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Abstract

One important aspect of finite elastic-plastic deformation constitutive
theories is addressed in this work, namely the appropriate embedding
of tensor-valued internal variables into the plastic deformation contin-
uum description, which has been called physico-geometrical coupling
reflecting the relation between geometry of deformation and the physi-
cal nature of an internal variable. In the past it was assumed hat such
embedding was co-rotational with a material substructure, rotating in-
dependently from the continuum, which required the introduction of
the concepts of constitutive and plastic spins for each internal vari-
able. This assumption is now extended to cases where the embedding
is convected with the plastic deformation, and it is possible to obtain
a common formulation for both rotational and convected embeddings.
Explicit expressions are obtained for the plastic multiplier (or loading
index) from the consistency condition and the free energy function,
making use of certain analytical properties of isotropic scalar and ten-
sor valued functions of scalar and tensor-valued variables, such isotropy
arising from the need to satisfy objectivity.

Keywords: finite deformations; plasticity; plastic spin; objective rates;
anisotropy.

1 Introduction

The formulation of finite elastic-plastic deformation theories traces a long
orbit since decades ago, and is characterized by numerous arguments and
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counterarguments over various issues, but mainly over the kinematics asso-
ciated with it. In regards to kinematics one can distinguish two debatable
issues. First, is the issue of geometrical separation (decomposition) of the
total deformation and/or its rate into elastic and plastic parts, the two being
interconnected. Second, and most recent, is the issue of physico-geometrical
coupling on the way the embedding of internal state variables, scalar or
tensor-valued, is defined in regards to the plastic and elastic deformation,
and the ensuing appropriate rate of evolution of such variables which arises
as a result of such embedding. Both issues, and in particular the first, have
been addressed by a plethora of publications which is vast enough to defy
a comprehensive review within the limits of this work. Nevertheless, some
very fundamental works must be mentioned as a precursor to what follows.

Two basic schools of thought can be distinguished in regards to the de-
composition of finite elastic-plastic deformations. The first proposes the
additive decomposition of an appropriately defined finite strain tensor into
elastic and plastic parts, representative work for which is the classical work
by Green and Naghdi (1965); the rate decomposition follows directly from
the strain decomposition. While rigorous mathematically, this approach
lacks the capability to incorporate typical continuum crystal plasticity, a
benchmark problem for any plasticity theory. The second school of thought
proposes the multiplicative decomposition of the deformation gradient into
elastic and plastic parts, representative work for which is the other classical
work by Lee (1969) (see also following works by Lubarda and Lee(1981) and
Lubarda (1991)). This multiplicative decomposition was in fact motivated
by the deformation process in crystal plasticity, where the continuum de-
forms firstly plastically by shearing on lattice slip-planes, and subsequently
the plastically deformed continuum is mapped by an elastic deformation
gradient onto the current configuration. This approach incorporates almost
by definition the benchmark case of crystal plasticity, and has been adopted
by the majority of researchers in the field of finite elastoplastic deforma-
tion. Furthermore the concept of the multiplicative decomposition of the
deformation gradient has been appropriately extended to thermo-elasticity
and mass growth in biomechanics, Rodriguez et al (1994), Lubarda (2004).
One aspect which is debatable though in the case of elastoplasticity, is that
when one forms the velocity gradient of the total deformation and proceeds
to decompose additively the total rate of deformation tensor, he obtains a
plastic rate of deformation which is not purely plastic because the elastic
deformation gradient intervenes in its definition. This aspect has been ad-
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dressed by Dafalias (1998) and it will be elaborated again in subsequent
sections.

The second kinematical issue is associated with the embedding of the
tensor-valued internal variables into the kinematics of the continuum, and
the appropriate objective rate which must be used in their equations of evo-
lution. It is important to understand that a proposition of an objective rate
is tantamount to a specific embedding, and vice-versa an embedding during
plastic deformation, proposed based on some physical argument, implies a
specific rate of evolution. Often the connection between embedding and re-
sulting rate has not been recognized, and the usual approach was to simply
choose an objective rate to be used in evolution equation of an internal vari-
able, such as a Jaumann corotational rate in regards to the material spin or
an Oldroyd or Trusdell convected rate, and then proceed without examining
the consequences of the implied embedding. This was the reason for obtain-
ing the surprising and unexpected stress oscillations obtained during simple
shear of a linear kinematically hardening material, for which a Jaumann
rate was postulated for the evolution of the back-stress, Nagtegaal and de
Jong (1982).

This strange response spurred a plethora of relevant publications, first
of which were the ones by Lee et al (1983) and Dafalias (1983), appearing
in sequence in the same journal. The theme of the first publication was to
suggest the spin tensor of the principal back-stress directions as the one in
regards to which the corotational rate of the back stress is defined, while the
second publication used the spin associated with the rate of the orthogonal
part of the polar decomposition of the deformation gradient. Most impor-
tantly, in this second publication a constitutive equation for the plastic spin
was proposed for the first time, a concept derived from the fundamental
works of Mandel (1971) and Kratochvil (1973), to be defined in the sequel.
In fact a more general approach for the plastic spin was presented earlier in
two conferences in June 1983 by Dafalias (1985a, 1993a), before publication
of the aforementioned article, Dafalias (1983), while the same theme was
addressed independently by Loret (1983). A comprehensive and complete
presentation of the concept appeared finally in Dafalias (1985b) where the
name “Plastic Spin” was coined while its extension to Viscoplasticity was
made in Dafalias (1990). In simple terms the idea, motivated by crystal
plasticity again, was that an internal variable is embedded in a substructure
represented by a triad of director vectors and being conceptually associated
with the crystal lattice, and that this triad spins at a rate which is different
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that the material spin of the continuum; the difference of these two spins is
the plastic spin for which constitutive relations must be provided as done
for the plastic rate of deformation. This type of “rotational” embedding
of the internal variable requires, based on physical grounds, to use for its
evolution a corotational rate associated with the triad spin. This scheme
can eventually eliminate the aforementioned unwanted oscillations because
now the constitutively defined spinning of the background manifold under
simple shear can be controlled unlike the material spin which continues for
ever.

In subsequent works by Dafalias (1984, 1987, 1988, 1993a,b, 1998) and
Cho and Dafalias (1996), the notion of the director triad spin was extended,
applied and generalized to that of different constitutive spins, each one asso-
ciated with a different internal variable, thus, introducing correspondingly
multiple plastic spins (to each constitutive spin there corresponds a plas-
tic spin and vice-versa). As mentioned before, any such constitutive spin
implies that the corresponding internal variable is embedded into its own
rotating constitutive frame (its own director triad), hence, it can be said it
is rotationally embedded. But this approach cannot address the possibility
of having an internal variable embedded in a convected way (contravariant,
covariant, mixed). This is not just a technical detail but reflects a particular
physico-geometrical coupling that cannot be addressed by the theory of con-
stitutive and plastic spins. Thus, going beyond plastic spin, the present work
will focus on extending the embedding of internal variables from rotational
to convected ways, and derive the full set of the corresponding constitutive
equations. The latter requires the specification of the plastic multiplier from
the consistency condition, which will be seen to be not a trivial matter.

It should be mentioned that after the original works on plastic spin in
the early 1980’s, there was a large number of significant publications on the
subject by various authors who used the concept of plastic spin in relation
to several important and practical issues in mechanics such as shear banding
(Tvergaard and van der Giessen, 1991, Kuroda, 1997), crystal plasticity and
variations of it (Zbib and Aifantis, 1988, Rashid, 1992, Prantil et al, 1993,
Dafalias, 1993c), fibrous composites (Fares and Dvorak, 1991), polymers
(Boyce et al, 1988, Aravas, 1994), sheet metals (Dafalias, 2000) and several
other areas which simply cannot be covered here due to the restricted scope
and length of this work. Nevertheless, the interested reader can find an
extensive, if not exhaustive, review in Dafalias (1998).

In terms of notation the simplest possible avenue will be followed. Scalars
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and tensors of any order will be denoted by same direct italics notation,
and the distinction of the tensorial degree will be deduced based on their
original definition and structure of corresponding equations. Since direct
notation rather than indicial will be used, juxtaposition of tensors implies
summation of neighboring indices, while a : between two tensors implies the
trace operation executed over two neighboring pairs of indices. For example
one has AB ⇔ AijBjk for the ik component of the product, and A : B =
tr(AB) = AijBji. Similar equations hold when one has higher order tensors
(third and fourth). In more complex expressions detailed explanation of
index summation will be provided. Last, single subscripts will be used not
as tensorial indices, but as indicators of the plurality associated with a
tensor variable symbol. For example Ai is one of many tensors the plurality
of which is defined by the values i can take. In such cases the standard
rule is that no summation is implied over repeated indices, i.e. Aiωi does
not imply summation over i. If summation is necessary, in particular in
differentiations or when one index appears three times, it will be explicitly
declared. For example for (∂f/∂Ai)Āi or Ai(∂f/∂Ai)Āi it will be said that
summation over i is implied, even when i appears three times.

2 Kinematics

The multiplicative decomposition F = F eF p of the deformation gradient
F between initial reference and current configurations is adopted which
defines an intermediate reference unstressed (or relaxed) configuration ob-
tained from the initial reference configuration by plastic deformation and
rotation defined by F p, and a current configuration obtained by the sub-
sequent elastic deformation and rotation of the intermediate configuration
defined by F e. The intermediate configuration has an entirely arbitrary ori-
entation, such arbitrariness accommodated by the choice of the rotational
parts of the polar decomposition of F e and F p. This scheme introduces
the natural concept of an elastic Green strain tensor Ee = (1/2)(Ce − I)
with Ce = F eTF e in regards to the intermediate configuration, used as the
kinematic variable in the elastic constitutive laws. Similarly a plastic Green
strain tensor can be defined by Ep = (1/2)(Cp − I) with Cp = F pTF p in
regards to the initial configuration, but such tensor is not used in the plastic
constitutive relations which require a rate form of the deformation measure.

With this in mind and based on the foregoing multiplicative decompo-
sition, one can define first the velocity gradient at the current configuration
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by

ḞF−1 = (ḞF−1)s + (ḞF−1)a = D +W = Ḟ eF e−1 + F eḞ pF p−1F e−1 (1)

where a superposed dot implies the material time derivative or rate, sub-
scripts s and α denote symmetric and antisymmetric parts, respectively,
D is the symmetric rate of deformation tensor and W is the antisymmet-
ric material spin tensor. One can take the symmetric part of the last two
members of Eq.(1) in order to define elastic and plastic parts of the rate of
deformation tensor according to

D = De +Dp = (Ḟ eF e−1)s + (F eḞ pF p−1F e−1)s (2)

which is the usual way most finite strain elastoplastic theories formulate their
kinematics. However, the physical meaning of Dp = (F eḞ pF p−1F e−1)s has
been criticized because of two reasons. First, it includes in its definition the
elastic deformation gradient F e which acts as a transport agent of the plastic
velocity gradient Ḟ pF p−1 from intermediate to current configuration, which
is counterintuitive when a constitutive law is postulated forDp because plas-
tic deformation is assumed to be kinematically independent of the elastic
deformation. Second, both symmetric and antisymmetric parts of Ḟ pF p−1

contribute to the definition of the symmetric Dp, while it is only the sym-
metric part of Ḟ pF p−1 which defines the purely plastic rate of deformation
at the intermediate configuration. One may also observe that elasticity is a
potential and not a rate theory in its constitutive foundation and does not
need an elastic rate of deformation tensor De = (Ḟ eF e−1)s as per Eq.(2).
On the other hand plasticity theory is a rate theory and in order to couple
these two separate theories one needs to find a common platform to connect
their kinematics, and as such Eq.(2) has been almost universally adopted
despite all foregoing criticisms.

In order to avoid these physically based objections Dafalias (1998) fol-
lowed a different approach, as follows. First the plastic velocity gradient
was defined at the intermediate configuration by the usual expression

Lp
0 = Ḟ pF p−1 = (Ḟ pF p−1)s + (Ḟ pF p−1)a = Dp

0 +W p
0 (3)

where Dp
0 is the symmetric plastic rate of deformation tensor and W p

0 is
the antisymmetric plastic material spin tensor (not to be confused with the
plastic spin tensor to be defined in the sequel) at the intermediate config-
uration. Notice that contrary to the definition of Dp, for the definition of
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both Dp
0 and W p

0 only the plastic deformation gradient F p and its rate are
used, rendering such definition kinematically uncoupled from the elastic de-
formation. One can now postulate purely plastic constitutive relations for
Dp

0 while the W p
0 can acquire any value given the arbitrary orientation of

the intermediate configuration, as discussed in Lubarda and Shih (1994) and
Dafalias(1998).

However, the question still remains as to how one can relate the plastic
rate of deformation Dp

0 at the intermediate configuration with the elas-
tic kinematics expressed by Ee. Such necessary relation should certainly
be in terms of rates, but such rates must involve uncoupled elastic or
plastic quantities. Following Dafalias (1998) one can premultiply by F eT

and postmultiply by F e the last two members of Eq.(1) and subsequently
take the symmetric part of the ensuing relation and based on the impor-
tant observation that Ėe = (F eT Ḟ e)s, obtain the key kinematic relation
∨
Ee = Ėe+LpT

0 Ee+EeLp
0 = F eTDF e for the covariant rate of Ee in regards

to F p, which based on Eq.(3) can be re-written in the more pertinent form

∇
Ee = Ėe −W p

0E
e + EeW p

0 = F eTDF e − (CeDp
0)s (4)

where a superposed ∇ implies the Jaumann corotational rate in regards to
a spin tensor, in this case the W p

0 . Eq.(4) involves quantities and rates of
quantities which are purely elastic or purely plastic or total in their kine-
matical definitions. For example D is the total rate of deformation tensor
at the current configuration, Ee and its rate as well as F e and Ce = F eTF e,
are entirely elastic quantities, and most importantly the Dp

0 is a purely plas-
tic rate of deformation tensor at the intermediate configuration without any
elastic kinematical coupling which might jeopardize the physical meaning
of its constitutive expressions as in the previous case with Dp. As already
mentioned, the W p

0 = (Ḟ pF p−1)a is a kinematically free to choose quantity
and does not require any constitutive expression, as Dp

0 does; an example
is the so-called spinless configuration for which one sets W p

0 = 0. Eq. (4)

re-written as F eTDF e =
∇
Ee+(CeDp

0)s substitutes for the usual rate of de-
formation additive decomposition D = De + Dp of Eq.(2), and although
the latter has a simpler form, the former is addressing correctly the issue of
pure kinematical decoupling of elastic and plastic deformations, an issue of
paramount importance for the correct physical meaning attributed to elastic
and plastic constitutive relations.
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3 Embedding of internal variables, their rates and
the concept of plastic spin

The state of the material will be characterized by the stress and a set of in-
ternal variables defined at the intermediate reference configuration. These
variables will be either tensor-valued (restricted to second order symmetric
tensors) and denoted by Ai, or scalar-valued and denoted by Ki. The physi-
cal meaning of these variables is multiple; it ranges from internal stresses to
anisotropic directions (a vector direction enters the state functions as a ten-
sor product with itself, thus it becomes a tensor) for tensor-valued, and from
damage measure to dislocation density for scalar-valued. No matter what
the physical interpretation may be, the values of these variables at the in-
termediate configuration are related to their “image” at the initial reference
configuration by an appropriate plastic embedding reflecting their physical
interpretation. This issue has been examined from the perspective of elastic
embedding from the intermediate to the current configuration in what has
been called “physico-geometrical coupling” by Dafalias (2001). Here the
same issue is pursued from the perspective of plastic embedding described
above. One very important corollary of such embedding is the ensuing con-
vected or corotational rate at the intermediate configuration corresponding
to the rate at the initial configuration. In other words the definition of
an embedding implies the definition of a specific rate at the intermediate
configuration and vice-versa.

The analytical expression of the above can be succinctly stated as follows.
Let Ar

i denote the value of Ai at the initial reference configuration. The
possible plastic convected embeddings relating Ar

i to Ai are as follows.

Convected embeddings:

(a) Contravariant: Ar
i = |F p|wi F p−1AiF

p−T (5a)

(b) Covariant: Ar
i = |F p|wi F pTAiF

p (5b)

(c) Mixed 1: Ar
i = |F p|wi F pTAiF

p−T (5c)

(d) Mixed 2: Ar
i = |F p|wi F p−1AiF

p (5d)

with wi the weight of a relative tensor Ai and |F p| denoting the determinant
of F p.

A totally different “embedding” is related to a rotation from initial to
intermediate configuration measured by an orthogonal tensor Ri (RiR

T
i = I)

associated with each internal variable and being in general different from the
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orthogonal part Rp of the polar decomposition F p = RpUp = V pRp. Hence
one can express the rotational embedding as follows.

Rotational embedding:

Ar
i = |F p|wi RT

i AiRi (6)

Notice that in past publications the term |F p|wi of the relative tensor
was missing; this is a particular case of Eq.(6) with wi = 0.

Finally the embedding of a scalar-valued internal variableKi is expressed
by

Scalar embedding:

Kr
i = |F p|wi Ki (7)

It takes now only some straightforward algebra to take the rate of each

one of Eqs.(5) and obtain the expressions Ȧr
i = |F p|wi F px

∨
Ai F

py where
the exponents x and y correspond to the first and second exponents, respec-
tively, of F p in each one of the Eqs. (5), and a superposed ∨ denotes the
corresponding convected rate defined according to

∨
Ai = Ȧi + s

(i)
1 (AiD

p
0 + s

(i)
2 Dp

0Ai) + (AiW
p
0 −W p

0Ai) + wiAitrD
p
0

=
∇
Ai+s1(AiD

p
0 + s2D

p
0Ai) + wiAitrD

p
0

(8)

where in reference to Eqs.(5) the s
(i)
1 and s

(i)
2 acquire the values s

(i)
1 = +1

for cases (b) and (d); s
(i)
1 = −1 for cases (a) and (c); s

(i)
2 = +1 for cases (a)

and (b); s
(i)
2 = −1 for cases (c) and (d).

The Jaumann rate

∇
Ai = Ȧi −W p

0Ai +AiW
p
0 (9)

is defined in regards to the plastic material spin (Ḟ pF p−1)a = W p
0 as it was

done for
∇
Ee in Eq.(4). In the foregoing and several equations to follow, use

of the relation | Ḟ p| = |F p| trDp
0 is made.

For the rotational embedding of Eq.(6) the same process is followed, but
now two new concepts arise, those of the constitutive and plastic spins as

follows. The rate of Eq.(6) yields Ȧr
i = |F p|wi RT

i

◦
AiRi with a superposed ◦

denoting the corotational rate
◦
Ai = Ȧi−ωiAi+Aiωi+wiAitrD

p
0 in regards
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to the so-called constitutive spin ωi = ṘiR
T
i (Dafalias, 1998). It is clear

that the definition of Ri implies the definition of ωi by differentiation with
respect to time, and vice-versa for a given ωi one obtains a corresponding
Ri by integration in time. The definition of either ωi or Ri is a constitutive
ingredient associated with the rotational embedding of the corresponding
internal variable Ai. There are in general as many ωi as the rotationally
embedded Ai. The first introduction of the concept of constitutive spin
(although not named likewise) was made by Mandel (1971) who associated
it with the spin of a triad of director vectors, usually associated with the
lattice spin of crystal plasticity. In doing so Mandel has introduced a com-
mon constitutive spin for all internal variables, a concept which was later
generalized to multiple constitutive spin by Dafalias (1993b).

Now it is important to focus on the definition of the plastic spin which
has been so often misinterpreted in several publications. The ωi is defined at
the intermediate configuration as something totally different than the plastic
material spin (Ḟ pF p−1)a = W p

0 , hence, one can always write (Dafalias,
2000):

W p
0 = ωi +W p

i (10)

with W p
i being the plastic spin associated with a specific rotationally em-

bedded internal variable Ai, different from the plastic material spin W p
0 . A

common error is to consider the plastic material spin W p
0 as the plastic spin,

instead of W p
i , possibly because of the similarity of name and because the

former is created by the rate of F p. The W p
0 is a kinematical variable associ-

ated with the orientation rate (but not deformation rate) of the intermediate
configuration, while the plastic spin W p

i is in general different for each rota-
tionally embedded internal variable (multiple constitutive and plastic spins)
and represents a constitutive ingredient of the rate equation of evolution
of the corresponding internal variable as shown in the sequel. Notice that
when there is zero plastic rate of deformation, i.e. (Ḟ pF p−1)s = Dp

0 = 0,
the plastic spin W p

i = 0 as part of its constitutive nature, while the plastic
material spin W p

0 may be non zero since the intermediate configuration is
allowed to take arbitrary orientations by arbitrary spinning measured by
W p

0 . To this extend zero plastic rate of deformation does not necessarily
mean Ḟ p = 0, as erroneously is often assumed bypassing the possibility of
spinning without deformation. One specific orientation of the intermediate
configuration may be associated with the so-called spinless configuration for
which W p

0 = 0 always; in this case it follows from Eq.(10) that ωi = −W p
i .

With the above explanations and the key Eq.(10) exhibiting the funda-
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mental difference between the plastic material spin and the plastic spin for
each rotationally embedded internal variable, one can rewrite the corota-

tional rate
◦
Aiby substituting ωi = W p

0 −W p
i and obtain

◦
Ai = Ȧi−ωiAi+Aiωi+wiAitrD

p
0 =

∇
Ai−(AiW

p
i −W p

i Ai)+wiAitrD
p
0 (11)

in terms of
∇
Ai as defined in Eq.(9). Eq.(11) with the corotational rate for the

rotational embedding of Ai, is the counterpart of Eq. (8) with the convected
rate for the convected embedding of Ai.

Finally the scalar embedding of Ki as per Eq.(7) yields the rate equation

K̇r
i = |F p|wi

∨
Ki with

∨
Ki = K̇i + wiKitrD

p
0 (12)

The importance of the rate expressions (8), (11) and (12), lies in their
use for the rate equations of evolution of the corresponding internal variables
during plastic loading; in other words these are the proper constitutive rates
for those variables emerging directly from the physico-geometrical coupling
of their embedding from the initial to the relaxed intermediate configura-
tion. Notice that while the corotational rate of Eq.(11) was considered in
past theories associated with the plastic and constitutive spins, here one
adds a new family of constitutive rates, the convected ones expressed by
Eqs. (8) and being independent of plastic spin, hence the words “beyond
the plastic spin” of the title of this work. In simple terms one may state
that the constitutive and plastic spins express the need for differentiating
the deformation and rotation of the continuum from an underlying substruc-
ture (Dafalias, 1987, 1998) with which the rotationally embedded internal
variables are associated, while the plastic convected embedding is related to
internal variables which evolve in association with the plastic deformation
of the continuum with no reference to any substructure. Clearly these two
types of embedding reflect very different physics characterizing the definition
and rate evolution of the corresponding variables.

4 Rate equations and loading index

4.1 Rate equations

The plasticity equations are in essence rate equations for the kinematical
and internal variables. The kinematical variables were defined by Eq. (3) as
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the plastic rate of deformation Dp
0 and the plastic material spin W p

0 at the
intermediate configuration. It is very important to understand that only
Dp

0 is defined by constitutive relations while the W p
0 acquires any value one

desires reflecting the arbitrariness of the orientation of the intermediate con-
figuration; one such value is W p

0 = 0 for the so-called spinless configuration,
Dafalias (1998). Thus, one can write for Dp

0

Dp
0 =< λ > Np

0 (13)

where Np
0 is a tensor-valued function of the state variables (stress and inter-

nal variables), part of the constitutive formulation, and λ is the scalar-valued
plastic multiplier or loading index whose sign defines loading/unloading in
conjunction with the Macauley brackets <>, where < λ >= λ if λ > 0,
and < λ >= 0 if λ ≤ 0. The value of λ will be defined in the sequel in
association with the consistency condition.

For the convected embedding of internal variables according to Eqs.(5),
the rate equation of evolution is expressed in terms of the corresponding
convected rate of Eq.(8) and reads

∨
Ai =< λ > Āi (14)

where Āi is a tensor-valued function of the state variables (stress and in-
ternal variables). By stating Eq.(14) it is tacitly assumed that the same
< λ > controls simultaneously the appearance of plastic rate of deformation
as per Eq.(13), and the evolution of internal variables. In other words it is
only when plastic deformation takes place that internal variables evolve in
the way expressed by Eq. (14). In order to appreciate also the constitutive
meaning of Eq.(14) notice that according to the relation in the paragraph

preceding Eq.(8), the
∨
Ai = 0 at the intermediate configuration implies that

Ȧr
i = 0 at the initial configuration. This interrelation expresses the corre-

sponding physico-geometrical coupling for the internal variable Ai. Since

the
∨
Ai definition in Eq.(8) depends on Dp

0, it follows that the completeness
of Eq.(14) relies on Eq. (13).

For the rotationally embedded internal variables according to Eq.(6),
the corresponding co-rotational rate of Eq.(11) is the one used in the rate
equation of evolution according to

◦
Ai =< λ > Āi (15)
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where again Āi is a tensor-valued function of the state variables and the
appearance of < λ > implies the simultaneous occurrence of plastic defor-

mation. Notice that trDp
0 enters the definition of

◦
Ai, hence, Eq.(13) must

be employed in Eq.(15). Most importantly, the definition of
◦
Ai in Eq.(11)

includes also the plastic spin W p
i , thus, Eq.(15) is not complete until one

specifies the plastic spin associated with the corresponding internal variable.
Here is where the theory of Plastic Spin (Dafalias, 1985) enters the picture.
The plastic spin determination by a constitutive equation is not but a con-
stitutive ingredient of the constitutive relation expressed by Eq.(15), and
has been again erroneously considered in many past publications as an issue
of kinematics rather than a constitutive issue. Following the development
and notation of Dafalias (1985, 1998) one can then write

W p
i =< λ > Ωp

i (16)

where Ωp
i is a tensor-valued antisymmetric function of the state variables

(stress and internal variables), and the appearance of < λ > implies the
simultaneous occurrence of plastic deformations according to Eq.(13) for
plastic spin to be non-zero. Use of Eq.(16) renders Eq.(15) complete.

Finally for the scalar-valued internal variable Ki one can write the fol-
lowing rate equation based on Eq.(12)

∨
Ki =< λ > K̄i (17)

with simultaneous use of Eq. (13) for Dp
0 entering the expression of

∨
Ki, and

K̄i a scalar-valued function of its argument.
The convected and corotational rates of Eqs. (14) and (15) are objective,

thus, it follows that the corresponding Āi are isotropic symmetric tensor-
valued functions of their arguments in order to satisfy objectivity. Similarly,
in Eq.(10) the spins W p

0 and ωi are not objective but their difference, the
plastic spin W p

i , can be shown to be objective (Dafalias, 1983), thus, the
Ωp
i is also objective, which means it must be an isotropic antisymmetric

tensor-valued function of the state variables. The isotropy of Āi and Ωp
i

allows their analytical expressions to be obtained rigorously from the rep-
resentation theorems of isotropic functions (Wang, 1970, Smith, 1971), and
such expressions were first proposed in Dafalias (1983, 1984, 1985a,b) and
Loret (1983). Objectivity imposes also isotropy for K̄i of Eq.(17).

It will be expedient now to put all above rate equations for the tensor-
valued internal variables Ai into a common expression, irrespective of the



334 Yannis F Dafalias

kind of embedding. This will be achieved by solving for the Jaumann coro-

tational rate
∇
Ai (Eq. (9)) which appears in both Eqs. (8) and (11), and

simultaneously use Eqs. (13), (14), (15) and (16), to finally obtain after
some algebra

∇
Ai = Ȧi −W p

0Ai +AiW
p
0

=< λ > [Āi − s
(i)
1 ε(AiN

p
0 + s

(i)
2 Np

0Ai)

+ (1− ε)(AiΩ
p
i − Ωp

iAi)− wiAitrN
p
0 ]

(18)

where s
(i)
1 and s

(i)
2 acquire the values +1 or -1 according to the kind of

convected embedding of Ai as described after Eq.(8), ε = 1 for convected
embedding and corresponding convected rates of Eqs. (5) and (8), respec-
tively, and ε = 0 for rotational embedding and corresponding corotational
rate of Eqs. (6) and (11), respectively.

4.2 Loading index

With the constitutive functions Np
0 , Ω

p
i and Āi given, the plastic rate of

deformation tensor Dp
0 in Eq.(13) and the evolution Eq.(18) for each internal

variable Ai, requires only the specification of the loading index λ in order to
become complete since the plastic material spin W p

0 can be given any value,
Dafalias (1998). It will be necessary to first introduce the yield surface in
stress space whose analytical expression is given by

f(Π, Ai,Ki) = 0 (19)

where Π is the 2nd Piola-Kirchhoff stress tensor, related to the Cauchy stress
tensor σ according to Π = |F e|F e−1σF e−T and being conjugate of the Green
strain tensor Ee in regards to a Helmholtz free energy function Ψ(Ee, Ai,Ki)
according to

Π = ρ0
∂Ψ

∂Ee
(20)

where ρ0 is the mass density at the intermediate configuration changing
during plastic deformation. For future reference notice that ρ̇0 = −ρ0trD

p
0 =

− < λ > ρ0N
p
0 .

In order to satisfy objectivity the f and Ψ must be isotropic functions
of their arguments Π, Ai,Ki,E

e (recall that the intermediate configuration
where the Π, Ai,Ki,E

e are defined, can be arbitrarily oriented). For a scalar-
valued or a second order tensor-valued function, Dafalias (1985) has shown
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that the rate of such function can be expressed in terms of any corotational
rate for the function and its arguments (of course the rate of a scalar-valued
entity is always the usual material time derivative). This property has been
extended to an arbitrary order tensor-valued function by Hashiguchi (2003).
Applying this result to the rate of f , the consistency condition of plasticity
is expressed as

ḟ =
∂f

∂Π
: Π̇ +

∂f

∂Ai
: Ȧi +

∂f

∂K
K̇ =

∂f

∂Π
:
∇
Π+

∂f

∂Ai
:

∇
Ai+

∂f

∂Ki
K̇i = 0 (21)

where the corotational rates
∇
Π and

∇
Ai are defined in regards to the plastic

material spin W p
0 (see also Eq.(9)). Summation over i is now implied. It

suffices now to introduce in Eq.(21) the expression (18) for
∇
Ai and the

expression K̇i =< λ > (K̄i − wiKitrN
p
0 ) for K̇i obtained from Eqs.(12),

(13) and (17), and making repeated use of the trace property of the product
of tensors AB : C = A : BC = BC : A = B : CA, solve for λ to obtain

λ =
Nn

0 :
∇
Π

∆
(22)

∆ = H + s
(i)
1 ε(s

(i)
2 Ai

∂f

∂Ai
+

∂f

∂Ai
Ai) : N

p
0

+ (1− ε)(Ai
∂f

∂Ai
− ∂f

∂Ai
Ai) : Ω

p
i

+ (wi
∂f

∂Ai
: Ai + wi

∂f

∂Ki
Ki)trN

p
0

(23a)

H = −(
∂f

∂Ai
: Āi +

∂f

∂Ki
K̄i) (23b)

where Nn
0 = ∂f/∂Π represents the gradient to the yield surface at Π, H is

the plastic modulus, often symbolized also by Kp, but here H is preferred in
agreement with the notation in Dafalias (1998) for ease of comparison. In
the above equations summation over i is implied even if i is repeated more

than two times in a term, and this includes the terms with s
(i)
1 and s

(i)
2 .

With λ given by Eqs. (22) and (23) in terms of the stress rate
∇
Π, Eq.(13)

allows the calculation of the plastic rate of deformation tensor Dp
0. What

is desirable however is to have an expression of
∇
Π in terms of the total rate
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of deformation tensor D, since this relation is fundamental in numerical
calculations. To this extend the first step is to express λ in terms of D.
To achieve this goal one takes the rate of Eq. (20) accounting for the fact
that Ψ is an isotropic function of Ee, Ai,Ki and so is its derivative with
respect to Ee, hence, its rate can be expressed in terms of any corotational
rate as done before for the rate of f . Considering such corotational rate
in relation to the plastic material spin W p

0 and accounting for the relation
∂Π/∂ρ0 = Π/ρ0, write

∇
Π =

ρ̇0
ρ0

Π+
∂Π

∂Ee
:

∇
Ee+

∂Π

∂Ai
:

∇
Ai+

∂Π

∂Ki
K̇i (24)

If one multiplies both sides of Eq.(24) by Nn
0 = ∂f/∂Π and then take the

trace of the product, the left hand side of the resulting equation will provide
the numerator of Eq.(22) which equals the loading index λ multiplied by
the denominator of Eq.(22). The right hand side of the resulting equation
will involve the rates ρ̇0 expressed by ρ̇0 = −ρ0trD

p
0 reflecting the mass

conservation in the intermediate configuration,
∇
Ee expressed by Eq. (4),

∇
Ai expressed by Eq.(18) and K̇i expressed by Eq. (12) in conjunction with
Eq.(17). The Dp

0 in these equations is expressed by Eq.(13) in terms of
λ. Consequently, the right hand side will also involve λ, hence, together
with the left hand side they provide an equation which can be solved for λ,
but now instead of the stress rate the term F eTDF e of Eq.(4) will appear
expressing λ in terms of D, as intended. This new expression for λ reads as
follows:

λ =
Nn

0 : L0 : F
eTDF e

∆+Nn
0 : Z

(25a)

Z = L0 : (C
eNp

0 )s − (CAi : Āi + CKiK̄i)

+ s
(i)
1 ε(s

(i)
2 AiCAi + CAiAi) : N

p
0

+ (1− ε)(AiCAi − CAiAi) : Ω
p
i

+ (Π + wiCAi : Ai + wiCKiKi)trN
p
0

(25b)

where ∆ is given by Eq. (23a), the summation over i is implied in Eq.(25b)
even if i is repeated more than two times in a term, and

L0 =
∂Π

∂Ee
= ρ0

∂Ψ

∂Ee ⊗ ∂Ee
(26)
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represents the fourth order tensor of elastic tangent moduli while

CAi =
∂Π

∂Ai
= ρ0

∂2Ψ

∂Ee ⊗ ∂Ai
; CKi =

∂Π

∂Ki
= ρ0

∂2Ψ

∂Ee ⊗ ∂Ki
(27)

are the fourth and third order elastoplastic coupling tensors, respectively,
due to the effect of the internal tensor-valued variables Ai and scalar-valued
variables Ki on the Helmholtz free energy Ψ, and by extension on the
elastic properties. Attention should be given as to how the various mul-
tiplications and trace operations among tensor-valued quantities are exe-
cuted in Eq.(25b) when they involve the fourth order tensors L0 = ∂Π/∂Ee,
CAi = ∂Π/∂Ai and the third order tensor CKi = ∂Π/∂Ki. Observe that all
these tensors are produced by partial differentiation of Π, thus, based on the
derivation of Eq.(25b) it follows that the trace operation of the term Nn

0 : Z
of Eq.(25a) takes place in regards to the first two indices of the fourth and
third order tensors, i.e to the indices of Π, while all other operations of multi-
plication and trace appearing in Eq.(25b) are executed in regards to the last
two indices of the fourth and last index of the third order tensors. For exam-
ple, omitting for simplicity the factor s

(i)
2 and the indices of Ai, Np

0 , CAi ,
and considering one terms of Z as an example, one can express as follows in
indicial notation the operation (AC+CA) : N = (AijCabjk+CabimAmk)Nki.
Observe that the indices a, b of the fourth order tensor Cabjk do not par-
ticipate in the operations and are kept to be used in the trace operation
Nn

0 : Z.

Substitution of Eq.(25a) in the terms of the right hand side of Eq.(24)
which involve λ in conjunction with Eq.(4) yields after some easy manipu-
lation the sought result

∇
Π = Λ : F eTDF e = (L0 −

Z ⊗Nn
0 : L0

∆+Nn
0 : Z

) : F eTDF e (28)

where Λ, as expressed clearly in Eq.(28), is the fourth order tensor of tan-
gent elastoplastic moduli. As already pointed out in Dafalias (1998), the
quantity F eTDF e is the work conjugate to Π because it can be shown that
(Π : F eTDF e)/ρ0 = (σ : D)/ρ with ρ0 and ρ the mass densities at the
intermediate and current configurations, respectively.

The new aspects of the foregoing formulation in comparison with the
formulation in Dafalias(1998) are as follows: (i) the internal variables Ai may
be embedded in a convected way with the plastically deforming continuum,
in addition to the rotational embedding associated with constitutive and
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plastic spins, hence, going beyond the plastic spin. This is reflected by the
value ε = 1 in Eqs. (23a) and (25b); (ii) scalar-valued internal variables
Ki were explicitly considered in addition to the tensor-valued Ai; (iii) all
internal variables, including convected and rotationally embedded as well as
scalar-valued, can be considered as relative scalars or tensors of order wi;
this is reflected by the non-zero value of wi in the relevant equations. Thus,
if one sets ε = 0 and wi = 0 as well as Ki = K̄i = 0 in Eqs.(23a) and (25b),
the denominators of Eqs. (21) and (25) in Dafalias (1998) are retrieved as
expected, since in this reference only rotationally embedded tensor-valued
internal variables were considered of weight wi = 0.

4.3 Alternative derivation of plastic multiplier

The derivation of the expressions (22) and (25) for the plastic multiplier
or loading index λ was largely based on applying the property of scalar or
tensor valued isotropic functions to have their rate expressed in terms of any
corotational rate, i.e a Jaumann rate in regards to any spin (Dafalias, 1985,
1988, Hashiguchi, 2003). This property was in fact applied in Eqs. (21)
and (24). An alternative way to derive the expression for λ will be briefly
presented in the sequel.

It was shown in Dafalias (1998) that for a scalar-valued isotropic function
of tensor valued variables such as the expression (19) for the yield surface
f(Π, Ai,Ki), used here for convenience, the following identity holds

Π
∂f

∂Π
− ∂f

∂Π
Π+Ai

∂f

∂Ai
− ∂f

∂Ai
Ai ≡ 0 (29)

where summation over i applies. The presence of the scalar valued Ki in f ,
not considered in Dafalias (1998), has no effect on the validity of identity
(29).

Similarly, for a tensor-valued function, chosen here for convenience to be
the stress tensor Π which is function of Ee, Ai,Ki since so is Ψ, Eq. (20),
Dafalias (1998) has proved the identity[

Ee ∂Π

∂Ee
− ∂Π

∂Ee
Ee +Ai

∂Π

∂Ai
− ∂Π

∂Ai
Ai

]
: ω +Πω − ωΠ ≡ 0 (30)

for any spin (antisymmetric tensor) ω, where summation over i applies.
The presence of the scalar-valued Ki in the arguments of Π in this presenta-
tion, not considered explicitly in Dafalias (1998), does not invalidate identity
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(30). Similarly to the comments after Eq.(27) on the implied indices oper-
ations of Eq.(25), in Eq.(30) the multiplication of the partial derivatives of
Π with other tensors and the subsequent trace operation with ω take place
without involving the indices of Π which remain as were before the partial
differentiation.

Consider now the consistency condition ḟ = 0 as in Eq.(21), but now use
the usual rates of the arguments Π, Ai,Ki of f = 0 instead of corotational
rates, and substitute for Ȧi the expression obtained from Eq.(18), and for
K̇i the expression obtained from Eq. (12) in conjunction with Eq.(17) to
obtain

ḟ =
∂f

∂Π
: Π̇ +

∂f

∂Ai
: Ȧi +

∂f

∂Ki
K̇i =

∂f

∂Π
: Π̇ +

∂f

∂Ai
: (W p

0Ai −AiW
p
0 )

+ < λ >
∂f

∂Ai
: [Āi − s

(i)
1 ε(AiN

p
0 + s

(i)
2 Np

0Ai) + (1− ε)(AiΩ
p
i − Ωp

iAi)

− wiAitrN
p
0 ]+ < λ >

∂f

∂Ki
(K̄i − wiKitrN

p
0 )

=
∂f

∂Π
: Π̇ + (Ai

∂f

∂Ai
− ∂f

∂Ai
Ai) : W

p
0+ < λ > [

∂f

∂Ai
: Āi +

∂f

∂Ki
K̄i

− s
(i)
1 ε(s

(i)
2 Ai

∂f

∂Ai
+

∂f

∂Ai
Ai) : N

p
0 − (1− ε)(Ai

∂f

∂Ai
− ∂f

∂Ai
Ai) : Ω

p
i

− (wi
∂f

∂Ai
: Ai + wi

∂f

∂Ki
Ki)trN

p
0 ] = 0

(31)

Based on identity (29), the first two terms of the last member of Eq.(31)
can be written as:

∂f

∂Π
: Π̇ + (Ai

∂f

∂Ai
− ∂f

∂Ai
Ai) : W

p
0 =

∂f

∂Π
: Π̇− (Π

∂f

∂Π
− ∂f

∂Π
Π) : W p

0

=
∂f

∂Π
: (Π̇−W p

0Π+ΠW p
0 ) =

∂f

∂Π
:
∇
Π

(32)

Inserting the expression (32) in Eq.(31) and solving for λ yields Eqs.(22)
and (23a,b) exactly, QED.

In what follows let us re-write for simplicity of notation Eq. (18) as
Ȧi =< λ > Āc

i + W p
0Ai − AiW

p
0 , where the Āc

i includes all terms in [ ] of
Eq.(18), and also rewrite K̇i =< λ > (K̄i − wiKitrN

p
0 ) =< λ > K̄c

i with
obvious definition of K̄c

i . Take now the rate of Π, Eq.(20), as done in Eq.(24),
but now use regular rates for the variables Ee, Ai instead of corotational
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rates, express the rates of Ȧi and K̇i by the aforementioned equations , use
the mass conservation equation ρ̇0 = −ρ0trD

p
0 = − < λ > ρ0trN

p
0 and

finally use the identity (30) with ω = W p
0 to obtain

Π̇ =
ρ̇0
ρ0

Π+
∂Π

∂Ee
: Ėe +

∂Π

∂Ai
: Ȧi +

∂Π

∂Ki
K̇i

=
∂Π

∂Ee
: Ėe +

∂Π

∂Ai
: [< λ > Āc

i +W p
0Ai −AiW

p
0 ]

+ < λ > (
∂Π

∂Ki
K̄c

i −ΠtrNp
0 )

=
∂Π

∂Ee
: Ėe+ < λ > [

∂Π

∂Ai
: Āc

i +
∂Π

∂Ki
K̄c

i −ΠtrNp
0 ]

+ (Ai
∂Π

∂Ai
− ∂Π

∂Ai
Ai) : W

p
0

=
∂Π

∂Ee
: Ėe+ < λ > [

∂Π

∂Ai
: Āc

i +
∂Π

∂Ki
K̄c

i −ΠtrNp
0 ]

− (Ee ∂Π

∂Ee
− ∂Π

∂Ee
Ee) : W p

0 − (ΠW p
0 −W p

0Π)

(33)

It is easy to see now that transferring the term ΠW p
0 −W p

0Π at the left
hand side of Eq.(33) and observing that (Ee(∂Π/∂Ee) − (∂Π/∂Ee)Ee) :
W p

0 = (W p
0E

e − EeW p
0 ) : (∂Π/∂E

e), one can rewrite Eq.(33) as

∇
Π =

∂Π

∂Ee
:

∇
Ee+ < λ > [

∂Π

∂Ai
: Āc

i +
∂Π

∂Ki
K̄c

i −ΠtrNp
0 ] (34)

With the foregoing definitions of Āc
i and K̄c

i one can straightforwardly
show that Eq.(34) is identical to Eq.(24), hence, the same steps can subse-
quently be taken to derive Eqs.(25a,b), QED. It should be observed that it
is not really surprising that this alternative method of obtaining the expres-
sion for the loading index λ using the identities expressed by Eqs. (29) and
(30) for isotropic functions, yields the same answer as the previous method
which was based on the property of isotropic functions to have their rates
expressed in terms of corotational rates in regards to any spin; the reason
is that the derivation of the former (i.e. the identities) was based on the
latter property about corotational rates, as shown in Dafalias (1998).

5 Conclusion

The main contribution of this work is to re-examine the formulation of the
constitutive relations framework under finite plastic deformations when the
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tensor-valued internal variables entering the yield surface are embedded into
the plastically deforming continuum in a convected way, thus, extending the
previous case of rotational embedding associated with the concepts of consti-
tutive and plastic spins. The choice of the embedding in association with the
plastic deformation, reflects what has been called Physico-Geometrical cou-
pling in Dafalias (2001) for embedding with elastic deformation. Exploiting
certain properties of scalar-valued and tensor-valued isotropic functions of
scalar-valued and tensor-valued variables, it was possible to derive explicit
expressions for the loading index or plastic multiplier λ in two different
but equivalent ways, by solving the consistency condition for it. Additional
novelties of lesser importance are the explicit introduction of scalar-valued
internal variables and of relative, rather than only absolute, tensor-valued
variables of weight wi for either convected or rotationally embedded inter-
nal variables. It was interesting that no matter what kind of rotational or
convected embedding one considers, the formulation ends up with Jaumann
corotational rates at the intermediate configuration for either stress or in-
ternal variables in regards to the plastic material spin W p

0 , which can be
arbitrarily chosen at the intermediate configuration reflecting the arbitrary
orientation of the latter, including the choice W p

0 = 0 for the so-called spin-
less configuration Dafalias (1998). In the formulation general elastoplastic
coupling is assumed, one reason for the rather complex but explicit form
of the final equations, while the nature of the work is necessarily rather
technical.

In addition to the aforementioned contributions, the opportunity was
given to discuss and clarify again two important points in regards to formu-
lations of finite elastoplastic deformations: 1.The erroneous interpretations
attributed in the past to the notion of plastic spin, usually confusing it with
the distinctly different plastic material spin (antisymmetric part of the plas-
tic velocity gradient at the intermediate configuration), and 2. The equation
derived in Dafalias (1998), which within the framework of the multiplica-
tive decomposition of the deformation gradient provides a purely elastic and
purely plastic decomposition of rates of deformation, as opposed to the prac-
tice of a direct decomposition of the total rate of deformation into an elastic
and a plastic part, with the latter not being purely plastic. In many respects
the present work is an extension of and supplement to the previous work by
Dafalias (1998), going beyond the plastic spin in considering the convected
embedding of tensor-valued internal variables with the plastic deformation.
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Konačne elastoplastične deformacije: izvan plastičnog spina

U radu se analizira primjena unutrašnjih promjenljivih tenzorskog karak-
tera u konstitutivnoj analizi plastičnih deformacija, sa posebnim akcentom
na vezu izmedju geometrijske karakterizacije deformacije i fizičkih svojstava
opisanih unutrasnjim promenljivim. U ranijim radovima uobičajeno se pret-
postavljalo da su unutrasnje promjenljive tokom deformacije korotacione sa
materijalnom substrukturom, ali ne i sa kontinuumom. Ovo je rezultiralo
uvodjenjem koncepta konstitutivnog i plastičnog spina za svaku unutrasnju
tenzorsku promenljivu. Opisani pristup je prosiren u ovom radu sa korota-
cione na konvektivnu prirodu ponasanja unutrasnjih promenljivih. Koristeći
odgovarajuća svojstva izotropnih tenzorskih funkcija, princip materijalne
objektivnosti i uslov plastične konsistentnosti, izvedeni su novi izrazi za in-
deks plastičnog opterećenja.
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