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Abstract

A two-scale damage model for micro-fractured media is constructed us-
ing the asymptotic homogenization method. At the small-scale level, we
consider locally periodic microstructures of two-types: micro-cracks nu-
cleating from pores and wing-type micro-cracks.

Based on an energy criterion for micro-crack propagation we deduce
the macroscopic damage model, without supplementary assumptions on
the overall behavior. We show that the resulting two-scale model has the
property of capturing a micro-structural length - the distance between
neighbor micro-cracks. The influence of the micro-structural parameters
on the effective behavior is studied. We illustrate the capacity of the
model to predict size effects under compression loadings.

Keywords: micro-cracks, wing-type, pores, homogenization, asymptotic
developments, damage, size effects, compression loading

1 Introduction

Experimental observations show that, in brittle specimens under uniaxial com-
pression, macroscopic cracks nucleate and grow in the direction parallel to that
of the axial loading. At the origin of such macroscopic crack formation are
small-scale heterogeneities, like wing cracks or pore-like flaws. Under compres-
sion loading, such micro-heterogeneities lead to tensile micro-crack formation,
growth and coalescence to macroscopic cracks.
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Since the origin of this particular type of failure is a micro-mechanical one,
the proper way to describe these phenomena is a multi-scale approach. Our
aim, in this paper, is to construct a damage model for compressive loadings.

Previously, Dascalu and co-workers ([6], [7], [8], [10]) proposed a damage
model for straight micro-cracks based on a change of scale linking the mi-
croscopic energy dissipated by the micro-fracture and the macroscopic energy
release rate. A material length characterizing the size of the micro-structure
was present in the deduced damage equations, therefore the model was able to
describe size effects.

In this paper we first propose a model which considers the complex case
of small-scale geometry with cracks propagating from pores and evolving sym-
metrically with respect to them in the direction of the loading. The damage
evolution laws are deduced based on the method developed in [6], [7], [8], [10]
and taking into account the porous microstructure ([1], [17]). The pore size is
considered as a parameter of the model and the damage variable is defined as
the normalized length of the flaw composed by the pore and the two symmetric
micro-cracks connected with it. The influence of the porosity and the micro-
structural size of the material on the macroscopic response is emphasized.

The second part of the paper is devoted to the case of wing-type micro-
cracks. Several models have been developed to describe the mechanism leading
to the wing-crack propagation. The first characterization of this mechanism
is found in the work of Brace and Bombolakis ([5]). Since then, many re-
searchers studied and modeled wing cracks (Bobet [4], Hoek and Bienawski
[11], Horii and Nemat-Nasser [13], [12], Fanella and Krajcinovic [9], . . . ). Some
researchers investigated the wing-type crack and the brittle failure in solids us-
ing the continuum theory, also called interaction field theory, for short- and
long-term behavior of hard rock under compression (e.g. Miura et al. [18]
who considered the mechanisms of crack growth given by the interaction field
theory for predicting the creep failure of rocks in compression).

More recently, the previous models were extended to take into account dy-
namics effects. Nemat-Nasser and Deng [19] considered an array of interacting
and dynamically growing wing crack to estimate the rate-dependent dynamic
damage evolution in brittle solid. The effect of strain rate is included through
the dependence of dynamic stress intensity factor on the speed of the crack
growth. Huang et al.[14], [15] proposed an approach that combines damage
theory with dynamic growth of the wing cracks, in order to model the dynamic
fracture process of rock specimens subjected to high strain rate uniaxial com-
pressive loading. Their model assumed dilute pre-existing crack distributions
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with no interaction, but Paliwal et al. [20] tried to overcome this inconvenient
and developed a methodology based on a complex variable approach to obtain
an approximate local effective stress field as a manifestation of micro-crack
interactions.

The model presented in this paper is obtained by considering a locally pe-
riodic distribution of wing-type micro-cracks and by the use of the asymptotic
developments based homogenization method. We start from the model devel-
oped by Fanella and Krajcinovic [9] which is used at the micro-scale, within
the framework of homogenization as proposed in Dascalu and co-workers ([10],
[8], [6], [7]). We will show that the obtained damage model is able to predict
size effects related to failure.

2 Cracks emerging from pores

Consider a two-dimensional isotropic elastic medium containing a large number
of small pores and micro-cracks developed from pores. The distribution is
assumed to be locally periodic, so that one can locally find a periodicity cell, of
length ε, containing one pore with two symmetric cracks (see Fig.1). The length
ε, also representing the mutual distance between centers of neighbor pores, is
a characteristic size of the micro-structure. The two cracks are assumed to be
straight and of total length dε − ϕ, where ϕ is the diameter of the pore.

Figure 1: Fissured porous medium with locally periodic micro-structure.

We consider the initial heterogeneous porous medium represented by a
bounded two-dimensional domain B with a smooth external boundary. In the
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solid part we have the equilibrium equations

∂σε
ij

∂xj
= 0, σε

ij = aijklexkl(u
ε), (1)

where uε and σε are the displacement and the stress fields, aijkl are the elastic-

ity coefficients and where we denoted the strain tensor exij(u
ε) = 1

2(
∂uε

i
∂xj

+
∂uε

j

∂xi
)

with respect to x coordinates. We assume that the boundaries of the cracks
and of the pores are traction-free :

σεn = 0, (2)

where n is the unit normal vector.

2.1 Homogenization by asymptotic developments

Local periodicity is assumed, that is around each point one can find a small
neighborhood in which the micro-structure is periodically distributed, with
periods of size ε (see Fig.1). Such a distribution can be reproduced from the
unit cell Y = [0, 1]× [0, 1] by rescaling with the small parameter ε so that the
period of the material is εY , as in Fig. 2. The parameter ε, which is assumed
to be small enough with respect to the characteristic dimensions of the whole
body, is the microscopic length scale. This condition allow us to distinguish
between microscopic and macroscopic variations. The two distinct scales are
represented by the variables x, which are referred to as macroscopic variables
and the variables y = x/ε, referred to as microscopic variables.

In the unit cell Y , we denote the union of the two cracks by CY , the pore
boundary by CP and the solid part by Ys. We introduce the damage parameter
d = dε/ε, representing the scaled distance between the two crack tips in the
cell, and the scaled diameter of the pore a = ϕ/ε. For a given pore diameter
a, the time evolution of the damage variable d describes the symmetric micro-
crack propagation. This evolution will make the object of the next section,
here we consider only a spatial distribution d = d(x, t) of ”frozen” micro-crack
lengths, at a given instant of time t.

According to the method of asymptotic homogenization (e.g. [3],[21]), we
look for expansions of uε and σε in the form given by (3) and (4):

uε(x, t) = u(0)(x,y, t) + εu(1)(x,y, t) + ε2u(2)(x,y, t) + ε3u(3)(x,y, t) + . . . (3)

σε(x, t) =
1

ε
σ(−1)(x,y, t) + σ(0)(x,y, t) + εσ(1)(x,y, t) . . . (4)



Size effects for micro-fractured bodies under compressive... 351

Figure 2: Material period and the unit cell.

where u(i)(x,y, t), σ(i)(x,y, t), x ∈ B, y ∈ Y are smooth functions and Y -
periodic in y.

Substituting the expansions into Eq. (1) and the boundary conditions (2)
we obtain boundary value problems for the different orders of ε, formulated on
the unit cell Y . It can be shown (e.g. [21]) that the function u(0) = u(0)(x, t)
is independent of y variable, representing the macroscopic displacement field.

For given ex(u
(0)) in the case of open traction-free cracks, we deduce the

following boundary-value problem for the displacement field u(1):

∂

∂yj

(
aijkleykl(u

(1))
)
= 0, in Ys (5)

aijkleykl(u
(1))nj = −aijklexkl(u

(0))nj , on CY± ∪ CP (6)

and with periodicity boundary conditions on the external boundary of the cell.
In the last relation CY± denote the two faces of the micro-cracks.

The microscopic correction u(1) has a linear dependence of the macroscopic
deformations expq(u

(0)) :

u(1) = ξ11ex11(u
(0)) + 2ξ12ex12(u

(0))− ξ22ex22(u
(0)) (7)

The characteristic functions ξpq(y, d, a) are elementary solutions of (5-6), for
a given length of the crack, for a given size of the pore and for particular
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macroscopic deformations having the only non-vanishing component ex11 = 1
or ex12 = 1 or ex22 = −1, respectively. Remark that ξ22(y, d, a) corresponds
to a compressive macroscopic deformation applied to the unit cell through the
internal boundary conditions (6).

Consider the mean value ⟨·⟩ = 1
|Y |

∫
Ys

· dy, where |Y | is the measure of
Y . By applying the mean value operator to the boundary value problem cor-
responding to the 1st-order of ε, we can deduce (e.g. [21]) the homogenized
equilibrium equation

∂

∂xj
Σ
(0)
ij = 0, (8)

where Σ
(0)
ij = ⟨σ(0)

ij ⟩ = ⟨aijkl(exkl(u(0)) + eykl(u
(1)))⟩ is the macroscopic stress.

The effective elastic law is obtained as

Σ
(0)
ij = Cijkl(d, a)exkl(u

(0)), (9)

where Cijkl(d, a) are the homogenized coefficients given generally by the for-
mula

Cijkl(d, a) =
1

|Y |

∫
Ys

(aijkl + aijmneymn(ξ
kl)) dy (10)

except for the coefficients calculated computed with ξ22 which are given by
: C1122 =< a1122 − a1111ey11(ξ

22) − a1122ey22(ξ
22) > and C2222 =< a2222 −

a1111ey11(ξ
22)− a1122ey22(ξ

22) > .

These formulae allow for the computation of the homogenized coefficients
as functions of the damage variable.

2.2 The damage law

For the modeling of the evolution of damage we adopt a quasi-static descrip-
tion, in which the previous equilibrium problem should be completed with
damage evolution equations. In this section we remind the main steps to be
followed in obtaining the damage equation through the homogenization of the
microscopic balance of energy for propagating micro-cracks. For the details of
the procedure the reader is reffered to [6], [7].

For the initial heterogeneous problem, the fracture energy release rate dur-
ing crack extension can be expressed as

Gε = lim
Dϵ→O

∫
∂Dε

e · b(uε)n ds (11)
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where Dε is a disk of infinitesimal radius, surrounding the crack tip O, with
n the outward normal to the disk Dϵ, e is the unit vector in the propagation
direction (see Fig. 2) and bij(u

ε) = 1
2amnklexkl(u

ε)exmn(u
ε)δij − σε

jku
ε
k,i is the

Eshelby configurational stress tensor.
The propagation of each micro-crack in the elastic body is governed by the

following laws:
Gε ≤ Gf ; ḋε ≥ 0 ; ḋε(Gε − Gf ) = 0 (12)

where a superimposed dot denotes time derivative and Gf is the critical fracture
energy of the material. These relations should be completed with the reduced
dissipation inequality:

Df ≡ Gεḋ
ε ≥ 0 (13)

Assuming the symmetric extension of micro-cracks, from (5)-(6) we deduce
([6], [7]) for ḋ ̸= 0, the global balance of energy on the unit cell :

Gε

ε
= −1

2

dCijkl(d, a)

dd
exkl(u

(0))exij(u
(0)) (14)

where the right member Yd ≡ −1
2
dCijkl(d,a)

dd exkl(u
(0))exij(u

(0)) is the damage
energy release rate. We note that this relation is entirely deduced from micro-
structural assumptions, without any assumptions on the scaling of energy.
This scaling with ε is naturally appearing in the derivation of the damage
equation (14). For evolving damage, the previous relation shows that the
micro-structural length ε makes the link between the surface energy dissipated
during micro-crack propagation and damage energy dissipated per unit volume.
This energy scaling property will assure the presence of the internal length ε
in the damage law.

Using (14) from the micro-crack evolution laws (12) we deduce the damage
laws :

Yd ≤
Gf

ε
; ḋ ≥ 0 ; ḋ(Yd −

Gf

ε
) = 0 (15)

Dd ≡ Ydḋ ≥ 0 (16)

These relations are coupled with the equilibrium equation (8). For brittle
damage, Gf is a constant. Generally, it may depend on the crack length d and
its velocity ḋ.

2.3 Numerical implementation - size effects

In this section we give numerical results for the case of cracks emerging from
pores. We consider that the elastic matrix is isotropic, of Young’s modulus
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E = 2 GPa and Poisson’s ratio ν = 0.1. The normalized pore diameter is
taken a = 0.2. The fracture energy was taken Gf = 20J/m2.

In section 2.1 formulae for the computation of the homogenized coefficients
starting from the elementary deformation modes were deduced. For the nu-
merical implementation of the effective coefficients we used the finite element
program FEAP, developed by Berkeley University ([22]). Triangular finite ele-
ments with three Gauss points for the displacements were used. Computation
technique has two steps: first, one needs to compute finite element solutions
for the characteristic functions on unit cells containing micro-cracks of different
lengths; then polynomial interpolation to construct the functions Cijkl(d, a) of
the variable d is used.

In Fig. 3 we represented the homogenized coefficients vs. the damage
variable d. We note that the presence of micro-cracks induces an anisotropic
effective response and that the homogenized coefficients depend nonlinearly on
the damage variable.

Figure 3: Homogenized coefficients vs. damage variable d.

Since the damage evolution law was obtained from a brittle micro-fracture
criterion, our model predicts brittle damage. For an increasing vertical com-
pressive loading, starting from an undamaged state d = a, the macroscopic
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stress do not induce damage until it reaches a critical value Σ22 for which the
complete failure of the cell occurs in a brittle way. In Fig. 4, we plot the crit-
ical failure stress as a function of the micro-structural size ε. The two curves
correspond to two different normalized pore sizes a = 0.2 and a = 0.3. We
remark that the failure compressive stress increases for smaller inter-distances
between pores, for proportional pore sizes, and for smaller pore diameters when
the mutual distance between centers is fixed. These results clearly show the
influence of the micro-structural parameters: the distance between centers of
two neighbor pores ε and the pore size a · ε on the effective elasto-damage re-
sponse. In this way, the obtained damage model is able to predict size effects.

Figure 4: Size effects: critical failure stress Σ22 vs. microscopic size ε, for pore
diameters 0.2 · ε and 0.3 · ε

3 Wing type micro-cracks

In this second part of the paper, we consider a 2D isotropic elastic medium
containing wing-type micro-cracks. As before, the distribution is assumed to
be locally periodic and each micro-crack (composed by a main inclined crack
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with two branches) is considered in one periodicity cell of length ε (Fig. 5).
The length ε also represents the distance between centers of two neighbor
micro-cracks.

Figure 5: Fissured medium with locally periodic micro-structure containing
wing-type micro-cracks.

Starting from the initial model of Brace et al. ([5]), many researchers
proposed models for the wing-type crack. These models have in common the
fact that the extension of the branches is controlled by the shear of the initial
inclined crack. We adopt here the model of Fanella and Krajcinovic ([9]) and we
implement their idea in our framework of homogenization through asymptotic
developments. In the model we assume a sliding crack of length 2a (Fig. 6).
Using a Coulomb type criterion, the shear stress denoted τs, reduced by the
presence of the friction, is given by ([9]):

τs = (σε
11 − σε

22)
sin(2ϕ)

2
− µf (σ

ε
11 cos

2(ϕ) + σε
22 sin

2(ϕ)), (17)

where µf is the friction coefficient, ϕ is the angle made by the inclined crack
with the horizontal axis and σε is the stress field (Eq. 1).

The shear on the crack induces a traction zone at the crack tips, the con-
sequence being the appearance of branches (wings) that progressively align to
the maximum loading direction.

Following Fanella and Krajcinovic ([9]) we replace the sliding crack and the
branches by an equivalent vertical crack. On the central part of the equivalent
crack Iε, of length 2aα sinϕ, we apply a concentrated pressure P (ex(u

ε)) on
the normal direction (Fig. 6 (b)). The value of the pressure P (ex(u

ε)) is given
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by the relation below:

P (ex(u
ε)) =

{
2
∫ aα sinϕ
0

τs
α cotϕdx, ex22(u

ε) ̸= 0,
0, ex22(u

ε) = 0.
(18)

We considered µf = 0.3, ϕ = 45 degrees and α = 0.25. The correction
factor α was introduced by the authors of [9] in order to recover the correct
stress intensity factor for wing cracks as abtained in the numerical study of
Horii and Nemat-Nasser ([13]).

Figure 6: Micro-crack model under compression: a) sliding crack model; b)
straight equivalent model.

As for the porous materials, in the solid part, we have the equilibrium
equations and the elasticity law (Eq. 1).

On the central part of the crack Iε the concentrated pressure P (ex(u
ε)) is

acting, due to the replacement of the original sliding crack. The rest of the
crack boundaries are traction-free:

σεn = P (ex(u
ε))n on Iε, (19)

σεn = 0 on C - Iε. (20)

We denoted by n the normal unit vector on the crack faces.

3.1 Homogenization by asymptotic developments

Similar to the case of cracks emerging from pores, we assume that we can
reproduce the locally periodic microstructure of the body through a unit cell
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Y = [0, 1]× [0, 1], by rescaling with the small parameter ε. In this way the pe-
riod of the material is εY , as in Fig. 7. The two distinct scales are represented
by the variables x and y = x

ε defined previously. In the unit cell Y , we denote
the lips of the two cracks by CY , the central zone (which replace the sliding
crack) by I and the solid part by Ys. We introduce the normalized damage
parameter d = dε

ε representing the scaled distance between the two crack tips
in the cell.

Figure 7: Material period and the unit cell.

Following the method of asymptotic homogenization and using the expan-
sion of uε and σε (Eq. 3 - 4) into Eq. 1 and the boundary conditions (19), we
obtain the boundary value problems for the different orders of ε, formulated
on the unit cell Y . As for porous materials, we prove that u(0) = u(0)(x, t)
being a trully macroscopic displacement field.

For a given ex(u
(0)) corresponding to a compression loading (ex22(u

(0)) <
0), the boundary-value problem for the first microscopic correction u(1) is de-
duced as:

∂

∂yj
(aijkleykl(u

(1))) = 0 in Ys, (21)

aijkl(eykl(u
(1)) + exkl(u

(0)))nj = 0 on CY±−I±, (22)

aijkl(eykl(u
(1)) + exkl(u

(0)))nj = −P (ex(u
(0)))ni on I±. (23)

where ± denote the values on the two faces of the micro-cracks.
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The microscopic correction u(1) has a linear dependence of the macroscopic
deformations expq(u

(0)) :

u(1) = ξ11ex11(u
(0)) + 2ξ12ex12(u

(0))− ξ22ex22(u
(0)). (24)

The characteristic functions ξpq(y, d, a) are elementary solutions of (21-23),
for a given length of the crack and for particular macroscopic deformations
having the only non-vanishing component ex11 = 1 or ex12 = 1 or ex22 = −1,
respectively. As before, ξ22(y, d, a) corresponds to a compressive macroscopic
deformation applied to the unit cell through the internal boundary conditions
(23).

By applying the mean value operator to the boundary value problem cor-
responding to the 1st-order of ε, we can deduce the homogenized equilibrium
equation (Eq. 8) and the effective elastic law (Eq. 9) where Cijkl(d, a) are
the effective homogenized coefficients. The general formula is given by Eq.
(10), except for the homogenized coefficients corresponding to ξ22 given by:
C1122 =< a1122 − a1111ey11(ξ

22) − a1122ey22(ξ
22) > and C2222 =< a2222 −

a1111ey11(ξ
22)− a1122ey22(ξ

22) > .

3.2 The damage law

In the previous work ([6], [7]), the damage law was deduced in the form:

ḋ(
1

2

dCijkl

dd
exkl(u

(0))exij(u
(0)) +

Gc

ε
+

Imnpqexmn(u
(0))expq(u

(0))) = 0 (25)

as the third loading/unloading condition and where

Imnpq =
d

dd

(
1

2

∫
CY

aijkl(δmkδnl + eykl(ξ
mn))nj [ξ

pq
i ]dsy

)
−∫

CY
aijkl (δmkδnl + eykl(ξ

mn))nj

[
dξi

pq

dd

]
dsy. (26)

Usually, the integrals Imnpq(d) are computed on the entire crack lips ([6]),
but in our specific case, are computed only on the central part, I. The non
null integrals entering the damage laws are given by

I22pq(ξ
22) =

d

dd
(
1

2

∫
I
P 22nj [ξ

pq
i ]dSy). (27)
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where

P 22 = 2

∫ aα sinϕ

0

µ+ 0.3(λ+ µ)

α
cotϕdx. (28)

In the previous formula λ = νE
(1+ν)(1−2ν) and µ = E

2(1+ν) , with E = Young
modulus and ν = Poisson ratio.

3.3 Numerical implementation - size effects

In this section we give numerical results we obtained using the homogeniza-
tion by asymptotic developments technique on the special case of wing-type
cracks. Elastic isotropic material described by Young’s modulus E = 2GPa
and Poisson’s ratio ν = 0.1 was used.

Starting from the elementary deformation modes, we compute the homog-
enized coefficients which are functions of the damage parameter, d. For the
computation of Cijkl and Iijkl we used the finite element program FEAP, devel-
oped by the Berkeley University [22]. For the homogenized coefficients we used
triangular finite elements with three Gauss points for the displacements. The
modeling of the wing-type micro-cracks demands the computation of Cij11, in
tension, for ξ11, and those corresponding to the ξ22 (Cij22) in compression. For
these coefficients we used Lagrange Multipliers method for the contact between
the crack faces.

In Fig. 8 we represent the homogenized coefficients and I2222. Nonlin-
ear dependence of the homogenized coefficients on the damage variable d is
observed as well as the anisotropy in the effective response, induced by the
presence of the micro-crack.

Using the numerical implementation previously done for the standard crack
model, some elementary damage tests have been simulated. The most signifi-
cant result at the local macroscopic level is the size dependence of the damage
yield stress on the microscopic cell size ε shown in Fig.9 (a). For each value of
ε, the uniaxial tests were controlled through the applied deformation ex22. We
note that for smaller cell sizes we have higher thresholds of damage initiation.

In Fig. 9 (b), the critical macroscopic stress Σ22 is represented for different
microscopic lengths ε which shows the linear dependence of the damage yield
stress on ε−

1
2 . This prove a size effect of the Hall-Petch type.
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I
2222

Figure 8: Left) Homogenized coefficients; Right) The integral I2222 of the jumps
over the crack faces.

Figure 9: Evolution of the limit of damage initiation as a function of the micro-
structural size ε and, respectively, ε−

1
2 under uniaxial compression loading

4 Conclusions

We used the asymptotic homogenization technique in order to develop a micro-
mechanical damage model specific to microstructures with micro-cracks emerg-
ing from pores or with wing-type micro-cracks, under compression loadings. In



362 A.M. Dobrovat, C. Dascalu, G. Bilbie, M.T. Nguyen

the case of wing-type micro-cracks, the model of equivalent micro-cracks pro-
posed by Fanella and Krajcinovic was used in the two-scale framework.

The brittle damage behavior was analyzed at the local macroscopic scale.
The influence of micro-structural parameters, like the mutual distance between
centers of neighbor pores or wing-type micro-cracks as well as the pore size,
on the local macroscopic response has been emphasized. We showed that the
constructed damage models are able to predict size effects, as a consequence of
the presence of a microstructural length parammeter in the damage equations.
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Efekti veličine za materijale sa mikroprslinama pri
kompresivnom opterećenju

Koristeći asimptotski metod homogenizacije, formulisan je model oštećenja ma-
terijala sa mikroprslinama, baziran na dva materijalna nivoa. Na nižem od ovih
nivoa, posmatraju se lokalne periodične mikrostrukture dvije vrste: mikro-
prsline na površinama materijalnih otvora i račvanje (wing cracks) već pos-
tojećih pukotina. Na vǐsem nivou, formulisan je makroskopski model oštećenja
u koji je ugradjen energetski kriterijum za prostiranje mikroprslina i rastojanje
izmedju mikropukotina kao mikrostrukturalna materijalna dužina. Predloženi
model je primenjen na analizu uticaja veličine uzorka na mehaničko ponašanje
materijala u uslovima kompresivnog opterećenja.
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