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Abstract

In this paper, we make a review of some inverse problems in elasticity,
in statics and dynamics, in acoustics, thermoelasticity and viscoelasticity.
Crack inverse problems have been solved in closed form, by considering a
nonlinear variational equation provided by the reciprocity gap functional.
This equation involves the unknown geometry of the crack and the bound-
ary data. It results from the symmetry lost between current fields and
adjoint fields which is related to their support. The nonlinear equation
is solved step by step by considering linear inverse problems. The nor-
mal to the crack plane, then the crack plane and finally the geometry of
the crack, defined by the support of the crack displacement discontinuity,
are determined explicitly. We also consider the problem of a volumetric
defect viewed as the perturbation of a material constant in elastic solids
which satisfies the nonlinear Calderon’s equation. The nonlinear problem
reduces to two successive ones: a source inverse problem and a Volterra
integral equation of the first kind. The first problem provides information
on the inclusion geometry. The second one provides the magnitude of the
perturbation. The geometry of the defect in the nonlinear case is obtained
in closed form and compared to the linearized Calderon’s solution. Both
geometries, in linearized and nonlinear cases, are found to be the same.
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1 Introduction

Inverse problems for crack and defect identification have been widely studied
in the last decades. The first papers on this topics dealt with mathematical
aspects of inverse problems such as the uniqueness of the solution, the num-
ber of data required for the inversion, the stability of numerical scheme, Ang
et al [8], [9], Alessandrini [5], [6], [7], Colton and Monk [32], [34], Kohn and
Vogelius [39], Kubo [40], Rondi [44] etc. Applications of inverse problems to
crack and defect detections in Solids and Materials are important in Engineer-
ing Mechanics. An overlook of this topic can be found in Langenberg [41],
Achenbach [1], Aki and Richards [4], Adler and Achenbach [3]. There are
many applications in Medicine and in the mechanics of materials. In medicine,
tomography techniques using mechanical loads such as an antiplane shear load-
ing on life tissue, are worked out in Catheline et al [29]. Cancer tumors are
expected to have a higher density and higher stiffness or shear modulus than
sound tissues so that the difference of material property between sound and
malicious tissues are detected by mechanical loads and responses. In the me-
chanics of materials, damage is known to result from micro-cracks which lower
locally the elastic constants. New topics in mechanical tomography have been
then the subjects of several works. For example, exact solutions to crack in-
verse problems in 2D and 3D are recently known in elasticity using mechanical
loads, see Andrieux and Ben Abda [13], Andrieux et al [16], Bui et al [23],
in acoustics in frequency domain Ben Abda et al [18], as well as in time do-
main [22], and in viscoelasticity Bui et al [26], in statics as well as in dynamics
under the assumption of small frequency. In elastodynamics, solutions of in-
verse crack problems are obtained in [23] where the solution to an earthquake
inverse problem to recover the faulting process was proposed. A review of sev-
eral exact solutions to inverse problems is found in [24]. For example, the first
explicit solution to an inverse acoustic scattering in an unbounded medium was
given by Bojarski [20], the solution for a small perturbation of elastic constant
in a bounded solid was discovered by Calderon [28].

Traditionally, numerical methods for solving inverse problems are based on
the best fitting method, with the L2-norm. One of the weaknesses of the best
fitting method, particularly in the space-time domain, is that, according to
Das and Suhadolc [33], there is no clear criterion or relationship between the
smallness of the residual norm and the goodness of the numerical solution.
They wrote in their paper ”even if the fitting of data seems to be quite good, it
would be difficult to know when one has obtained the correct solution”. Here
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the new method deals with the so-called ”reciprocity gap functional” which is
shown in this paper to be a loss of symmetry in the equations. By exploiting
these properties, a variational equation involving the unknown geometry of
defects is worked out and solved step by step by considering suitable sub-spaces
of adjoint functions.

The aim of this paper is to make a review of some closed form solutions to
nonlinear inverse problems for a bounded solid in elasticity, acoustics, elasto-
dynamic scatterings, thermoelasticity and viscoelasticity.

2 Symmetry lost and nonlinear variational equation

We first show how a variational equation involving the defect geometry can be
derived in elastostatics and elastodynamics.

Consider an elastic solid Ω having a defect (crack, volumetric defect). The
sound solid without defect is denoted by Ω0. Both solids have the same external
boundary denoted by Sext. We assume the usual symmetry of elastic moduli.
More precisely, we assume linear isotropic elasticity with Young modulus E
and Poisson ratio ν. The symmetry between two systems of solutions in Ω0 is
known as the Betti-Somigliana theorem which states that

R :=

∫
Sext

(u1.T (u2)− u2.T (u1))dS = 0 (1)

where T (u) is the stress vector on Sext, T (u)=σ(u).n. In the case where the
actual displacement field u1 is discontinuous across the crack Σ, R is no
longer equal to zero

R(u,v) :=

∫
Sext

(u.T (v)− v.T (u))dS ̸= 0 (2)

for any adjoint field v continuous in Ω0. The reciprocity gap R becomes a
defect indicator: if the linear form R vanishes on every adjoint field v (i.e. if
R is the null linear form) then there is no defect, conversely if the linear form
R is non zero, it takes non zero values on some adjoint fields then there is
certainly a defect inside Ω0.

The property of R as a defect indicator allows the nonlinear inverse problem
to be solved by exploiting the transition from non zero to zero values of the
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functional of v. Better still, if subspaces of adjoint functions v depending on
parameters of finite dimension can be used to determine the defect geometry,
one then has a zero crossing method for a function of these parameters. In
crack inverse problems, the non zero value of R is related to the crack geometry
and crack displacement jump [[u]]∫

Σ
[[u]].σ(v).ndS =

∫
Sext

(u.T (v)− v.T (u))dS := R(ud,T d,v), ∀v, (3)

In elastodynamics, the variational equation becomes∫ ∞

0

∫
Σ
[[u]].σ(v).ndSdt =

∫ ∞

0

∫
Sext

(ud.T (v)− v.T d(u))dSdt

:= R(ud,T d,v), ∀v,
(4)

where the boundary data ud,T d are introduced in R and v is an adjoint field
defined below.

Eq. (4) can be proved under various conditions, for example the following ones.
Instead of the wave equation, we consider the regularized one, with vanishing
positive number ϵ → 0+ introduced for convergence purpose of the solution
in Fourier’s space (For example, the Heaviside function Y (x) = 0 for x < 0,
Y (x) = 1 for x > 0 is replaced by the regularized one Y ϵ(x) = exp(−ϵx) for
x > 0 and ϵ = 0+)

divσ[u]− ρ∂t∂tu+ ϵ∂tu = 0, in (Ω− Σ)× [0,∞], (5)

σ[u].n = T d in Sext, σ[u].n = 0, on the crack Σ (6)

The initial conditions u = 0, ∂tu = 0 for t ≤ 0 and the boundedness of ∥u∥,
∥∂tu∥ at infinite time are assumed. The adjoint field satisfies

divσ[v]− ρ∂t∂tv − ϵ∂tv = 0, in Ω0 × [−∞,+∞], (7)

We shall consider the subspace of adjoint functions of exponential decay at
large time, which includes functions vanishing for t greater than some T . More
specific functions will be considered for determining the geometry of defects.
The key point is that adjoint functions depend on N -dimensional parameters,
N = 1 or 2. Variational Eqs. (3) and (4) are nonlinear in u and Σ. If the
crack geometry Σ is known, these equations become linear. Therefore the key
method of solution to crack inverse problems consists in determining first the
crack plane, then the crack geometry by considering suitable adjoint functions,
with different N and by identifying the displacement jump and then its support
set.
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3 The crack inverse problem in elastostatics

The problem has been solved by Andrieux et al [16]. Let us recall the main
results of this paper which illustrate the notion of sub-variations which solves,
step by step, a nonlinear inverse problem by considering simpler linear ones.

The crack normal

To determine the crack normal we consider the left hand side of Eq. (3) which
is a linear combination of n1, n2, n3. We choose a constant adjoint stress σ(v)
with the displacement field

v
(ij)
k =

1

2
(L−1)mn

kh (δimδjn + δinδjm)xh, (8)

where L is the Hooke tensor. Inserting Eq. (8) in Eq. (3) we get a linear
system for n

(n⊗
∫
Σ
[[u]]dS)symij = Rij ≡ R(ud,T d;v(ij)) (9)

where (sym) stands for the ”symmetric part” and where coefficients
depending on [[u]] are yet unknown. However we have the following properties
for tangential and normal components, by setting Q = (n⊗

∫
Σ[[u]]dS)

sym
ij :

1. ∥
∫
Σ[[u]]dS∥ =

√
2Q2 − (TrQ)2,

2. ∥
∫
Σ[[ut]]dS∥ =

√
2Q2 − 2(TrQ)2,

3. ∥
∫
Σ[[un]]dS∥ = tr(Q).

Assume that ∥
∫
Σ[[u]]dS∥ ̸= 0. Define the unit vector U =

∫
Σ[[u]]dS/∥

∫
Σ[[u]]dS∥

and consider the normalized Q′ = Q/
√

2Q2 − (TrQ)2. Since n or U is par-
allel to one of the following vectors, [

√
λ1,

√
−λ2, 0] and [

√
λ1,−

√
−λ2, 0], in

the basis of eigenvectors q(1), q(2), q(3) of Q′, with eigenvalues (λ1, λ2, 0), we
consider two systems of loads (a) and (b). The normal n is then determined
by the vector

n = q(3)(a) × q(3)(b)/∥q(3)(a) × q(3)(b)∥. (10)
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The crack plane

Once the normal to the crack plane has been determined, we take Ox3 along the
normal and determine the constant C defining the crack plane by x3 −C = 0.
For this purpose we consider a quadratic adjoint field such that σ31(v) =
x3 − d, σ32(v) = σ33(v) = 0. This is a 1-dimensional subspace of adjoint field
depending on the scalar d

v
(d)
1 = −x21/2E − νx22/2E + (2 + ν)(x3 − d)2/2E, (11)

v
(d)
2 = νx1x2/E, v

(d)
3 = νx1(x3 − d)/E

The left hand side of Eq. (3) is proportional to (x3 − d) = C − d for points
in the crack plane and thus the reciprocity gap R(d) considered as a function
of d vanishes when it crosses the single zero d = C. A plot of function R(d)
reveals the constant C as its single zero R(C) = 0.

The crack geometry

To recover a planar crack in opening mode and sliding ones, the sub-space of
adjoint fields v(k) is necessarily 2-dimensional, parameterized by vector k =
[k1, k2, 0]. We introduce two complex vectors Zk = k + i∥k∥e3 and Z∗

k =
k − i∥k∥e3. The adjoint fields are of Calderon’s type, for opening mode and
sliding mode respectively:

v+(x,k) = ∇xexp(−iZk.x) +∇xexp(−iZ∗
k .x) (12)

v−(x,k) = ∇xexp(−iZk.x)−∇xexp(−iZ∗
k .x) (13)

In pure opening mode, with Eq. (3) for the adjoint field (12), we obtain

R(v+(k)) =
2E∥k∥2

1 + ν
Fx[[u3]](k) (14)

where Fx is the spatial Fourier transform. Therefore, the crack opening
displacement as well as the crack geometry Σ defined by the support of [[u3]]
is explicitly determined by the inverse Fourier transform of a known function
of k
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Figure 1: True displacement jump (dotted lines) in [−0.1, 0.3] ∪ [0.55, 0.75]; 9
terms of Fourier’s series (thin solid line); the regularized identified jump (bold
solid line)

Σ = SuppF−1
k [R(v+(k))

1 + ν

2E∥k∥2
](x) (15)

The method presented in this section is valid for a system of cracks lying
in the same plane. Its application to the antiplane case is very simple since
the only out of plane displacement component is u3(x1, x2) satisfying the har-
monic equation in Ω−Σ. The extended function [[ũ3]] is identified by inverting
a formula analogous to (14), with a 9 terms Fourier decomposition. The dis-
continuity function is finally regularized by the Total V ariation method [31]
in order to smooth out the oscillating behavior, due to N=9 terms used in its
representation by a truncated Fourier series. It can be seen that the accuracy
of the reconstruction of the cracked domain is quite good, even for two near
cracks, Fig. 1.

4 The crack inverse problem in thermoelasticity

An important extension of the previous result has been given in thermoelastic-
ity by Andrieux and Bui [15] by adding thermal effects and including the heat
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equation in the description of the physics of the system. It also can pave the
way to applications in NDT because we shall show that identification results
can be derived without any information about the time dependent temperature
field or thermal boundary quantities. Indeed, as a consequence of the results
presented here, and provided that a thermal sollicitation is prescribed to an
elastic solid free of mechanical loading or geometrical constraints, the mea-
surement of surface displacements are sufficient to perform the identification
of planar cracks lying inside the solid.

The thermoelastic constitutive equation for the isotropic solids is now, with
α the linear dilatation coefficient and θ the temperature (I2 and I4 are unit
second and forth orders respectively)

σ = L : (ϵ− θI2), L = 3KI2 ⊗ I2 +
E

1 + ν
I4 (16)

The reciprocity gap being still defined by Eq. (2), it is straightforward to
derive the expression similar to Eq. (3) for R at time t and for adjoint fields v
satisfying the elastic equilibrium equation

R(ud(t),T d,v) =

∫
Σ
(L : ϵ(v).n).[[u(t)]]dS +

∫
Ω
3Kαθ(t)div(v)dΩ (17)

∫
Ω
(L : ϵ(v)) : ϵ(w)dΩ =

∫
Sext

(L : ϵ(v).n).[[w]]dS, ∀w (18)

The identification of the crack(s) follows the same three steps as for the elas-
tostatics case. The only difference relies on the divergence-free constraint put
on the adjoint fields divv = 0 in order to cancel the second term of Eq. (17)
which involves the unknown time dependent temperature field inside the whole
domain.

The crack normal

Consider the following divergence-free displacement fields (for convenience,
both vector v and transposed vector vt are denoted by [v1, v2, v3])

v1 = [4x1,−2x2,−2x3], v2 = [−2x1, 4x2,−2x3], v3 = [−2x1,−2x2, 4x3] (19)

w = [2x2x3, 2x3x1, 2x1x2]
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and denote by Q̃ the deviatoric part of tensor Q

Q̃ = dev[(n⊗
∫
Σ
[[u]]dS)sym] = (n⊗

∫
Σ
[[u]]dS)sym − 1

3
n.

∫
Σ
[[u]]dS (20)

Then the components of Q̃ are calculated via the reciprocity gap:

Q̃ii =
1

12µ
R(vd(t),T d(t),vi) no summation,

Q̃ij =
|ϵijk|
8µ

R(vd(t),T d, ∂kw), i ̸= j

(21)

Regarding the eigenvalues and eigenvectors of the deviatoric tensorial prod-
uct Q̃, it can be established that there are only two possible cases. In the first
one, there is a double eigenvalue and the associated eigenvector is the common
direction of the displacement jump and the normal n, the eigenvalue is exactly
2
3

∫
Σ[[u]]dS. In the second possible case, there are three distinct eigenvalues

(λ1, λ2, λ3) and the normal vector n and mean displacement jump are given
by one of the following formulae∫

Σ
[[u]]dS = −3λ2m

1 +
1

2

√
λ23 + λ21 − λ22 − λ1λ3 m2 and n = m1 (22)

∫
Σ
[[u]]dS = −3λ2m

2 +
1

2

√
λ23 + λ21 − λ22 − λ1λ3 m1 and n = m2 (23)

where vectors mi are calculated with the eigenvalues and eigenvectors
ν1,ν2,ν3

m1 =
1√

2(λ2 − λ1)
(
√
λ3 − λ2 − λ1 ν1 −

√
λ3 + λ2 − λ1 ν3) (24)

m2 =
1√

2(λ2 − λ1)
(
√
λ3 + λ2 − λ1 ν1 −

√
λ3 − λ2 − λ1 ν3) (25)

The crack plane
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As in the elastostatic case, the scalar constant determining the affine plane
x3 −C = 0 containing the crack in the coordinate system with Ox3 parallel to
n, is given by the reciprocity gap computed with a particular auxiliary field:

C =
1

6µ
∫
Σ[[u1]]dS

R(ud(t),T d(t),v), v = [3(x23 − x22), 0, 0] (26)

The crack geometry

The last step consists in identifying the normal displacement jump function
continued by zero on a rectangle Π = [0, L1]×[0, L2] containing the intersection
of the plane crack and the solid. It can again be proved that the support of
this function is exactly the cracked domain (up to a zero measure set). For
that purpose, let us define the following divergence-free adjoint fields family,
where the components are harmonic functions (λmn =

√
m2 + n2)

vmn
αβ (x1, x2, x3) = [fmn

αβ (x1, x2)cosh(λmnx3), 0,
1

λmn
fmn
αβ,1(x1, x2)sinh(λmnx3)](27)

where partial derivative of fmn
αβ with respect to x1 is denoted by fmn

αβ,1 and
functions fmn

αβ are

fmn
ss = sin

mπx1
L1

sin
nπx2
L2

, fmn
cc = cos

mπx1
L1

cos
nπx2
L2

fmn
sc = sin

mπx1
L1

cos
nπx2
L2

, fmn
cs = cos

mπx1
L1

sin
nπx2
L2

Denoting by [[ũ3(t)]] the extension to zero of the normal displacement jump
to the rectangle Π, we obtain the reciprocity gap on the fields of this family

R(ud(t),T d(t), vmn
αβ ) = 2µ

∫
Σ
ϵ(vmn

αβ ) : (n⊗ [[u(t)]])symdS

= −2µ

∫
Π
[[ũ3(t)]]f

mn
αβ,1dS

(28)

It is readily seen that the double Fourier series terms of the function can be
computed by using the reciprocity gap on fields vmn

αβ , except the constant term
that is given by the identification of the mean value of [[u]] when determining
the normal of the crack.

Finally, let us mention that inverse crack problems for the transient heat
equation, with the boundary measurements of the temperature and the normal
flux, have been studied in the paper [19].
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5 The inverse elastic scattering by a planar crack

We wish to determine the crack by studying the scattering of elastic waves in a
bounded elastic solid, due to either a stress free crack or the release of stress by
a shear slip on a crack, like what is observed in an earthquake. The first case
is described by the variational equation (4). In the second case, the reciprocity
gap is defined by the integral over the external surface

R(ud,T d,v) =

∫ ∞

0

∫
Sext

(ud.T (v)− v.T d(u))dSdt (29)

It is equal to the double integral over times and Σ± (or Σ− with displacement
jump)

R(v) =

∫ ∞

0

∫
Σ−

[[u]].T (v)dSdt−
∫ ∞

0

∫
Crack

(v.T+(u) + v.T−(u))dSdt (30)

The last integral vanishes because stress vectors are opposite together T+ +
T− = 0. Therefore Eq. (4) holds in both cases, Bui et al. [21]. In the case of re-
lease of stress on the unknown crack, under stress free condition on the external
surface, the data are the accelerations of points on Sext, from which u(t) can be
calculated on the external boundary. We have R(v) =

∫∞
0

∫
Σ− [[u]].T (v)dSdt

To determine the crack plane in the sliding mode (no stress T (u) on the
external boundary), a zero crossing method is used with an instantaneous
reciprocity gap functional [21], defined by the adjoint wave (with cs being the
shear wave velocity), v(x, t; τ) = kH(t−x.p/cs − τ), where H(y) is the down
step function, H(y) = 0, for y > 0, H(y) = 1, for y < 0, τ is a parameter
chosen for characterising the initial wave front, p is the propagation vector
directed towards the perturbed zone (back propagation). At time t = 0 the
front S2 is defined by x.p/cs + τ = 0. The only non zero adjoint stress is
σ(v) = −(µ/cs)(k⊗p+p⊗k)δ(t−x.p/cs− τ). We have in 2D, k = e3, R(v)
=
∫∞
0

∫
Sext u.T (v)dSdt = −(µ/cs)(u3(A)np(A) + u3(B)np(B)).

As shown in Fig. 2 at time t ≥ 0 the adjoint wave front propagates back-
wards and cannot meet the crack. According to the second expression of
R(v) =

∫∞
0

∫
Σ− [[u]].T (v)dSdt, in terms of the inner boundary Σ, the sup-

ports of [[u]] and T (v) being disjoint sets for any time t ≥ 0, the reciprocity
gap vanishes identically. By changing τ and p so that the initial front has an
intersection with the crack, we obtain a non zero value of R. By this way, we
can even determine the geometry of a convex planar crack from the exterior
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Figure 2: Back propagation of adjoint wave. Constant displacement behind
the front Γt, null displacement in front of Γt. Initial front Γ0 = S2 defined by
x.p/cs + τ = 0

simply by checking the value of R. Fig. 3 shows the numerical result for an
antiplane problem, with the convex hull containing the sliding crack obtained
by different values of τ and p. The transition between zero value and non zero
value of R is detected by fixing a threshold value. Remark that if p is parallel
to the crack, we have R = 0 even when the initial front S2 has an intersection
with Σ. This means that, we quote Alves and Haduong [11], the adjoint wave
does not ”see” the crack.

The zero crossing method for determining (numerically) the crack plane
is not suitable for studying a concave shaped crack. To determine a more
general crack (concave shaped crack, moving crack Σ(t)) we have many pos-
sible methods. For example, we consider adjoint waves of the form v =
gradϕ(x, t) + curl[ψ(x, t)e3] and determine directly the crack displacement
jump which corresponds to the true crack. In what follows, we assume that
the crack plane is x3 = 0 and consider only solenoidal adjoint field depending
on a 2-dimensional parameter s = [s1, s2, 0] for space and a scalar parameter
q for time dependence (ϵ being a vanishing positive number ϵ = 0+). By this
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Figure 3: The convex hull of initial fronts Γ0(τ,p) not intersecting the crack

way we determine the crack geometry partially,

v(s,q)(x, t) = curl[ψ(x, t; s, q)e3] (31)

ψ(x, t; s, q) = exp(iqt− ϵt)exp[x3(∥s∥2 + (iq − ϵ)2/c2s)
1/2]exp(is.x) (32)

Eq. (4) can be written as∫ ∞

0

∫
R2

µ(is2[[u1]]− is1[[u2]])exp((iq − ϵ)t)exp(is.x)dSdt

=
R(s, q)

[∥s∥2 + (iq − ϵ)2/c2s]
1/2

(33)

where the second integral is taken over the whole crack plane x3 = 0 since
the displacement jump vanishes outside the crack.

We introduce the vector [[u]]⊥ = [[[u2]],−[[u1]], 0] orthogonal to [[u]]. We
see that the left hand side Eq. (33) is the double time Fourier transform and
space Fourier transform of −µdiv([[u]]⊥). Therefore, owing to ϵ = 0+ strictly
positive, by inverse space and time Fourier transforms of the above equation
we obtain:

div([[u]]⊥)(x, t) = − 1

µ
(Ft)

−1(Fx)
−1R(v(s,q))[∥s∥2 + (iq − ϵ)2/c2s]

−1/2 (34)
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We have obtained Supp div([[u]]⊥)⊂ Σ. If the supports of function div([[u]]⊥)(x, t)
and function [[ut]](x, t) are the same, we obtain explicitly the geometry of the
moving crack by

Σ(t) = Supp[− 1

µ
(Ft)

−1(Fx)
−1R(v(s,q))[∥s∥2 + (iq − ϵ)2/c2s]

−1/2] (35)

Actually, we can get explicitly the support of each component of the dis-
placement jump by considering different adjoint fields and then the crack by
Σ = Supp[[u1]] ∪ Supp[[u2]].

To obtain each component of the crack displacement jump, for example
[[u2]], we consider a 1-dimensional parameter s = [s1, 0, 0] for the Fourier spatial
variable and calculate v(s1,q) = curl[ψ(x, t)e3] with ψ = exp(iqt−ϵ)exp(x3(s21+
(iq−ϵ)2/c2s)1/2)exp(is1x1). We obtain the equation which provides the Fourier
transform in space and time of ∂[[u2]]/∂x1, and thus the jump [[u2]] by using
the null boundary condition on the crack front∫ ∞

0

∫
R2

µ(−is1[[u2]])exp((iq − ϵ)t)exp(is1x1)dSdt =
R(s1, q)

[s21 + (iq − ϵ)2/c2s]
1/2

(36)

Similarly, with an adjoint function v(s2,q) parametrized by s = [0, s2, 0] and
ψ = exp(iqt− ϵ)exp(x3(s

2
2 + (iq − ϵ)2/c2s)

1/2)exp(is2x2), we obtain (ϵ = 0+)∫ ∞

0

∫
R2

µ(is2[[u1]])exp((iq − ϵ)t)exp(is2x2)dSdt =
R(s2, q)

[s22 + (iq − ϵ)2/c2s]
1/2

(37)

which provides the Fourier transform in space and time of −∂[[u1]]/∂x2.
Remark that also Supp(∂[[u1]]/∂x2) = Supp([[u1]]) because of the boundary
condition [[u1]] = 0 on the crack front. Thus
Supp div([[u]]⊥) = Supp[[u1]] ∪ Supp[[u2]] = Σ.

To the authors’s knowledge, traditional methods of minimization of the
residuals to solve crack inverse problems are restricted to a stationary crack.
They are unable to provide the solution for a moving crack. The symmetry lost
method with the reciprocity gap functional provides us a variational equation
to determine the solution for a moving crack analytically, from data defined
by the reciprocity gap R(data; v).
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6 Inverse acoustic scattering by a crack in time do-
main

Most works in this topic have been done in frequency domain and for an un-
bounded medium, see for example, Bojarski [20], Colton and Monk [11], Alves
and Ha Duong [11], Ben Abda et al [18]. The Reciprocity gap functional
method provides us a very simple means to study acoustic scattering in time
domain for a bounded solid. The notations are similiar to those of the previous
Section. The current field satisfies

(∂t∂t − div grad− ϵ∂t)u = 0 in Ω× [0,∞[ (38)

u(x, t < 0) = 0, ∂tu(x, t < 0) = 0 (39)

We assume a good behavior of u at infinite time t2|u| → 0 and t2|∂tu| → 0 and
assume that u and ∂nu are known on the external boundary. The adjoint field
satisfies

(∂t∂t − div grad + ϵ∂t)v = 0 in Ω0 × [0,∞[ (40)

We obtain the variational equation∫ ∞

0

∫
Σ
[[u]]∂ndSdt =

∫ ∞

0

∫
Sext

(u∂nv − v∂nu)dSdt := R(v) for any v (41)

Now we take an adjoint plane wave of propagation vector k of the form
v(k)(x, t) = g(x.k + t) so that the reciprocity gap depends on k. The integral
in the left hand side of Eq. (41) is proportional to n.k. Therefore the zeros
value of the right hand side R(k) of Eq. (41) corresponds to vector k parallel
to the crack plane, n.k = 0. Two independent propagation vectors so that
R(k) vanishes, gives the normal to the crack plane as n = k1 × k2/∥k1 × k2∥.
We then take Ox3 along the normal direction and determine the crack plane
x3 − b = 0 by considering the adjoint wave v(b)(x, t) = (x3 − b)2 + (t− T/2)2.
The reciprocity gap which depends on b, is proportional to x3 − b as shown
by its integral expression over the crack surface. It vanishes when x3 − b = 0.
Finally by studying the zero of R(b) we detect the position b of the crack plane
by R(b) = 0. This result is similar to the one given in Alves and Ha Duong [11]
who considered v(b)(x, t) as an analysing waves. When the wave is parallel to
the crack plane, it does not see the crack. The difference with our work is that
we are dealing here with a bounded domain, while Alves and Ha Duong [11]
considered an infinite medium.
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7 Solution of the Calderon’s problem for the geom-
etry of a volumetric defect

In a famous paper, Calderon [28] considered the following inverse problem for
determining the perturbation h(x) of the material constant from boundary
data.

div(1 + h(x))gradu = 0 in Ω (42)

u(x) = f on ∂Ω, ∂nu = g on ∂Ω (43)

Eq. (42) can be considered as the elastic equilibrium in antiplane mode. In-
troduce the adjoint harmonic equation,

divgrad v = 0 in Ω (44)

to obtain the variational equation

∫
Ω
h(x)grad u(x, h).grad v(x)dV = R(v) for any v (45)

where reference to the boundary data is omitted in the reciprocity gap

R(v) =

∫
∂Ω

(vg − f∂nv)dS (46)

Eq. (45) can be solved if the adjoint field is parameterized by a N-dimensional
vector ξ, N=2 in 2D, N=3 in 3D cases. It becomes a Fredholm integral equation∫

Ω
h(x)grad u(x, h).grad v(ξ)(x)dV = R(v(ξ)) (47)

Calderon (1980) solved Eq. (47) in the case of small perturbation h ≪
1. The linearized equation is obtained from Eq. (47) by the substitution
u(x, h)→u(x, 0) which is harmonic. By considering a particular loading corre-
sponding to function u and adjoint function v of the Calderon type exp(−i(ξ+
iξ⊥)), in the 2D case, he got the exact solution

h(0)(x) = − 1

4π2

∫
R2

2R(ξ)

∥ξ∥2
exp(ix.ξ)d2ξ (48)
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Figure 4: (a) Original image of a constant perturbation, not necessarily small;
(b) The image calculated from Calderon’s formula. The intensity of the re-
constructed perturbation differs noticeably from the original image while the
geometries are identical

The question on the validity of a linearized approximation was raised by
Isaacson and Isaacson [37]. They solved numerically the nonlinear problem for
the axisymmetric case by comparing their solution with Calderon’s formula
Eq. (48). Surprisingly, they got the same geometry for the defect, while the
amplitude of the solutions in both linear and nonlinear cases are different,
Fig. 4

The question about the ability of Calderon’s formula to predict the geome-
try of the defect has been considered in [27] for the general case of geometry and
loadings. It is very important for applications to know if a linearized theory can
be used for determining exactly the geometry of defects, because we have only
to solve a linear inverse problem to determine the magnitude of the pertur-
bation. Let us make first the following remarks. We set S(x) = div(hgradu).
Eq. (42) can be written as

divgrad u+ S(x) = 0 in Ω (49)

with the same boundary data (f, g).

The support of function S(x) = div(hgradu), which is related to h and
u can be obtained by solving the source inverse problem and do not require
any assumption on the smallness of h. One expects that the supports of h in
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linearized and nonlinear theories are the same because they are linked to the
same source S.

Consider the adjoint function v(ξ)(x) = exp(−i(x1ξ1 + x2ξ2))exp(−x1ξ2 +
x2ξ1)

This adjoint function as well as its gradient grad v(ξ)(x) are analytic in the
whole x-space and ξ-space (except at infinity) and thus can be expanded into
infinite series of xr and ξh. We expand grad v(ξ) as

grad v(ξ)(x) = [

2∑
h,k,r,s=1

∞∑
n,m,p,q=0

ahkrs
nmpq(iξh)

n(iξk)
mxprx

q
s]exp(−i(x.ξ)), (50)

with constant complex vectors ahkrs
nmpq. We extend h(x) to the infinite plane

R2 by putting h = 0 outside C and denote its extension by h̃ and obtain the
nonlinear Calderon equation in the form (the dot means scalar product
between vectors)

∫
R2

h̃(x)gradU(x).[

2∑
h,k,r,s=1

∞∑
n,m,p,q=0

ahkrs
nmpq(iξh)

n(iξk)
mxprx

q
s]exp(−ix.ξ)d2x

= R(ξ), (51)

which is equivalent, in the Fourier’s transform context, to

∫
R2

2∑
h,k,r,s=1

∞∑
n,m,p,q=0

ahkrs
nmpq.

∂n

∂xnh

∂m

∂xmk
[xprx

q
sh̃(x)gradU(x)]exp(−ix.ξ)d2x

= R(ξ). (52)

where U = u(x;h) is yet unknown. Let the function appearing in the above
series be

F (x) =

2∑
h,k,r,s=1

∞∑
n,m,p,q=0

ahkrs
nmpq.

∂n

∂xnh

∂m

∂xmk
[xprx

q
sh̃(x)gradU(x)], (53)

∫
R2

F (x)exp(−ix.ξ)d2x = R(ξ). (54)
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It follows that function F (x) is the inverse Fourier transform of R(ξ).

F (x) =
1

4π2

∫
R2

R(ξ)exp(+ix.ξ)d2ξ. (55)

Function F is a linear combination of h and its partial derivatives, denoted
hereafter by F [h]. Now we compare the solution Supp(F ) with the linearized
one given by Calderon [28], Eq.(48), which can be written differently as

−1

2
(
∂2

∂x21
+

∂2

∂x22
)h0(x) =

1

4π2

∫
R2

R(ξ)exp(+ix.ξ)d2ξ ≡ F [h](x) (56)

The Laplacian of h0 is identical to −2F [h]. Therefore we have the same
support C0 = Supp(h0) ≡ Supp(h) = C, because otherwise, for example in
an open set D ⊂ C but D ̸⊂ C0, we have F [h] ̸= 0 and −∆h0 = 0. The
latter equality conflicts with the identity −∆h0 ≡ 2F [h] ≡ 0 in D. The same
contradiction exists for D ⊂ C0 but D ̸⊂ C. We conclude that both linearized
and nonlinear theories provide the same geometry of defect C ≡ C0.

8 Inverse problems in viscoelasticity

Tomographies techniques, which avoid X-ray, using mechanical loads such as
antiplane shear loading on life tissue, considered as a viscoelastic medium,
have been worked out for Kelvin-Voigt’s viscoelasticity (Catheline et al [29],
Muller et al [43]. In a 1-dimensional model, the rheological Kelvin-Voigt’s
model is characterized by a block consisting of an elastic spring in parallel
with a dashpot shown in Fig. 5(b). Let us consider the Zener model which
adds another elastic spring in series with the Kelvin-Voigt’s block Fig. 5(c).

Mathematically, formulations of 3D viscoelasticity by Boltzmann functional
of stress and strain with relaxation functions λ(t) and µ(t) or by complex elastic
moduli are not suitable for studying inverse crack and defect problems. We
consider rather the differential approach of the Zener law which corresponds
to exponential relaxation functions

σ + βσ̇ = L : (ϵ+ αϵ̇) (57)

Coefficients α and β are characteristic times related to the spring stiffnesses
k0 and k1 and the dashpot viscosity η by α = η/k1 and β = η/(k0 + k1). We
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Figure 5: Viscoelastic models: (a) Maxwell; (b) Kelvin-Voigt; (c) Zener

consider transformed displacement, strain and stress variables introduced by
Goryacheva [35]

u∗ = u+ α
∂u

∂t
, ϵ∗ = ϵ+ α

∂ϵ

∂t
(58)

σ∗ = σ + β
∂σ

∂t
. (59)

The relationship between star fields is the same as in elasticity

σ∗ = L : ϵ∗ (60)

Moreover, for small out of phase θ = (α − β)ω ≪ 1 between stress and strain
and for u(x, t) = w(x)cos(ωt), the equation of motion in the frequency domain
can be written as, Chaillat and Bui [30]

divσ∗ − ρ∂t∂tu = ρ(β − α)∂t∂t∂tu ≃ ρω3|α− β|∥v∥ (61)

The latter term can be neglected in comparison with the second one −ρ∂t∂tu =
ρω2∥w∥ if and only if (this corresponds again to the assumption on small out
of phase):

θ = |α− β|ω ≪ 1 (62)

Finally, under the assumption of small frequency ω ≪ 1
|α−β| , the star fields

satisfy the elastodynamic equations in the frequency domain, σ∗ = L : ϵ∗ and
divσ∗ + ρω2w ≃ 0.

Applications of the equivalence between elasticity and viscoelasticity have
been exploited in [26] for studying crack inverse problems in viscoelasticity and
in [25] for identifying volumic defect.
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Figure 6: The sphere of radius k/
√
µ; parameters p and p⊥ along the equator

and n along the poles axis

8.1 Inverse crack problem

The current field satisfies the equation (k2 = ρω2)

µdiv gradu∗ + (λ+ µ)grad divu∗ + k2u∗ = 0, in Ω. (63)

The adjoint function satisfies the same equation

µdiv gradv∗ + (λ+ µ)grad divv∗ + k2v∗ = 0 in Ω0. (64)

The variational equation with the reciprocity gap R has the same form as in
elasticity ∫

Σ
[[u∗]].σ(v∗).ndS =

∫
Sext

(u∗.T (v∗)− v∗.T (u∗))dS

:= R(u∗d,T ∗d,v∗), ∀v∗.

(65)

We summarise the results of [26].

The crack normal

Consider an adjoint S-wave depending on two orthogonal vectors p and
p⊥ of equal norm k/

√
µ of the form v(p,p⊥) = sin(x.p⊥)p. The variational

equation provides

µ[(p⊥.npi + p.np⊥i ]

∫
Σ
[[u∗i ]]cos(x.p)dS = R(p,p⊥) (66)
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The left hand side of Eq. (66) shows that R vanishes when parameters p,p⊥

are orthogonal to the normal n. Geometrically, R vanishes when these vectors
are on the equator of the sphere S of radius k/

√
µ while n is along the poles

axis.
Finally, the zero crossing method consisting in the search of the unique zero

of R(q) with q = p× p⊥/(k/
√
µ) solves the problem for the crack normal.

The crack plane

Take Ox3 along the normal. The crack plane is defined by x3−C = 0 with
constant C to be determined. We consider the adjoint wave v(η) = cos[q(x3 −
η)]e3, with q = k/

√
λ+ 2µ. The variational equation yields

−q(λ+ 2µ)sin[q(C − η)]

∫
Σ
[[u∗3]]dS = R(η). (67)

If we choose the frequency or k so that the wave length 2π/q > L is greater
than the diameter of Ω then the reciprocity gap R(η) has a unique zero η = C
which determines the crack plane. Other zeros of sin[q(C − η)] outside the
solid are not physical.

The crack geometry

We need a 2-dimensional parameter p = [p1, p2, 0] for adjoint fields. We
consider two complex vectors

Z(p)± = p± iγ∥p∥e3, γ2 = 1− k2

(λ+ 2µ)∥p∥2
, (68)

and two vectors fields

w±(x,p) = ∇xexp(−iZ(p)±.x). (69)

which satisfy the adjoint wave equation. Define the adjoint field v(p) = w+ +
w− to obtain

2[λ(γ2 − 1) + 2µγ2]∥p∥2
∫
Σ
[[u3(x)]]exp(−ip.x)dSx = R(v(p)). (70)

which gives the crack opening displacement and the crack geometry:

[[u3(x)]] =
1

4π2

∫
p3=0

exp(ip.x)

2[λ(γ2 − 1) + 2µγ2∥p∥2]
R(v(p))dp1dp2. (71)
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8.2 Volumetric defect inverse problem

The Calderon’s method can be extended to viscoelasticity in the frequency
domain, for small frequency. Let us write the Calderon inverse problem for h

div((1 + h)gradu∗) + k2u∗ = 0 in Ω. (72)

with usual boundary data u∗, ∂nu
∗ in the form

div(gradu∗) + k2u∗ + S(x) = 0 in Ω. (73)

where S = div(hgrad)u∗ is unknown. Function h(x) satisfies the Volterra
integral equation,

∫
C
h(x) grad U(x).grad v(x; ξ)d2x = R(v; ξ),

for any adjoint function v(x; ξ) (74)

where U(x) is the solution u∗(x) of Eq. (73) and v(x; ξ) is an adjoint
function parameteri- zed by vector ξ. Remark that, according to Holmgren’s
Theorem [36], grad U cannot vanish in a non zero measure set.

Eq. (73) is a source inverse problem for S, which has been widely inves-
tigated in the literature, Isakov [38], Alves and Ha-Duong [10]. It does not
depend explicitly in h, particularly on whether h is small or large. Since the
support of S is related to the support of h, we have another manner to recover
Isaacson and Isaacson’s results [37] in statics. The difficulty of our source in-
verse problems relies on the non uniqueness of the solution. For example, in
potential theory (k = 0), a unique point source or a concentric circular dis-
tributed source of the same global intensity corresponds to the same boundary
data and thus the same R. Uniqueness of the solution S has been proved in
Alves and Ha-Duong [10] for a finite number of point sources. Uniqueness also
holds for the class of solutions of piecewise constant circular sources inscribed
in regular square finite elements of size δ and centers ai. However, the conver-
gence of the solution when the size of elements tends to zero remains an open
problem. The variational equation for S in a 2D problem is∫

C
v(x)S(x)d2x =

∫
∂Ω

(u∗∂nv − v∂nu
∗)ds := R(v) (75)
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Eq. (75) shows that two sources S1 and S2 of distinct supports corre-
sponding to the same R cannot exist, because otherwise

∫
Ω(S1 − S2)vd

2x =
R(1) − R(2) = 0, for any v which implies S1 − S2 = 0, which is a contra-
diction with our assumption. A finite linear system of algebraic equations is
obtained by considering M adjoint fields v(j), j=1,., M such that the matrix of
the discretized system is invertible, for S =

∑M
i=1 λiχ(ai), where χ(ai) is the

characteristic function of the square element of centre ai, λi is the intensity of
the source.

δ2
M∑
i=1

λiv
(j)(ai) = R(v(j)) (76)

For k = 0, adjoint functions can be the real ou imaginary parts of polynomials
of z = x1+ ix2. For k ̸= 0 there are many possible adjoint fields. The first one
is given by the real part of function, Ammari and Ramm [12]

v(x, ξ(j)) = exp[−ix.(ξ(j) + iγξ⊥(j))] j = 1, ..M (77)

where ξ⊥(j) = e3 × ξ(j), γ = (1/∥ξ(j)∥)
√

ξ(j)2 − 4k2 if ∥ξ(j)∥ > 2k, and

γ = −i(1/∥ξ(j)∥)
√

4k2 − ξ(j)2 if ∥ξ(j)∥ < 2k.

The second one is the ξ-family of 2D fundamental solution of the Helmholtz
equation with singular point ξ lying outside the domain

v(x, ξ) =
i

4
H1

0 (k∥x− ξ∥), ξ /∈ Ω, x ∈ Ω (78)

with Hankel function of the 1rst kind and order 0. One chooses M different
singular points ξ(j) outside the domain and near its boundary.

It is of interest to solve numerically the source problem in a small re-
gion. Consider a small window which is discretized in regular meshes and
solve numerically the source inverse problem for N point sources S(x) =∑N

i=1 λiδ(x − ai), with source points at the centres of finite elements, and
unknown amplitudes λi. Numerical solution is searched in the sense of the
minimum norm of the errors. With a chosen window, we enforce the condition
S = 0 outside it. For a large window enclosing the defect, it is shown in the
paper [10] that the solution for a finite number N of sources approaching the
source S(x) exists and is unique. If the window does not contain entirely the
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source, we get a wrong solution and the corresponding image of the numerical
solution is then blurred. Only in the case where the window contains the in-
clusion that a sharp image is obtained. This procedure resembles the medical
echography imaging of a body. For example, by trials and errors, one moves
the echography device on the body of an expectant mother in order to search
its right location which reveals a sharp image of her foetus. In our example
of the source problem, to study a tumor in life tissue or a damaged zone in
materials, the moving window is a 4 × 5 mesh. For example, (Fig. 7a) corre-
sponds to the wrong solution, while (Fig. 7b) is the correct one which is the
input source for the reciprocity gap R.

9 Conclusions

In this paper, we make a review of some recent results in inverse problems in
elasticity, in statics and dynamics, in acoustics, thermoelasticity and viscoelas-
ticity. Crack inverse problems have been solved in closed form, by considering a
nonlinear variational equation provided by the reciprocity gap functional. This
equation involves the unknown geometry of the crack and the boundary data.
It results from the symmetry lost between current fields and adjoint fields.
The asymmetry already exists between spaces of current and adjoint fields, in

Figure 7: Imaging of a defect: (a) Bad window, wrong solution; (b) Correct
window, good solution
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the mathematical sense of duality and complementarity (Schwartz, Sobolev’s
sense). We are concerning solely with the asymmetry between the supports of
current and adjoint fields. Cracks and defects can then be revealed. The non-
linear equation is solved step by step, by considering linear inverse problems.
We also consider the problem of a volumetric defect viewed as the pertur-
bation h of a material constant in elastic solids which satisfies the nonlinear
Calderon equation. The nonlinear problem reduces to two successive ones: a
source inverse problem and a Volterra integral equation of the first kind. The
first problem provides information on the inclusion geometry supp(h). The
second one provides the magnitude of h. We made a comparison between the
geometry of an inclusion in the small perturbation case and the geometry in
the nonlinear case and found that both inclusion geometries are identical for
arbitrary loading and geometry of the solid. Our result elucidates the mystery
of the linearized Calderon’s solution for the geometry which works well for the
nonlinear case, as revealed numerically by Isaacson and Isaacson [37] in the
axisymmetric case.
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O nekim nelinearnim inverznim problemima u elastičnosti

Dat je pregled nekih inverznih problema u elastičnosti - u statici i dinamici,
akustici, termoelastičnosti i viskoelastičnosti. Razmatrajući nelinearnu var-
ijacionu jednačinu obezbedjenu funkcionalom recipročnog otvaranja inverzni
problemi loma su rešeni u zatvorenom obliku. Ova jednačina uključuje nepoz-
natu geometriju prsline i granične podatke. Ona sledi iz simetrije izgubljene
izmedju tekućih polja i susednih polja povezanih njihovim osloncem. Nelin-
earna jednačina je razmatranjem linearnih inverznih problema rešena korak po
korak. Eksplicitno su odredjene: normala na ravan prsline, ravan prsline i ge-
ometrija prsline odredjene prekidom pomeranja prsline. Takodje se razmatra
problem zapreminskog defekta vidjenog kao poremećaj materijalne konstante u
elastičnim čvrstim telima koja zadovoljava nelinearnu Calderon-ovu jednačinu.
Nelinearni problem se svodi na dva uzastopna: izvorni inverzni problem i
Volterra-ovu integralnu jednačinu prve vrste. Prvi problem obezbedjuje infor-
maciju o geometriji uključka. Drugi podaje veličinu poremećaja. Geometrija
defekta u nelinearnom slučaju je dobijena u zatvorenom obliku i uporedjena
sa linearizovanim Calderon-ovim rešenjem. Obe geometrije, u linearizovanom
i nelinearnom slučaju, su nadjene iste.
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