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Abstract

The micromechanics based on the Hill-Mandel condition indicates that the majority
of stochastic finite element methods hinge on random field (RF) models of material
properties (such as Hooke’s law) having no physical content, or even at odds with
physics. At the same time, that condition allows one to set up the RFs of stiffness
and compliance tensors in function of the mesoscale and actual random microstruc-
ture of the given material. The mesoscale is defined through a Statistical Volume
Element (SVE), i.e. a material domain below the Representative Volume Element
(RVE) level. The paper outlines a procedure for stochastic scale-dependent homog-
enization leading to a determination of mesoscale one-point and two-point statistics
and, thus, a construction of analytical RF models.

Keywords: random media, random fields, mesoscale, anisotropy, stochastic finite
elements, multiscale methods, uncertainty quantification

1 Motivation behind the stochastic finite elements
(SFE)

With the advent of ”multiscale methods”, the contemporary solid mechanics be-
gins to recognize the hierarchical structure of materials, but hardly their statistical
nature. The latter aspect has been present in computational mechanics through
the so-called stochastic finite elements (SFE). There has not been much connection
between the two: the multiscale methods remain mostly deterministic, while the
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SFE has been oblivious to multiscale issues such as micromechanics, homogeniza-
tion and upscaling. Clearly, there is a need to connect both fields so as to develop
a multiscale stochastic mechanics.

Now, a mechanical/aerospace/civil engineer wants to be able to predict tran-
sient displacements, velocities and stresses. For example, in the realm of geome-
chanics, prediction of dynamic, not just quasi-static, responses is crucial to safe
placement and operation of the ground-based infrastructure (buildings, bridges,
etc.). This critical need is highlighted by accidents and disasters where large,
usually subterranean energies are being released from, say, gas pipe explosions,
earthquakes, and mine and tunnel collapse. Conventional analyses of such events
are based on rather simple models of continuum mechanics set up on deterministic,
homogeneous fields of mass density and material properties. Such simplifying as-
sumptions are in stark contrast to the highly heterogeneous nature of solids, soils
and rocks where the separation of scales can hardly be justified. Clearly, a new
generation of models is needed: formulation of constitutive equations for multiscale
stochastic materials and development of solution methods for static and transient
dynamic responses.

These challenges are expounded in Fig. 1, where a wavefront propagates from
a buried source (e.g. gas main). As the wavefront evolves, its thickness broadens
by one or two orders of magnitude, it attenuates geometrically and viscoplastically.
However, the evolution is non-deterministic because the microstructure being en-
countered is spatially random; in fact, there may be a (dry or water-saturated)
porous medium on very fine length scales, accompanied by a network of large cracks
on a larger length scale. As the wavefront broadens, the material properties that
are to enter the mechanics model should be smeared out over ever larger length
scales [1]. In this composite figure we also illustrate a possibility that the wave-
front encounters a geological stratification beyond which the structure is that of a
compacted granular medium. Thus, we need a method for homogenizing random
heterogeneous microstructures in function of the wave length and the length scale
of a typical grain size d is that of stochastic (rather than deterministic) wave prop-
agation. As already established in the context of shock and acceleration waves in
one-dimensional (1-D) random media [e.g. 2,3], a deterministic evolution − based
on a straightforward averaging of material parameters − differs from that found in
a stochastic model with material randomness present.

2 A brief review of phenomenological SFE

Figures 1 and 2 point to situations where the separation of scales

d ≪
d <

}
L ≪ Lmacro, (2.1)
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Figure 1: A schematic showing evolution of a wavefront in a random geological
medium with stratification and three different microstructures: porous, cracked, and
granular.

does not necessarily hold, which implies that we need a strategy to deal with ma-
terial properties below the representative volume element (RVE). This equation
as well as Fig. 2 shows three levels: (a) the microscale d, (b) the mesoscale L,
and (c) the macroscale Lmacro of the entire body domain for which we wish to
solve a boundary value problem. The mesoscale refers to the domain over which
we introduce a constitutive law, such as the wavefront thickness in Fig. 1. It is
a tacit assumption in conventional solid mechanics that L is sufficiently large to
allow the homogenization of the random microstructure and sufficiently small to
play the role of an infinitesimal element (i.e. RVE) relative to Lmacro. If that sepa-
ration of scales is not justified, only a random continuum can be used. As a result,
we need to establish some methods to deal with solution of macroscopic boundary
value problems having the mesoscale SVE as input. Such problems are necessarily
stochastic, and this leads us to a formulation of random fields (RFs) of material
properties from the statistical volume element (SVE) information, and their input
into numerical methods leading then to so-called stochastic finite element (SFE )
and stochastic finite difference methods.
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Figure 2: (a) A Boolean model of a random material; (b) a mesoscale continuum
approximation, modeling smoothly inhomogeneous medium by placing a mesoscale
window in the microstructure of (a); (c) a macroscopic body.

The strategy of conventional SFE is different: in that they basically proceed
as follows: (i) assume a RF of constitutive coefficients, (ii) use it as input into the
global FE scheme, usually based on the minimum potential energy principle, and
(iii) derive the global response either for the first two moments or for the ensemble
in the Monte Carlo sense [4-13]; see a critical review in [14]. In the following we
will briefly review the basic tenets of the SFE, but first we observe that, given a
deterministic field equation in mechanics

Lu = f , (2.2)

randomness may enter through either the operator (i.e., material properties), the
forcing function (temporal in nature), or the boundary and/or initial conditions.
However, the choice of randomness of forcing f in time is fundamentally different
from the randomness of the field operator L in physical space. The point is that
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f(ω, t) in (2.2) implicitly involves some local averaging in the time domain

f∆t(ω, t) =
1

∆t

∫ t+∆t/2

t−∆t/2

f(ω, t′)dt′, (2.3)

which is needed to smear out fluctuations in, say, wind forcing on a structure,
over time scales too short to have any influence on the oscillator. Commonly the
subscript ∆t in f on the left hand-side is suppressed, and we simply write f(ω, t).
On the other hand, the local averaging in physical space is not consistent with the
concepts of micromechanics, and, as shown in Chapter 7, should be replaced by
stochastic homogenization, which, by offering three optional boundary conditions,
leads to a non-uniqueness of continuum approximation. Now, if local averaging
is applied to a stiffness (respectively, compliance) tensor field, it yields a Voigt-
type (Reuss-type) estimate of stiffness (compliance) for some spatial domain of the
microstructure. As discussed in Section 3.1, the local (or spatial) averaging should
be applied to the energy density, thus yielding the Hill-Mandel condition as a basis
for scale-dependent constitutive laws.

Most of the SFE studies are based on a direct generalization of Hooke’s law
to RFs restricted to the case of weak fluctuations in material properties, whereby
the stiffness matrix is expressed as the sum of the mean [K] and the random noise
K ′(ω)

[K(ω)] = ⟨[K]⟩+ ϵ [K ′(ω)] , ω ∈ Ω, ϵ ≪ 1. (2.4)

Perturbation method This approach consists in a replacement of the random
system by a (theoretically infinite) number of identical deterministic systems each
of which depends on the solution for the lower order equations. Thus, to second
order, for the static problem − [K(ω)] {U} = {f} − the solution is expressed as
the sum

{U} = {U0}+ ϵ{U1}+ ϵ2{U2}, ϵ ≪ 1. (2.5)

This leads to a system of equations

{U0} = ⟨[K]⟩−1 {f} ,
{U1} = −⟨[K]⟩−1

[K ′(ω)] {U0} ,
{U2} = −⟨[K]⟩−1

[K ′(ω)] {U1} .
(2.6)

Neumann series method This method [15], is based on a Neumann series
for the inverse of the random operator [K(ω)], which takes the following form

[K(ω)] = (I − P (ω) + P 2(ω)− P 3(ω) + ...) ⟨[K]⟩−1

P (ω) = ⟨[K]⟩−1
[K ′(ω)] .

(2.7)

The approach was introduced as an avenue for a speedier way of solving the stochas-
tic problem by a Monte Carlo simulation. To that end, also a Cholesky decompo-
sition of [K(ω)] is implemented.
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Weigthed integral method This method, in the setting of an elastic plate
problem [16], begins with a locally isotropic RF of, say, Young’s modulus and assign
it to all the finite elements according to

iE(ω,x) =
⟨
iE

⟩
+
[
1 +i f(ω,x)

] ⟨
if
⟩
= 0. (2.8)

Next, the stiffness matrix of each element of iV is calculated as[
iK(ω)

]
=

∫
iV

[iB]T [C(ω)] [iB]dx =
[
iK0

]
+i X0(ω)

[
∆iK0(ω)

]
, (2.9)

where
[
iK0

]
and

[
∆iK0(ω)

]
are deterministic matrices, while iX0(ω) is a random

variable given as

iX0(ω) =

∫ i

iV

f(ω,x)dx. (2.10)

From a micromechanics standpoint, this approach gives a Voigt-type estimate
(bound) for the effective stiffness of the i -th finite element. Similarly, if applied to
the compliance, it would yield a Reuss-type estimate of flexibility. The microme-
chanics tells us that such estimates are crude and, in principle, both of these should
be used to bound the overall material response.

Spectral method It is well known that, in a representation of a random func-
tion by a Fourier series, the coefficients of the expansion become, in general, cor-
related. In order to retain the uncorrelatedness while obtaining the desired or-
thogonality of random coefficients, a Karhunen-Loéve expansion [17] is introduced.
This idea has been employed in [7] to represent the spatial variability of the RF
of Young’s modulus E such as in (2.8). This method claims not to be limited to
weak fluctuations and to avoid the inconsistencies between various other methods
involved in the inversion of the random stiffness matrix [K(ω)]. Also, it is designed
to do away with the problem of dealing with a large number of random variates
resulting from a pointwise representation of the RF E(ω,x). However, besides hav-
ing convergence problems and no link to the microstructure, this approach admits
realizations of fields having negative (!) stiffnesses on finite domains [18,44].

3 From micromechanics to SFE

3.1 The Hill-Mandel condition

The last decade has seen active growth of two disciplines: multiscale mechanics
(MM) and uncertainty quantification (UQ). The MM models overwhelmingly take
a deterministic form. The UQ is in a dire need of stochastic mechanics models linked
to microstructures which are intrinsically random and, therefore, cause statistical
scatter in response. The standard tool in the latter area consists of (i) RF modeling
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of materials and (ii) stochastic finite elements (SFE), which typically start with the
following Ansatz:

(a) Let’s take Young’s modulus E as a RF with smooth realizations over the
macroscopic material domain D, perhaps with Poisson’s ratio ν as another RF or
just a constant:

{E (x, ω) ;x ∈ D,ω ∈ Ω} , {ν (x, ω) ;x ∈ D,ω ∈ Ω} . (3.1)

Here ω stands for an elementary event in the probability space Ω, obviously indexing
one realization.

(b) Use the vector RF (E, ν) as input into the SFE model, which involves a
partitioning of D into elements (e):

D = ∪N
e=1De (3.2)

and prescribing the (E, ν) fields over each and every finite element domain De to
its stiffness matrix Ki either by using local (i.e. volume) averaging or some other
ad hoc (i.e. not micromechanically justified) scheme. Next, the conventional SFE
methods employ a minimum potential energy principle without any reference to the
definition of the representative volume element (RVE) and its size for a particular
material system.

Also note that (E, ν) is not a well-posed RF because E and ν are entries
of the fourth-rank stiffness tensor field, whose eight-rank tensor correlation (or
covariance) function should correctly transform under rotations according to the
SO(3) group. Additionally, ν is a secondary elastic constant as opposed to E.
Indeed, the micromechanics tells us that (κ, µ) − i.e. the bulk and shear moduli −
is a much better pair when working with isotropic materials.

Let us observe:

1. A smooth realization of the scalar RF E with ν constant does not correspond
to any physical material, except for the non-random case when ν is constant.

2. Taking both E and ν as RFs with smooth realizations still does not cor-
respond to any specific material, and, assuming a spatial gradient in properties
(E, ν), contradicts the assumption of isotropy.

3. One may rectify this ”isotropy problem” by adopting a RF of the stiffness
tensor:

{Cijkl (x, ω) ;x ∈ D,ω ∈ Ω} , (3.3)

but, then, one has to ask: Is any stiffness tensor field realization Cijkl (ω) of such
a RF consistent with the Hill (or Hill-Mandel [19-22]) condition? If the Cijkl RF
is chosen according to the Hill-Mandel condition, then, as discussed below, it is
anisotropic with probability one, non-unique, and scale-dependent: the larger is
the scale of domain relative to the microscale (e.g. grain size), the smaller is its
coefficient of variation.
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4. Suppose such a scale-dependent RF consistent with micromechanics has
been set up, a stochastic (or flexibility) stiffness matrix for any domain can readily
be formulated.

This upscaling is explained as follows: The Hill-Mandel condition is an expres-
sion of equivalence of an energetic-type and a mechanical-type formula-
tion of the constitutive response of any heterogeneous material at any given
point x (for any specific realization B(ω) ∈ B of the random medium occupying
the domain D centered at x):

σ(ω): ε(ω) = σ(ω) : ε(ω), (3.4)

where an overbar stands for the volume averaging. For an unbounded space domain
(δ → ∞), (4) is trivially satisfied and the randomness vanishes, Fig. 2. Here

δ = L/d (3.5)

is a mesoscale, with L being the size of domain D and d the typical microscale
(grain size). As is well known, the necessary and sufficient condition for (4) to hold
is ∫

∂Bδ

(t− σ · n) · (u− ε · x)dS = 0, (3.6)

which dictates the loading of B(ω) on its boundary ∂Bδ, under the condition of
strong ellipticity of all the phases. Clearly, (6) is satisfied by three different types of
boundary conditions on the mesoscale: uniform displacement (or essential, Dirich-
let) (d)

u(x) = ε0 · x ∀x ∈ ∂Bδ; (3.7)

or uniform traction (or natural, Neumann) (t)

t(x) = σ0 · n ∀x ∈ ∂Bδ; (3.8)

or uniform displacement-traction (also called orthogonal-mixed) (dt)

(u(x)− ε0 · x) · (t(x)− σ0 · n) = 0 ∀x ∈ ∂Bδ. (3.9)

Here we employ ε0 and σ0 to denote constant tensors, prescribed a priori and note,
from the strain average and stress average theorems: ε0 = ε (for perfect interfaces)
and σ0 = σ.

Note: Each of these boundary conditions results in a different mesoscale (or
apparent) stiffness, or compliance tensor for the statistical volume element (SVE).
These terms are used to make a distinction from the deterministic macroscale (or
effective, overall,...) properties that are typically denoted by eff in conventional
micromechanics [23,24]; while rigorously obtained, these properties (i.e. Ceff

∞ ) lack
a quantitative specification of the RVE size, especially when one turns to nonlinear
or inelastic materials.
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Now, for any given realization Bδ(ω) of the random medium B, (2.7) gives a
mesoscale stiffness tensor Cd

δ(ω) with the constitutive law

σ = Cd
δ(ω) : ε

0, (3.10)

which allows setting up of a stiffness matrix of the mesoscale finite element e directly
coinciding with the domain Bδ

K(ω) =

∫
De

BT ·C ·B dV. (3.11)

Upon collecting all K’s into a global stiffness matrix, one can set up a finite element
scheme from the minimum potential energy formulation. The tensors obey the
scaling hierarchy⟨

St
1

⟩−1 ≤ ... ≤⟨St
δ′⟩

−1 ≤ ⟨St
δ⟩

−1 ≤ ...≤ Ceff≤ ... ≤
⟨
Cd

δ

⟩
≤

⟨
Cd

δ′

⟩
≤ ...≤

⟨
Cd

1

⟩
∀δ′ = δ/2.

(3.12)
Here St

1 ≡ St
δ=1 and Cd

1 ≡ Cd
δ=1 , while ⟨·⟩ denotes the ensemble averaging, while

St
δ(ω) [ ̸= [Cd

δ(ω)]
−1

with probability one] is a mesoscale compliance tensor resulting
from (2.8) and defined according to

ε = St
δ(ω) : σ

0, (3.13)

which leads to a flexibility matrix of the mesoscale finite element

L(ω) =

∫
De

BT · S ·B dV. (3.14)

Upon collecting all L’s into a global flexibility matrix, one can set up a finite
element scheme from the minimum complementary energy formulation. This and
the preceding scheme lead to two bounds on the global response, characterized by
a competition of two opposing trends: the larger is the mesoscale, the weaker is the
random noise in L and F, but the coarser is the FE mesh. By the same token, the
finer is the FE mesh, the further apart are the tensors Cd

δ and (St
δ)

−1, which then
preclude a convergence of both FE schemes as would be the case in the absence of
any noise. Thus, there is an optimal FE size, or mesoscale δ, as has been shown
in anti-plane response of two-phase strongly random media [25] ... even at the
percolation point [26].

Note: Another possibility is to employ the third boundary condition, (2.9),
involving a combination of (2.4) and (2.5), to get a stiffness tensor Cdt

δ (ω) which
falls somewhere betweenCd

δ(ω) and [St
δ(ω)]

−1. One can then set up either a stiffness
or flexibility matrix, but the global FE solution would have no bounding character,
albeit with weaker scaling. A typical example is shown in Fig. 3.
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Figure 3: (a) Sample of a random matrix-inclusion composite. (b) Typical scaling
of stiffnesses resulting from uniform displacmeent, traction and two different mixed-
orthogonal boundary conditions.

Note: If the microstructural geometry and physical properties are described
by the isotropic statistics, then, at any finite δ, one expects some anisotropy of all
the mesoscale tensors with probability one, with isotropy that can be attained for
δ → ∞ [27,28]. Thus, the RFs have anisotropic realizations [29-31].

Note: Three properties are required for the derivation of such mesoscale bounds:

(i) Statistical homogeneity and ergodicity of the microstructure.

(ii) The Hill-Mandel condition leading to admissible boundary conditions, along
with the ellipticity of all the constituent phases assuring the validity of the mean
strain and stress theorems.

(iii) Variational principles of elasticity.

Note: While these mesoscale bounds are averages of first invariants of the
stiffness (under (3.17)) and compliance tensors (under (3.18)), the RFs need to
be specified in terms of the one-point and (at least) two-point statistics of these
tensors, e.g. [29,32] and Fig. 5 below. Once known, such statistics allow a rapid
generation of stochastic stiffness and flexibility matrices for the SFE problem at
hand. It follows that the mesoscale bounds and the RFs based on them can be
shown to hold for other than linear elastic materials, providing the properties (i-iii)
are appropriately generalized.
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Figure 4: The setup of random fields: from a piecewise-constant realization of
a composite to two approximating continua at a finite mesoscale [21]. Here the
superscript e stands for essential (i.e. displacement d), while n for natural (i.e.
traction t) boundary conditions.

3.2 Towards mesoscale random fields of elastic materials

We are interested in determining tensor RFs with continuum realizations, set up
on mesoscale (above the scale of heterogeneities),

Cδ = {Cδ (x, ω) ;x ∈ B,ω ∈ Ω} . (3.15)

For the sake of a simple exposition, let us first consider the anti-plane elasticity
and work with the second-rank tensor Cij = Ci3j3 (i, j = 1, 2) as a special case
of the 4th rank stiffness tensor. To be able to set up a global stiffness matrix
for mesoscale finite elements implies that one has to have a RF description of the
material’s stiffness field, for δ = 10, analogous to a RF of velocity in statistical
turbulence,

ρklij (x1,x2) =
⟨[Cij(x1)− ⟨Cij(x1)⟩][Ckl(x2)− ⟨Ckl(x2)⟩]⟩

σij(x1)σkl(x2)
. (3.16)

Here σij(x1) and σkl(x2) are the standard deviations of Cij(x1) and Ckl(x2), re-
spectively; these σ’s are not to be confused with the use of σ for the Cauchy
stress tensor. We focus on wide-sense stationary (WSS) random media and so the
WSS property carries over to mesoscale RF Cδ and ρ depends simply on the vector
x = x1 − x2.

In view of (2nd eqn above), we will have a fourth-rank tensor field as a function
not only of the distance x between both locations, but also of the mesoscale (res-
olution), the geometric distribution of two constituent phases (such as the volume
fraction vblack), and the contrast of both phases (α = Cblack/Cwhite). Thus,

ρklij = ρklij (x, δ, vblack, α). (3.17)



390 Martin Ostoja-Starzewski

Figure 5: Graphs of the correlation coefficients ρklij of mesoscale compliances St
δ,

at δ = 10: (a) ρ1111, (b) ρ1212; (c) ρ1211; (d) ρ2211. The material system is a random
chessboard [29].

By placing one mesoscale window at the origin of the coordinate system and another
at x, then finding both windows’ mesoscale stiffness tensors, and repeating the
process in Monte Carlo sense for many locations, we can find (17) for a specific δ,
see Fig. 8.4 in [11]. The next step will be to run the procedure for many different
δ’s, and then construct the best fit to all the results by starting from the already
available correlation functions of scalar RFs, such as [21]

ρ(x) = exp[−Axα], A > 0, 0 < α ≤ 2; (3.18)

ρ(x) = [1 + x2/l2]−a, a < 1/2; (3.19)

ρ(x) =
exp[−Axα]

1 +Bxα
, A,B > 0, 0 < α, β ≤ 2; (3.20)
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ρ(x) = exp[−
r∑

s=1

Axαs ], As > 0, 0 < αs ≤ 2, s = 1, ..., r; (3.21)

ρ(x) = [−
r∏

s=1

(1 +Bsx
βs)ls], Bs > 0, 0 < βs ≤ 2, ls = 1, 2, ...; (3.22)

ρ(x) =
(coshBxα)s

1 +Axα
, A+B(2l − s) > 0, 0 < α ≤ 2, s = 1, ..., r; (3.23)

where x = |x|.
To summarize, for any chosen mesoscale δ, there are two approximating tensor-

valued RFs, continuous-valued with continuous parameter x ∈ E2 or E3. They
describe the random material, in an approximate way, by two sets of realizations:
{Cd

δ(ω,x);ω ∈ Ω,x ∈R2} and {St
δ(ω,x);ω ∈ Ω,x ∈R2}, see Fig. 4 for a conceptual

picture. At every location x, these fields provide rigorous bounds on the material
response in the sense of the Hill-Mandel condition. As illustration, Fig. 5 shows
the correlation functions of mesoscale compliance tensors St

δ in anti-plane elasticity
of random disk-matrix composites.

4 Open challenges

While the scaling laws for several material systems such as those of Fig. 3(b)
(usually only in 2-D settings) are already known, the goal is to determine the one-
point and two-point statistics (i.e. correlation and structure functions) and build
the analytical RF models as outlined above. The work should generally proceed
along these lines:

1. Adopt a specific 3D model of a random material (e.g. consider Fig. 1).
That is, calibrate a mathematical morphology model via image analysis on several
available specimens [33, 34]. Note that the advantage of the model is that it allows
an arbitrarily large number of specimens Bδ(ω) = Bδ, for any given mesoscale δ,
to be generated very rapidly.

2. Set up the Hill-Mandel condition and corresponding uniform boundary con-
ditions.

3. Determine the hierarchies of scale-dependent bounds and scaling laws on
poroelastic response.

4. Assess the one- and two-point statistics of mesoscale response tensors, cov-
ering a range of scales, volume fractions and contrasts in material properties.

5. Develop analytical RF models of tensors in point 4., i.e. having anisotropic
realizations on finite mesoscales, yet tending to isotropic realizations as δ → ∞,
and possessing generally anisotropic correlation structures.
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6. Determine the one- and two-point statistics of mesoscale yield functions.
7. Generalize the above results to other than random linear elastic microstruc-

tures: large motions [35], coupled fields [36,37], saturated media [38], plasticity
(poroelasticity and thermo-poroelasticity) [39-42], or, say, dynamic loadings on
mesoscale [43], etc.

8. Motivated by Fig.1, generalize the WSS model to wider RF classes:
(a) Intrinsically stationary (locally homogeneous) RFs.
(b) Quasi-stationary RFs.

9. Synthesize the results of in ready-to-use formulas, maps and software mod-
ules that could be used by solid mechanicians working in all the fields that require
RF properties of materials and structures (e.g. multiscale mechanics, wave propa-
gation, biomechanics, geomechanics, etc.).

5 Closure

All the researchers employing multiscale mechanics in a wide variety of fields are
in need of a much improved understanding of materials’ responses accounting for
spatial randomness. At the same time, the stochastic finite element (SFE) methods,
which belong to the very basic tools of uncertainty quantification (UQ) are in need
of RF models consistent with mechanics. The review we presented here approaches
this subject matter from the standpoint of multiscale mechanics of random het-
erogeneous materials, based on scale-dependent homogenization of stochastic mi-
cromechanics (as embodied in the Hill-Mandel condition), combined with modern
RF theories.
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Stohastički konačni elementi: gde je tu fizika?

Mikromehanika zasnovana na Hill-Mandel-ovom uslovu ukazuje da većina stohastičkih
metoda konačnih elemenata počiva na RF (random field) modelima materijalnih
svojstava, koji su često u neslaganju sa fizikom problema. Istovremeno, ovaj
uslov omogućava da se formiraju RF tenzori krutosti i fleksibilnosti u funkciji
mikrostrukture analiziranog materijala na mezonivou. Mezonivo je definisan na
bazi statističkog zapreminskog elementa (SZE), koji je ispod materijalne skale
reprezentativnog zapreminkog elementa (RZE). U radu je formulisana procedura
homogenizacije, zavisna od stohastičkog nivoa, koja vodi odgovarajućoj na mezonivou
statistici i izgradnji analitičkih RF modela.
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