
∂x̂4

= − p̂2
aα

, (19)

subject to

p3 (0) = 0, p3 (1) = 0, p4 (0) = 0, p4 (1) = 0,

p̂3 (0) = 0, p̂3 (1) = 0, p̂4 (0) = 0, p̂4 (1) = 0. (20)

Note that the systems (13),(14) and (19),(20) are the same (to see this note
that differential equations and boundary conditions for the variables x1, x2, x3
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and x4 are the same as differential equations and boundary conditions for
−p3,−p4, p1 and p2, respectively). Since we assumed that (13),(14) has two
linearly independent solutions (in [14] this fact is proved) it follows that so-
lution of (19),(20) must be of the form

p1 = β11x3 + β12x̂3, p̂1 = β21x3 + β22x̂3,

p2 = β11x4 + β12x̂4, p̂2 = β21x4 + β22x̂4,

p3 = −β11x1 − β12x̂1, p̂3 = −β21x1 − β22x̂1,

p4 = −β11x2 − β12x̂2, p̂4 = −β21x2 − β22x̂2,

(21)

where βij , i = 1, 2 are constants. The optimality condition min
a∈U

H leads to

∂H
∂a = 1 − αp2

x4
aα+1 − αp̂2

x̂4
aα+1 = 0 if a (t) ≥ amin and a = amin otherwise.

Therefore

a
∗
=


[α (p2x4 + p̂2x̂4)]

1/(α+1) , if [α (p2x4 + p̂2x̂4)]
1/(α+1) ≥ amin

amin, if [α (p2x4 + p̂2x̂4)]
1/(α+1) ≤ amin

(22)

Relations (21) when used in (22) lead to a ”feedback” control. To see this,
we use (21) in (22) to obtain

a
∗
=



[
α
(
γ11 (x4)

2 + 2γ12x4x̂4 + γ22 (x̂4)
2
)]1/(α+1)

,

if
[
α
(
γ11 (x4)

2 + 2γ12x4x̂4 + γ22 (x̂4)
2
)]1/(α+1)

≥ amin

amin, if
[
α
(
γ11 (x4)

2 + 2γ12x4x̂4 + γ22 (x̂4)
2
)]1/(α+1)

≤ amin

(23)
where γ11 = β11, γ12 = (β12 + β21) /2, γ22 = β22. From (23)1 and the condition
a (t) ≥ amin ≥ 0 it follows

γ11γ22 ≥ (γ12)
2 . (24)

To show that (23) leads to minimum of H we note that (18) may be written
as

H = a+

(
γ11 (x4)

2 + 2γ12x4x̂4 + γ22 (x̂4)
2
)

aα
+ terms independent of a
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Thus, we conclude that (23) minimizes H. Note also that H does not depend
on t explicitly. Therefore on the solution of (16), (17) we have H = const.
Therefore, on the optimal solution H has the value

H =
[
α
(
(x4)

2 + (x̂4)
2
)]1/(α+1)

+
γ11 (x4)

2 + 2γ12x4x̂4 + γ22 (x̂4)
2[

α
(
γ11 (x4)

2 + 2γ12x4x̂4 + γ22 (x̂4)
2
)]α/(α+1)

+ x2x3 + x2 (x3 + λx2) + x̂2x̂3 + x̂2 (x̂3 + λx̂2) = const.

if
[
α
(
γ11 (x4)

2 + 2γ12x4x̂4 + γ22 (x̂4)
2
)]1/(α+1)

≥ amin, (25)

or

H = amin +

(
γ11 (x4)

2 + 2γ12x4x̂4 + γ22 (x̂4)
2
)

(amin)
α

+ x2x3 + x2 (x3 + λx2) + x̂2x̂3 + x̂2 (x̂3 + λx̂2) = const.

if
[
α
(
γ11 (x4)

2 + 2γ12x4x̂4 + γ22 (x̂4)
2
)]1/(α+1)

≤ amin (26)

This can be easily verified by differentiation.
Therefore, when determining optimal shape of the rod, the system to be

solved is obtained when (23) is substituted in (16), that is

.
x1 = x2,
.
x2 =

x4
(a∗)α

.
x3 = 0,
.
x4 = −x3 − λx2,

.

x̂1 = x̂2,
.

x̂2 =
x̂4

(a∗)α

.

x̂3 = 0,
.

x̂4 = −x̂3 − λx̂2, (27)
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with

(
a
∗
)α

=



[
α
(
γ11 (x4)

2 + 2γ12x4x̂4 + γ22 (x̂4)
2
)]α/(α+1)

,

if
[
α
(
γ11 (x4)

2 + 2γ12x4x̂4 + γ22 (x̂4)
2
)]1/(α+1)

≥ amin,

(amin)
α , if

[
α
(
γ11 (x4)

2 + 2γ12x4x̂4 + γ22 (x̂4)
2
)]1/(α+1)

≤ amin.

The system (27) is subject to (17). The constants γij , i, j = 1, 2 must be
chosen so to satisfy (24). In what follows, due to the symmetry we take
γ11 = γ22 = 1, γ12 = 0. On the solution (27),(17) the first integral (25),(26)
holds.

Next we formulate nonlinear problem. Suppose that the optimal cross-
sectional area a∗ is determined from (23). The differential equations describ-
ing large deformation of the rod are, see [15] and [11]

Ẏ = sinΘ, Ẋ = cosΘ,

Θ̇ =
M

(a∗)α
, V̇ = 0, Ṁ = −V cosΘ− Λ sinΘ, (28)

subject to

X (0) = 0, Y (0) = 0, Y (1) = 0, Θ(0) = 0, Θ(1) = 0, (29)

where X and Y are coordinates of an arbitrary point on the rod axis, Θ is
the slope of the rod axis and M, V and Λ are bending moment, vertical and
axial force at an arbitrary cross-section of the rod. The equation (28) may
be written in the form 1√

1− Ẏ2

(a∗)α
··
Y√

1− Ẏ2

··

+ λ

(
Ẏ√

1− Ẏ2

)·

= 0.

In [11] by using asymptotic expansion, it was shown that for Λ close to λ
(the value for which a∗ is determined) the system may have four solutions
Yi, i = 1, ...4. A solution to (28),(29) is termed stable if the total potential
energy of inner and outer forces has a weak local minimum. Also in [11] it
was shown that two solutions to (28),(29) are stable.

Let Ui, i = 1, ..., n be the total internal energy corresponding to configu-
ration Yi, i = 1, ...n, i.e.,

Ui (Yi) =
1

2

∫ 1

0
(a∗ (t))α

(
··
Yi (t)

)2

1− Ẏi (t)
2dt =

1

2

∫ 1

0

M2 (t)

(a∗ (t))α
dt.
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Further, let Li, i = 1, ...n be the position of the end C in the deformed state,
i.e., Li = Xi (1) . Then the work of the external force Λ in the configuration
described by Yi, i = 1, ...n, is

Wi (Yi) = Λ

∫ 1

0

√
1− Ẏi (t)

2dt = −Λ (1− Li)

We note that the total potential energy of the rod in the configuration Yi, i =
1, ...n, is, see [19], [11]

Ei (Yi) = Ui−Wi =
1

2

∫ 1

0
(a∗ (t))α

(
··
Yi (t)

)2

1− Ẏi (t)
2dt−Λ

∫ 1

0

√
1− Ẏi (t)

2dt. (30)

We call Yi the preferred equilibrium configuration if the total potential en-
ergy is minimum with respect to the other equilibrium configurations, i.e.,
Ei (Yi) < Ej (Yj) , j = 1, ..., n, i ̸= j.

4 Numerical results

4.1 The transition values between uni and bi modal optimiza-
tion

We start with α = 2. This is the classical case treated by many researchers. It
will serve to test our procedure. In [14] we obtained λamin=0 = 52.3562542669
for wmin = 1 and for amin = 0. The smallest value of cross-sectional area is
found to be a∗min = 0.22582372 at t1 = 0.24658 and t2 = 1−0.24658 = 0.75342.
We solved (27),(17) for the imposed restriction on the minimal cross-sectional
area amin = 0.25. The optimization is bimodal with λamin=0.25 = 52.3495443
and the buckling modes are shown in Fig. 2. Note that the buckling load for
amin = 0.25 is only slightly smaller than the value corresponding to amin = 0.

Since for uniform cross-section we have λconst = 4π2 we conclude that
the optimum buckling load factor λamin=0.25/λconst = 1.32602945. In Fig. 3a
we show cross-sectional area of the rod, while in Fig. 3b we show the cross-
sectional area near the part where area is constant.

The characteristic values of the cross-sectional area are a (0) = a (1) =
1.3321372590. Also a (t) = 0.25, t ∈ [0.241063333, 0.2537025] and t ∈[1 −
0.2537025, 1−0.241063333].Our results compare well with the those presented
in [4] where buckling load factor is obtained as (λamin=0.25/λconst)O−R =
1.3260.
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Figure 2: Buckling modes correspondig to λamin=0.25 = 52.3495443, amin =
0.25
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Figure 3: Cross-sectional area correspondig to λamin=0.25 = 52.3495443,
amin = 0.25

Now we increase the value of amin to the value amin = atr = 0.28171
representing the transition value between single and bi modal optimization.
The corresponding dimensionless force is λatr = 52.290719. The load factor
λatr/λconst = 1.32454. These values compare well with those obtained by
numerical solution of nonlinear integral equations in [11] where the value
(atr)O−R = 0.280 was obtained. In [8] the values (atr)T−W = 0.2817 and
(λatr)T−W = 52.2908.

For the case α = 1 we obtain atr = 0.03985 and λtr = 47.99145. In [14] the
value λamin=0 = 47.99305032 was obtained. Finally for α = 3 the transition
value and dimensionless force are atr = 0.45125 and λtr = 54.6251. Also



118 Teodor M.Atanackovic, Alexander P.Seyranian

Table 1:

α 1 2 3

λamin=0 47.99305032 52.3562542669 54.82543305

atr 0.03985 0.28171 0.45125

λtr 47.99145 52.290719 54.6251

Table 2:

Configuration 1 2 3 4

Energy Ei × 105 −3.21366 −2.77572 −1.767195 −1.767195

X(1) 0.99853 0.99873 0.99919 0.99919

from [14] we quote λamin=0 = 54.82543305. The results are summarized in the
Table 1.

We note that the values of atr and λtr for α = 1 and α = 3 are obtained
by the authors for the first time.

4.2 Post-critical behavior

In what follows we shall study the optimally shaped rod in the post-critical
regime. We restrict our analysis to the case amin = 0. In [11] the problem was
treated for α = 2 analytically for the case when the load parameter λ is close
to λamin=0. We shall study the post-critical behavior of the optimally shaped
rod for λ not necessarily close to λamin=0. Also we shall study the energy Ei

for each branch bifurcating from the trivial state Yi=0, i = 1, ...4, see (28).

In Figure 4 we show solution to (28),(29) for Λ = 52.4. There are four
bifurcating branches having the shape obtained in [11] and [9] by using per-
turbation analysis. We note that the stable configurations 1 and 2 evolve
from the anti-symmetric and symmetric buckling modes shown in Fig. 2,
while unstable configurations 3 and 4 evolve from the asymmetric buckling
modes.

The relevant numerical values are shown in Table 2.

Next we increase load parameter to Λ = 55. The possible deformed config-
urations of the rod are shown in Fig. 5. We note that there are no new equilib-
rium configurations appearing with the increase of load. Only configurations
coming from the bifurcation point, corresponding to λ = 52.3562542669, in-
crease in amplitude.



Bimodal optimization with constraints: critical value of the constraint... 119

0 0.2 0.4 0.6 0.8 1
0.02

0.01

0

0.01

0.02

0.03

1

2

3

4
Y

X
Figure 4: The deformed configuration of the rod for Λ = 52.4
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Figure 5: The deformed configuration of the rod for Λ = 55

Here the right end of the rod moved significantly and we showed on the
right part of the Figure the positions of the right end of the rod in different
configurations. Also in Table 3 we present the relevant numerical values for
Λ = 55.

Finally, in Fig 6 we present the shape of the rod for Λ = 60 and Λ = 65
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Table 3:

Configuration 1 2 3 4

Energy Ei −0.11337 −0.09825 −0.06454 −0.06454

X(1) 0.915687 0.926833 0.951142 0.951142

Table 4:

Configuration 1 2 3 4

Energy Ei −0.89406 −0.77586 −0.54200 −0.54200

X(1) 0.77535 0.80551 0.85769 0.8769

respectively.

2

3

4Y
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Figure 6: The deformed configuration of the rod for Λ = 60 and Λ = 65

In Table 4 we summarize the numerical results, corresponding to Λ = 60,

and in Table 5 results corresponding to Λ = 65.

In calculating the energy it was assumed that the potential energy in the
undeformed state is equal to zero.

Schematically, the evolution of configurations 1-4 according to total po-
tential energy is shown in Fig. 7.



Bimodal optimization with constraints: critical value of the constraint... 121

Table 5:

Configuration 1 2 3 4

Energy Ei −2.3435 −2.0136 −1.48530 −1.48530

X(1) 0.6438 0.7022 0.7657 0.7657

Ei

1

2

3 and 4

norm of Yi

Figure 7: Schematic view of total potential energy of configurations 1-4

5 Conclusions

We use the procedure formulated in [13] and [14] to study two problems
concerning the optimally shaped rod. In the first problem we determined the
values of the restrictions on the minimal cross-sectional area that separate
bimodal from unimodal optimal shapes. This value was known for α = 2
in equation (7). We confirmed the value for α = 2 by our procedure and
determined the corresponding values for α = 1 and α = 3.

In the second problem we studied the post-critical behavior of the op-
timally shaped rod. We found that all four configurations existing at the
bifurcation point continue to exist for larger loads (compared with the bi-
furcation load) increasing in amplitude. In all examples we determined the
total potential energy according to (30) and obtained that the anti-symmetric
configuration is preferred one (see Fig. 7), since the total potential energy in
this configuration is minimal compared with other configurations. This is in
qualitative agreement with the initial post-buckling behavior obtained by [9].
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Note also that in all examples treated here the minimum of the total potential
energy corresponds to the configuration with the largest displacement of the
right support of the rod.
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Bimodalna optimizacija sa vezama: kritična vrednost veze i
posle-kritične konfiguracije

Koristeći metod baziran na Pontrjaginovom principu maksimuma, u obliku
datom u radovima [13] i [14], odredili smo optimalni oblik elastičnog štapa
sa ograničenjima na površinu poprečnog preseka. Odredili smo i minimalnu
vrednost površine poprečnog preseka koja razdvaja unimodalnu od bimodalne
optimizacije. Osim toga, proučavali smo i posle-kritični oblik (izvijeni oblik)
optimalno oblikovanog štapa u najpovoljnijoj konfiguraciji, to jest u konfigu-
raciji u kojoj je ukupna energija štapa u minimumu.

doi:10.2298/TAM1102107A Math.Subj.Class.: 74K10, 74P10


