
A low/high frequency combined approach for the
identification of mechanical properties of composite

structural elements

Ivan Bartoli∗ Alessandro Marzani†

Theoret. Appl. Mech., Vol.39, No.1, pp. 1–25, Belgrade 2012

Abstract

A combined low/high frequency dynamic identification approach is pre-
sented. The proposed hybrid technique compares experimentally ex-
tracted dynamic properties of plates such as modal frequencies and
guided wave dispersion properties with the correspondent numerically
predicted ones. Identification of mechanical properties of the plates is
achieved by iteratively adjusting the mechanical properties assumed in
finite element and semi-analytical models through minimization of the
difference between experimental and predicted dynamic features.
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1 Introduction

Composite materials have been widely used in the mechanical and aerospace
industry and their use is becoming extremely diffused in civil engineering ap-
plications as well. The quality and mechanical properties of composite ma-
terials are highly dependent upon the production process. There are many
methods for manufacturing laminated composite components and different
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manufacturing or curing processes can result in variations of mechanical prop-
erties. Furthermore, even the most advanced manufacturing system is not
capable of producing different parts with perfectly constant and homoge-
neous properties. Obviously, knowledge of composite material properties is
indispensable in the design of structural components. Therefore, in order
to monitor the quality of the components at the end of any manufactur-
ing process, techniques capable of estimating their mechanical properties are
needed.

Unfortunately the characterization of mechanical properties of fiber re-
inforced composites presents more difficulties than the characterization of
traditional isotropic materials. The identification of the stiffness properties
is hampered by the anisotropy of the materials. Conventional static methods
for determining mechanical properties show several challenges. For exam-
ple determining Young’s moduli along different principle axes of symmetry
of orthotropic materials by classical mechanical approaches requires multiple
uniaxial tests. Unfortunately, these techniques are in general destructive ap-
proaches because they require cutting specimens to perform the tests in the
desired configuration and the determined properties are local as they are rep-
resentative of the specimen only and not necessarily coincide with the global
mechanical properties of the system. However global properties are typically
required in order to predict the global response of the structures obtained
assembling composite components.

These issues have motivated an increasing attention to global dynamic
identification approaches [1, 2, 3, 4]. Many composite components are in
the form of plates. These structures, of relatively simple geometry, can be
easily tested by non destructive vibration based tests. By modal analysis,
the vibration properties of these components (natural frequencies) can be
extracted and compared to the associated predicted quantities obtained by
updating the stiffness properties of accurate numerical models. The esti-
mated properties that minimize the difference between the numerical model
vibration properties and the correspondent experimental parameters can be
assumed as the global stiffness elastic constants. While the technique allows
the simultaneous identification of the majority of elastic constants/stiffness
parameters, constants that scarcely influence the natural frequencies such as
Poisson ratio and out of plane Shear constants are difficult to predict. The
difficulty of the problem increases when the number of layers in a composite
plate is large and the lay-up is complex leading to multiple solutions of the
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identification approach.

Different researchers have attempted to improve the identification proce-
dure using different estimators based on Least Square method [3], Bayesian
approach [5, 6, 7, 8] or Genetic algorithms [9] as well as employing refined
finite element models with high order deformation theory for thick plates to
account for out of plane deformation [8]. However, the small sensitivity of the
natural frequencies to transverse shear constants and Poisson’s ratio remains
the major challenge.

In this paper, the authors show how higher frequency vibrations (guided
waves) can bridge this gap in the identification approach. Guided waves are
potentially sensitive to all the mechanical constants. In particular, flexural
modes are affected by out of plane constants. A simple modification of the test
set-up and the use of higher frequency vibrations will be discussed to account
for guided waves. In the first part of the paper, the authors discuss the
identification procedure based on standard low frequency dynamic approach.
In the second part, modeling of guided waves and use of their dispersion
properties for parameter identification is shown.

2 Low Frequency dynamic identification

In this section a combined numerical-experimental method for the identifica-
tion of the mechanical properties of thick composite plates made of different
materials and with general stacking sequence is described. The approach
described is an extension of the work by Lai and Ip [5]. The identification
technique is performed by the comparison of experimental data with the re-
sults produced by numerical methods.

Modeling: The numerical model used is based on a first order shear defor-
mation theory [10] used in a finite element model and allows the prediction
of the dynamic behavior of the system. Fig.1 shows a rectangular composite
plate with N orthotropic layers. A Cartesian coordinate system (x,y,z) is
located in the middle plane. h, aand b represent the dimensions in the z-,
x- and y- direction, respectively. The k-th orthotropic layer has the fibers
rotated of an angle θk with respect to the xaxis. The in-plane displacements
u and vand the out-of-plane displacement w can be expressed according to
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Figure 1: Laminated composite plate.

the first shear deformation theory as follows [10]

u(x, y, z, t) = u0(x, y, t) + zβx(x, y, t)

v(x, y, z, t) = v0(x, y, t) + zβy(x, y, t)

w(x, y, z, t) = w0(x, y, t)

(1)

where u0, v0, w0 are the mid-plane displacements of the plate and βx, βy
are the rotations of the normal about the y and x- axes respectively. The
strain-displacement relations can be taken as

εx =
∂u0
∂x

+ z
∂βx
∂x

= ε0x + zχx, εy =
∂v0
∂y

+ z
∂βy
∂y

= ε0y + zχy

γxy =
∂u0
∂y

+
∂v0
∂x

+ z

(
∂βx
∂y

+
∂βy
∂x

)
= γ0xy + zχxy (2)

γxz = βx +
∂w0

∂x
, γyz = βy +

∂w0

∂y

For the k-th layer of the plate, the principal orthogonal material axes
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(1,2,3) are defined and the stress strain relations can be written as [10]
σk1
σk2
τk12
τk13
τk23

 =


C̄k
11 C̄k

12 0 0 0
C̄k
12 C̄k

22 0 0 0
0 0 C̄k

33 0 0
0 0 0 C̄k

44 0
0 0 0 0 C̄k

55



εk1
εk2
γk12
γk13
γk23

 (3)

where the normal stress σk3 is neglected and the transverse shear stresses τk13
and τk23 are included. In Eq.(3) σk1 , σ

k
2 and τk12 represent the in plane stresses;

εk1, ε
k
2, γ

k
12, γ

k
13 and γk23 are the strain deformation components. The plane

stress-reduced stiffnesses

C̄k
11 =

Ek
1

1− νk12ν
k
21

, C̄k
22 =

Ek
2

1− νk12ν
k
21

,

C̄k
12 =

νk12E
k
2

1− νk12ν
k
21

=
νk21E

k
1

1− νk12ν
k
21

(4)

C̄k
33 = Gk

12, C̄k
44 = Gk

13, C̄k
55 = Gk

23

are given as functions of the two Young moduli Ek
1 , E

k
2 , Poisson ratios νk12,

νk21 and elastic shear moduli Gk
12, G

k
13 and G

k
23. The transformed stress-strain

relations with respect to the reference system (x, y, z) can be obtained as
σkx
σky
τkxy
τkxz
τkyz

 =


Ck
11 Ck

12 Ck
13 0 0

Ck
12 Ck

22 Ck
23 0 0

Ck
13 Ck

23 Ck
33 0 0

0 0 0 Ck
44 Ck

45

0 0 0 Ck
45 Ck

55



ε0x + zχx

ε0y + zχy

γ0xy + zχxy

γkxz
γkyz

 (5)

where

Ck
11 = C̄k

11m
4 + 2

(
C̄k
12 + 2C̄k

33

)
n2m2 + C̄k

22n
4

Ck
12 =

(
C̄k
11 + C̄k

22 − 4C̄k
33

)
n2m2 + C̄k

12

(
n4 +m4

)
Ck
22 = C̄k

11n
4 + 2

(
C̄k
12 + 2C̄k

33

)
n2m2 + C̄k

22m
4

Ck
13 =

(
−C̄k

11 + C̄k
12 + 2C̄k

33

)
nm3 +

(
−C̄k

12 + C̄k
22 − 2C̄k

33

)
n3m

Ck
12 = Ck

21, Ck
31 = Ck

13, Ck
32 = Ck

23, Ck
45 = Ck

54

Ck
33 =

(
C̄k
11 + C̄k

22 − 2C̄k
12 − 2C̄k

33

)
n2m2 + C̄k

33

(
n4 +m4

)
(6a)
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Ck
23 =

(
−C̄k

11 + C̄k
12 + 2C̄k

33

)
n3m+

(
−C̄k

12 + C̄k
22 − 2C̄k

33

)
nm3

Ck
44 = Gk

13m
2 +Gk

23n
2, Ck

45 =
(
Gk

23 −Gk
13

)
nm,

Ck
55 = Gk

13n
2 +Gk

23m
2

(6b)

and n = sin θk, m = cos θk [10, 11].
The weak form of the governing equation for the vibration analysis can

be obtained by means of the Hamilton’s principle. The expressions of the
kinetic energy T and potential energy U read as:

T =
1

2

∫
S

n∑
k=1

hk∫
hk−1

ρk
[
u̇2 + v̇2 + ẇ2

]
dzdS =

1

2
I1

a∫
0

b∫
0

[
u̇20 + v̇20 + ẇ2

0

]
dxdy

+ I2

a∫
0

b∫
0

[
u̇0β̇x + v̇0β̇y

]
dxdy +

1

2
I3

a∫
0

b∫
0

[
β̇2x + β̇2y

]
dxdy

U =
1

2

∫
S

n∑
k=1

hk∫
hk−1

(σkxε
k
x + σkyε

k
y + τkxyγ

k
xy + τkxzγ

k
xz + τkyzγ

k
yz )dzdS = (7)

=
1

2

∫
S

(
Nxε

0
x +Mxχx +Nyε

0
y +Myχy +Nxyγ

0
xy

+Mxyχxy +Qxzγxz +Qyzγyz) dS

In Eq.(25) the stress resultants are defined as: Nx

Ny

Nxy

 =

n∑
k=1

hk∫
hk−1

 σkx
σky
τkxy

 dz,
 Mx

My

Mxy

 =

n∑
k=1

hk∫
hk−1

 σkx
σky
τkxy

 zdz,
Qx

Qy
=

n∑
k=1

hk∫
hk−1

[
τkxz
τkyz

]
dz (8)

while

I1 =
n∑

k=1

hk∫
hk−1

ρkdz, I2 =
n∑

k=1

hk∫
hk−1

ρkzdz, I3 =
n∑

k=1

hk∫
hk−1

ρkz2dz (9)
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are the translational, coupling and rotational moments of inertia. By intro-
ducing the stress-strain relations of Eq.(5) in Eq.(7), the potential energy
becomes

U =
1

2

∫
S

[
εT0 Aε0 + χTBε0 +εT0 Bχ+ χTDχ+ γTHγ

]
dS (10)

In the above energy expression

ε0 =

 ε0x

ε0y

γ0xy

 =



∂u0
∂x
∂v0
∂y
∂u0
∂y

+
∂v0
∂x

 , χ =

 χx

χy

χxy

 =



∂βx
∂x
∂βy
∂y
∂βx
∂y

+
∂βy
∂x

 ,

γ =

[
γxz
γyz

]
=

 βx +
∂w0

∂x

βy +
∂w0

∂y

 (11)

and A3×3, B3×3, D3×3, H2×2, are matrices with elements defined as

(Aij , Bij , Dij) =

n∑
k=1

hk∫
hk−1

Ck
ij

(
1, z, z2

)
dz, (i, j = 1, 2, 3) ;

Hij = κ2
n∑

k=1

hk∫
hk−1

Ck
ijdz (i, j = 4, 5) (12)

with κ2 representing the shear correction factor that is assumed to be 5/6.
In the present study a rectangular element with 16 nodes is implemented.
More details on the element used and on the shape functions can be found
elsewhere [12]. For each element, the displacement functions are interpolated
as

u0 = NTu0, v0 = NTv0, w0 = NTw0,

βx = NTβx, βy = NTβy (13)
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where NT is a 16×1 shape function matrix while u0, v0,w0,βx and βy are
the 16×1 vectors containing the nodal generalized displacements. The plate
domain can be subdivided into m×n finite elements and after standard fi-
nite element assembling procedures are used, the equation governing the free
harmonic motion of the plate system considered is obtained as:(

K+ ω2M
)
V = 0 (14)

where K and M correspond to the global stiffness matrix and the global
mass matrix, and V is the global nodal displacement amplitude vector for a
harmonic motion at frequency ωs defined as v = V exp(iωt).

When geometry and mechanical properties are known, Eq.(14) represents
an eigenvalue problem that allows us to evaluate the eigenfrequencies ω and
the associated eigenvectorsV of the plate. In order to model the experimental
set up generally employed, the plate will be considered to have free edges.
In fact, an accurate determination of the experimental frequencies is usually
obtained by suspending the plate with elastic wires in a vertical position
that closely approximates a free boundary condition. Therefore the solution
of the eigenvalue problem leads also to six null eigenvalues, associated to
eigenvectors (modeshapes) with zero potential energy, representing the six
rigid body modes: the three rigid translations in the x, y and z directions
and three rigid rotations around the same coordinate axis.

Estimation Procedure: In this section, the method of Bayesian estimation
discussed by Lai and Ip [5] for the determination of the elastic constants
of generally thin orthotropic plates is extended to the case of thick plates
with a general sequence of layers. The present Bayesian approach implies the
minimization of the error function

e(r,p) = (r̂− r)TCR(r̂− r) + (p− p0)
TCP (p− p0) (15)

where

r̂ = [λexp 1λexp 2...λexpN ]T , r = [λ1λ2...λN ]T , (16)

are the vectors of measured and numerically predicted eigenvalues/frequencies,
and

p =
[
C̄11C̄12C̄22C̄33C̄44C̄55

]T
,

p0 =
[
C̄11,0C̄12,0C̄22,0C̄33,0C̄44,0C̄55,0

]T
(17)
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represent the vectors of updated and initial parameters.
The coefficients in eq.(16) can be evaluated as follows

λi = ρhω2
i a

2b2 (18)

The identification method finds the minimum of the error function e(r,p).
Each parameter has a weight assigned through diagonal matrices written as:

CR = diag

(
1

δ2(λexp1)
,

1

δ2(λexp 2)
, ...,

1

δ2(λexpN )

)
,

(19)

CP = diag

(
1

δ2(p1,0)
,

1

δ2(p2,0)
, ...,

1

δ2(p6,0)

)
The choice of the above quantities influences the iterative identification

procedure. CR and CP represent the confidence in the frequencies and in the
initial values of the mechanical properties. The elements of these matrices
can be evaluated as discussed in [5]. More details on the Bayesian approach
can also be found in [6]. For the sake of brevity, the final expression used in
the updating process is here shown

p = p0 +
(
CP+ S| Tp̃ CR S| p̃

)−1
S|Tp̃ CR

(
r̂− r̃− S|p̃ (p0 − p̃)

)
(20)

where S|p̃ is the sensitivity stiffness matrix computed as in [6].
Results: The identification results obtained for a woven composite plate

are here shown. More results are presented in [13]. The test plate was
suspended as in Fig.2(a) with thin wires in order to accurately approximate
the free-free boundary conditions assumed in the FEM model. The plate was
excited by an impulse impact hammer (PCB 086D80 mini hammer) and the
vibrations measured with 4 accelerometers. These 4 accelerometers where
used to guarantee an accurate determination of the frequencies of the plate
avoiding the risk that one of them would be positioned on a nodal line.
Since the excitation force was not recorded in the tests the “peak picking”
approach was used to identify the resonance frequencies from the position of
the respective peaks in the frequency spectrum. A typical signal recorded is
shown in Fig. 2(b) and the Fast Fourier Transform is represented in Fig. 2(c).
By observing the FFT plots of signals #1 and #2 overlapped in Fig. 2(c),
it can be noted that some peaks cannot be easily identified by looking only
at the FFT of one accelerometer signal. This is generally due to the position
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Figure 2: Experimental setup: (a) suspended plate and acquisition system;
(b) Typical acceleration time history recorded from vibration of a plate spec-
imen; (c) Fast Fourier Transform computed on acceleration time history.

of the sensors that might be close to the nodal lines of the specific mode
considered. The experimental frequencies estimated for the woven plate are
collected in Table 1. In the FEM model for frequencies prediction the layers
of the composite plate are all assumed to have uniform thickness and same
elastic constants. The results for 100 identifications, considering each time
a different initial guess for the initial parameters, are shown in Fig. 3. All
the simulations shown were successful, i.e. the maximum difference between
the experimental frequencies and the numerical frequencies, computed with
the estimated values of the parameters, were less than 2%. While for the
Young modules and the in plane shear modulus a very low dispersion of the
identified values was observed, the Poisson’s ratio and the transverse shear
modules shown a completely different behavior. In fact these quantities have
final values that are highly sparse and a change of the initial values of these
parameters produce large changes of their final estimates. This phenomenon
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Table 1: Experimental frequencies for a woven composite plate.

1 2 3 4 5 6 7 8

Freq.[Hz] 37.3 85.8 110.9 211.6 222.3 235.6 257.1 268.2
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Figure 3: Results of the iterative identification procedure for a composite
woven plate.

is expected. It is well known in fact that the Poisson’s ratio does not influence
the flexural vibrations of the plate. Transversal shear constants, instead, can
generally affect the dynamic behavior of thick plates while thin plates show
a relatively small shear deformation and the deformation is mainly induced
by bending. That also explains why the description of the flexural behavior
of thin plates can be done using the classical plate deformation theory [10].
As well known, in this theory the effect of shear deformation is neglected and
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the constants G13 and G23 are not even considered.

Frequently, the proposed procedure will poorly estimate out of plane shear
elastic constants as well as Poisson’s ratio due to the small influence that
these parameters have on the flexural vibration of the plate. Many of the
specimens of interest in practice are relatively thin therefore natural modes
are not affected by shear deformation in the low frequency range. As a result,
the only possibility to have an accurate measure of the out of plane shear
constants (G13 and G23), is to cut the plate, increasing the thickness-length
ratio. Naturally this approach will be a destructive method because the
specimen will be destroyed.

As an alternative, the use of higher frequency guided waves is herein
considered. For example, asymmetric modes are highly influenced by the
transverse shear constants and can be an ideal tool to identify these modules.

3 High Frequency dynamic identification

Resonant frequencies previously discussed refer to the stationary global vi-
bration of the plate. Experimentally, time histories with duration of seconds
are necessary to capture these low frequency vibrations. If time histories
considered are sampled using higher sampling rates, it is possible to ”zoom
in” the initial part of the time history and extract the transient vibration of
the structure. Transient vibration is governed by the propagation of guided
stress waves that are high frequency waves propagating along the plate that
behaves as a waveguide. Guided waves can be modeled using traditional fi-
nite element method. However, due to the high frequency/small wavelength,
a large number of elements is necessary (typical element size is 1/10-1/20
of the smallest wavelength of interest). An approach that has been used to
overcome this difficulty is often referred to as semi-analytical finite element
(SAFE) method and is extensively presented for example in [14] and [15].

Modeling Guided Waves: The SAFE technique allows to predict the tran-
sient propagation of guided waves (time history response) and to extract
their properties. A major property of guided waves is the dispersive behavior
(their speed changes with the frequency) that results in the time spreading
of a short duration pulse when the waves propagate for long distances. The
SAFE method accounts for the transient harmonic motion that is typical of a
propagating wave at a defined frequency and imposes harmonic motion along
the direction of propagation of the wave (x). This is accomplished impos-



A low/high frequency combined approach for the... 13

ing the exponential harmonic function ei(kx−ωt) for a mode with frequency
ω=2πf and wavenumber k=2π/λg(gλg=wavelengthpugs a result, the ap-
proach requires only the discretization along the plate thickness where the
displacement is interpolated according to the finite element approach. The
displacement field is consequently approximated as [15]:

u(e)(x, y, z, t) = N(z)q(e)ei(kx−ωt) (21)

where for the finite element (e) along the thickness, the displacement vector
u(e) depends on the shape function matrix N(e) and the nodal displacement
vector q(e). Under the displacement assumption of Eq.(21), the equations of
motion lead to the following system of equations [14]:

(A− kB)Q = p (22)

where A and B are matrices that depend on the stiffness and mass of the
plate, Q is the displacement vector and p accounts for the loading terms.

Once the eigenvalue problem (A-kB)Q=0 extracted from Eq.(22) is solved
for each frequency in the range of interest, and information on propagat-
ing modes are stored (wavenumbers and modeshapes of all M propagating
modes) the SAFE can be used to a) obtain the dispersion properties such as
group velocity vs frequency and b) to compute the response due to a generic
stationary or transient excitation. The forced solution for a load applied at
x = xS is computed at each frequency as a combination of all the propagating
modes using the equation [14]

U (x, ω) =

2M∑
m=1

−ΦL
mp̃

Bm
ΦRup
m ei[km(x−xS)] (23)

where ΦL
m is the left eigenvector computed from the eigenvalue problem,

ΦRup
m is the half upper-part of the right eigenvector ΦR

m, p̃ contains the am-
plitudes of the nodal loads and Bm = ΦL

mBΦR
m. When a hammer excitation

is provided to the plate, the force is perpendicular to the plate (z direction).
Consequently, the concentrated load assumed in the SAFE can be applied in
a point x = xSand assumed acting along the z direction.

Eq.(23) represents the response to a pure harmonic excitation with tem-
poral frequency f and unitary amplitude. The response to an excitation with
arbitrary time history (such as an hammer excitation) can be computed as
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well. First the frequency content F(ω) of the excitation signal F (t) must be
evaluated by applying the Fourier transform:

F (ω) =

∫ ∞

−∞
F (t)e−i2πftdt (24)

The response in the frequency domain to the above force can be computed
as:

V (x, ω) = F (ω) ·U (x, ω) = F (ω) ·
M∑

m=1

−ΦL
mp̃

Bm
ΦRup
m ei[km(x−xS)] (25)

Finally, the time-domain response can be obtained using the inverse
Fourier Transform,

V (x, t) =
1

2π

∞∫
−∞

V (x, ω)ei2πftdω (26)

Once the displacement field is known, the response RSAFE of a sensor
(such as a strain gage or a piezoelectric sensor) can be estimated. For a
strain gage, the response can be provided by the average strain in the region
where the sensor is bonded. In the case an accelerometer is employed, the
displacement time history can be derived twice with respect to time to predict
an acceleration time history. For example, Fig. 4(b) shows the strain time
history predicted using the SAFE analysis. The case modeled is that of a
3.175 mm aluminum plate, subjected to an impact force time history shown
in the Fig. 4(a). The sensor is located at a distance of 0.375 m from the
source.

The SAFE method can be used as part of an identification algorithm that
uses guided wave (high frequency) properties instead of (low frequency) global
vibration properties. Prediction of mechanical parameters can be attempted
by using group velocities (speed vs frequency) of guided ultrasonic waves.
Group velocities must be estimated experimentally.

Continuous Wavelet Transform for guided wave group velocity measure:
Based on the signal recorded in a single location as the one predicted by
SAFE and illustrated in Fig. 4(b), a joint time frequency transform can
be used to extract experimental dispersion group velocities. The method
shown is based on the Continuous Wavelet Transform (CWT). The CWT is
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Figure 4: Transient response predicted using the SAFE method in a 3.175
mm aluminum plate: (a) hammer excitation time history; (b) strain time
history for a gage at 0.375m from the source.

an approach alternative to the Short Time Fourier Transform. The latter,
while providing the joint time-frequency analysis of a time history does not
have a multi-resolution capability because a constant time window is used.
The CWT uses a flexible window that is broader in time for observing low
frequencies and shorter in time for observing high frequencies (Kishimoto et
al. 1995).

The wavelet transform decomposes the original signal by computing its
correlation with a short-duration wave, the mother wavelet that is flexible in
time and in frequency. The CWT of a function f(t) is defined as [17] :

Wf(u, s) =

∞∫
−∞

f(t) · 1√
s
· ψ∗

(
t− u

s

)
· dt (27)

where ψ∗ is the complex conjugate of a function, the mother wavelet ψ(t),
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with:

ψu,s(t) =
1√
s
· ψ

(
t− u

s

)
(28)

The mother wavelet can be viewed as a windowing function in time and
in frequency domains where u is called the translation parameter, and s is
the scaling parameter. The parameter u shifts the wavelet in time and s
controls the wavelet frequency bandwidth, hence the time-frequency resolu-
tion of the analysis. The scalogram represents the magnitude of the wavelet
transformed signal, i.e. the energy density spectrum and it shows the sig-
nal energy with different frequencies ωg=gηvs (η being the wavelet center
frequency) at various times t = u. The scalogram may be displayed in 3-D
plots of time-frequency-amplitude. Because the scalogram provides the time–
frequency information of the energy components of a function, it is possible
to extract the dispersion curves in term of the group velocity. An example
of a CWT scalogram is given in Fig. 5 that shows the joint time-frequency
transform of the hammer time history previously shown in Fig 4(a) and the
CWT transform of the strain waveform predicted by SAFE and illustrated
in Fig. 4(b). The guided wave is an anti-symmetric Ao mode excited by the
imposed anti-symmetric force applied on the aluminum plate. In the specific
case a Complex Morlet Wavelet (center frequency equal to 1, bandwidth pa-
rameter equal to 2) was used to extract the Scalograms in Fig. 5. In the
CWT scalograms, amplitudes are plotted versus frequency (y-axis) and time
(x-axis).

At each frequency, a section of the Scalograms was performed to estimate
the arrival time of the wave as a function of the frequency. The sections
of the two separate Scalograms are shown in Fig.6 for both the hammer
and strain time histories. The time corresponding to the Scalogram peaks
are shown in Fig. 5(c) and 5(d). It is observed that while the hammer
excitation provides a broadband signal (large frequency range) where all the
frequencies are exited simultaneously, the guided mode Ao has different time
of arrival at different frequencies. This dispersive behavior is characteristic
of guided waves. It follows that the speed for the Ao mode increases for
higher frequencies. The group velocity Cg(f) of the mode can be estimated
dividing the distance between the hammer point of impact and the sensor
(d = 0.375m) by the time delays (t2(f)t1(f)) measured at each frequency and
estimated in Fig.5(c) and 5(d). The group velocity obtained can be compared
to the numerical group velocity CSAFE

g (f) calculated numerically using the
semi analytical finite element method previously represented.



A low/high frequency combined approach for the... 17
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Figure 5: Complex Morlet wavelet scalogram of the hammer (a) and strain
(b) waveforms shown in Fig. 4(a) and 4(b) respectively; time of arrival at
each frequency for the hammer (c) and strain (d) signals.

Estimation Procedure using guided waves: To test the effectiveness of
the proposed approach the group velocity of the Ao mode propagating in
the aluminum plate and shown in Fig.5(b) was used to predict the elastic
constants E, G. The identification procedure is based on the minimization of
a cost function c that needs to be minimized. The iterative procedure for the
identification of the elastic constants is interrupted only when the following
convergence criterion is satisfied:

c =
∑
fi

[
Cexp
g (fi)− CSAFE

g (fi)

CSAFE
g (fi)

]2

< ε (29)

where ε is a predefined tolerance. If Eq.(29) is not verified, the elastic con-
stants E, G (in an isotropic plate) are updated. A MATLAB code was
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Figure 6: Water fall plot analogous to the Complex Morlet wavelet scalogram
for the hammer (a) and strain (b) waveforms.

implemented to update the constants. In the routine, a MATLAB optimiza-
tion function fminsearch updates the unknown parameters used by the SAFE
algorithm to compute the updated numerical group velocity CSAFE

g (f). The
function fminsearch uses the Nelder-Mead simplex algorithm to find mini-
mum of unconstrained multivariable functions using a derivative-free method
[18].

The comparison between experimental and numerical group velocity ob-
tained at the end of the identification procedure is shown in Fig.7 while the
identification results are summarized in Table 2. It should be noted that
while assuming fairly inaccurate initial values of the elastic constants, the fi-
nal values of E and Gconverge to the same estimates. The same approach was
used to estimate the elastic engineering constants of a carbon fiber-reinforced



A low/high frequency combined approach for the... 19

Table 2: Estimates of the elastic constants for the 3.175 mm thick aluminum
plate.

Initial E Initial Predicted E Predicted G

[GPa] [GPa] [GPa] [GPa]

120 50 71.04 25.32

115 45 71.04 25.33

110 50 71.06 25.34

105 55 71.02 25.31

100 40 71.02 25.32

95 55 71.04 25.33

90 50 71.06 25.35

85 35 71.03 25.32

80 30 71.06 25.34

75 35 71.04 25.33

70 25 71.03 25.32

65 30 71.05 25.33

65 35 71.03 25.32

60 30 71.01 25.31

55 35 71.07 25.32
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plastic (CFRP) laminated composite plate. Total thickness of the plate is 1.6
mm. The plate is square with dimensions of 0.33m×0.33m. Excitation was
provided by a pencil lead break (allowing for a frequency range from DC
to 200kHz). Since this source does not allow to trigger the event, two sen-
sors were required to compute the wave velocity. Signals were recorded by a
Macro fiber composite transducers (MFC) bonded to the surface of the car-
bon fiber composite plate. Fig.8(a) and (b) show the time waveform and the
scalogram for one of the signals acquired. A sensitivity study demonstrated
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Figure 7: Comparison between experimental (Continuous Wavelet Trans-
form) and numerical (SAFE) group velocities for the Ao mode propagating
in a 3.175mm thick aluminum plate.

that the engineering constants that affect the A0 mode are the Young mod-
ulus E11, E22 and the shear stiffnesses G13 and G23. These four constants
were assumed as the independent parameters in the case considered. In fact,
the plate that is composed by 12 layers with a staking sequence [0/±45]2S ,
has layers that can be assumed as transversely isotropic laminas. For trans-
versely isotropic layers, five independent constants are generally present but
Poisson’s ratios influence on wave velocity of the A0 mode is negligible. To
extract Poisson’s ratio, the symmetric mode So should be considered as well
in the identification approach.

Numerical simulations and signal processing followed the same criteria
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Figure 8: (a) Time history and (b) Complex Morlet wavelet scalogram of
waveform generated by a pencil lead break test and recorded by an MFC
transducer bonded to a 1.6mm thick carbon fiber-reinforced plastic (CFRP)
laminated composite plate.

Table 3: Estimates of the elastic constants for the 1.6 mm thick (CFRP)
composite plate.

Initial values Predicted values

[GPa] [GPa]

E11 85 136.7

G13 5.32 5.08

G23 2.59 3.16

described for the isotropic plate. However, since the frequency range con-
sidered for the composite plate was DC-200kHz, a complex Morlet mother
wavelet with a central frequency equal to 5 and a bandwidth equal to 2 was
used in the CWT. Fig.9 shows the results of the identification approach. A
good agreement between the group velocity dispersion curves obtained ex-
perimentally and numerically can be observed. Results of the identification
procedure are summarized in Table 3.

Although more tests should be performed on a variety of plates to better
validate the procedure proposed, the use of guided waves seems ideal to per-
form the identification of out of plane elastic constants of composite plates.
In particular, the potential for the identification of hard to measure con-
stants such as the out of plane shear constants could improve other dynamic
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Figure 9: Comparison between experimental and numerically predicted group
velocities for the fundamental antisymmetric Ao mode propagating in a
1.6mm thick (CFRP) laminated composite plate.

identification approaches based on the natural frequencies of the plate.

An ideal set-up combining global vibrations and transient guided wave vi-
brations will not require additional hardware. The excitation for both global
(low frequency) vibrations and transient (high frequency) waves could be
provided by a small instrumented impact hammer. Vibrations could be mea-
sured by accelerometers or alternatively using laser vibrometer. The major
factor is represented by the sampling rate at which the waveforms/signals are
recorded. While 10000 Hz will be sufficient for the low frequency vibrations,
sampling frequencies of 1-5MHz are common when recording guided waves.

4 Conclusions

Two approaches for mechanical parameter identification of composite plates
were presented. The techniques use the dynamic properties of the plate. One
approach identifies the elastic constants by minimizing the difference between
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experimentally measured and numerically predicted natural frequencies re-
lated to the global vibrations of the panels. While potentially very robust,
this approach cannot reliably predict out of plane shear constants and Pois-
son’s ratio in thin plates because such parameters have little or no effect on
the flexural vibrations considered at low frequencies.

A second approach, based on the comparison between experimental and
numerically predicted dispersion properties (such as group velocities of guided
waves) shows the potential to solve these problems. For example, flexural
modes such as the fundamental Ao guided mode can be used to predict out
of plane shear constants and axial modes such as the symmetric So mode
(not discussed here) could be employed to predict the Poisson’s ratio.

The authors believe that a combination of the two approaches above
(global/low frequency and transient/high frequency identification techniques)
could provide an excellent nondestructive way to reliably estimate all the rel-
evant mechanical properties of composite structural elements.
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Identifikacija mehaničkih svojstava kompozitnih
konstruktivnih elemenata na bazi kombinovanog

frekvencionog pristupa

U radu je predložen hibridni postupak kojim se uporedjuju eksperimentalno
odredjena dinamička svojstva ploča, kao sto su modalne frekvence i dis-
perzivna svojstva talasa u njima, sa korespondentnim svojstvima koja su
odredjena numeričkim postupkom. U semi-analitički model, koji je kom-
binovan sa metodom konačnih elemenata, ugradjena je numerički efikasna
iterativna procedura.
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