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On the spacecraft attitude stabilization in the
orbital frame

Kirill A. Antipov* Alexey A. Tikhonov'

Abstract

The paper deals with spacecraft in the circular near-Earth orbit. The
spacecraft interacts with geomagnetic field by the moments of Lorentz
and magnetic forces. The octupole approximation of the Earth’s mag-
netic field is accepted. The spacecraft electromagnetic parameters,
namely the electrostatic charge moment of the first order and the eigen
magnetic moment are the controlled quasiperiodic functions. The con-
trol algorithms for the spacecraft electromagnetic parameters, which
allows to stabilize the spacecraft attitude position in the orbital frame
are obtained. The stability of the spacecraft stabilized orientation is
proved both analytically and by PC computations.
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1 Introduction

The forces of spacecraft electrodynamic interaction with the geomagnetic
field considerably influence on the spacecraft attitude dynamics and so can
be used for designing control systems of spacecraft attitude orientation.

The magnetic control systems can be successfully applied to long-operating
spacecrafts due to the fact that these control systems are quite simple, highly
reliable, and do note require working body consumption [1, 2]. At the same
time, magnetic control systems have a functional feature restricting their
capabilities on directing the vector of control moment.
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The method for semipassive attitude stabilization of the spacecraft mov-
ing in the Keplerian circular orbit in the geomagnetic field based on applying
only the electrodynamic effect of the Lorentz forces acting upon the charged
part of the spacecraft surface was published for the first time in [3]. It was
proved that by the controlled change of the radius-vector py of the center of
spacecraft charge with respect to the center of mass of the spacecraft, it is
possible to create the controlled moment of Lorentz forces and use it as a
restoring moment in the neighborhood of the spacecraft direct equilibrium
position in the orbital coordinate system. Application of this moment does
not require working substance consumption by an actuator or moving any
massive bodies, and is distinguished by the simplicity of the control law, reli-
ability, and economy. A certain variant of the control law for the radius-vector
po is proposed; it realizes this method for the orbits with small inclinations
i, but degenerate for mean and large values of 1.

It was demonstrated in [4] that the indicated method can be generalized
onto the case of spacecraft arbitrary position in the orbital coordinate sys-
tem and the new control law suitable for orbits with any inclinations was
proposed. It was noted that the application of only one moment of Lorentz
forces is connected with the presence of constraint on the direction of vec-
tor of control moment similar to the constraint on the direction of magnetic
moment mentioned above. It was demonstrated that the stated shortcom-
ings of both control systems disappear when a unified electrodynamic control
system for spacecraft attitude orientation using both restoring moments si-
multaneously, i.e., of Lorentz and magnetic forces, is created. In the papers
[3] and [4] the quadrupole approximation of the Earth’s magnetic field was
accepted based on the mathematical apparatus, suggested in [5]. The devel-
opment of this mathematical apparatus according to [6] allowed to construct
analytically the magnetic induction B of geomagnetic field with taking into
account the first three multipole components (of the 2-nd, 3-rd and 4-th or-
ders). With use of these results in the present paper in contrast to [3] and [4],
the Earth’s magnetic field is approximated by the more precise model — the
octupole approximation. One more difference of this paper with respect to [4]
is that the gravitational moment acting on the spacecraft attitude dynamics
is taken into account as the largest disturbing moment.

2 The moment of Lorentz forces

A spacecraft, whose center of mass moves in the Newtonian central Earth’s
gravitational field in the Keplerian circular orbit of the radius R, is con-
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sidered. It is assumed that the spacecraft has the electrostatic charge @
distributed within some volume V with the density o: Q = [odV.
\4

We study the spacecraft attitude motion with respect to the orbital coor-
dinate system ! C¢én¢ (fig. 2) with the origin at the spacecraft mass center,
whose axis C¢ (5_6) is directed along the tangent to the orbit towards the mo-
tion, the axis Cn(7y) is directed along the normal line towards orbit plane,
the axis C'¢ (C_E)) is directed along the radius-vector E = Oﬁ = RC_E) of the
spacecraft mass center with respect to the center of the Earth Og.

The investigation is carried out taking into consideration the rotation of
the orbital coordinate system with respect to the inertial coordinate system
with the angular velocity wg. As an inertial coordinate system, we consider
the system OgX,Y,Z,, whose axis OEZ*(k:) is directed along the axis of the
Earth’s self-rotation, the axis OEX*(i:) is directed to the ascending node of

orbit, and the plane (X.,Y,) coincides with the equatorial plane.

Figure 1:

Also, a system Czyz (basis vectors ;, f, E) of spacecraft principal central
axes of inertia rigidly bound with the spacecraft is used. The orientation
of the orbital coordinate system with respect to the system OpX.Y,.Z, is

In this paper, direct Cartesian rectangular coordinate systems are used
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Figure 2:

defined on the basis of equalities

—

Iy = —sinug_(; —|—cosuC_6, j: = cosicosug_(; —sininy + cosisinuc_é,
k, = sin i cos u & + cos 1) +sinisinu§6,

where i = (ks, 1) is an orbit inclination; u = (iy,(y) is an argument of a
latitude and v = wpt where wy is an orbital angular velocity of the spacecraft
mass center.

The orientation of the axes zyz with respect to the axes &n( is defined
by a matrix A of direction cosines «y, F;, i (i = 1,2,3) so that there exist
the equalities

€0 = ui+ o) + azk, 7o = Bri+ Baj + B3k, Co= i+ v2] + 3k

If we determine the spacecraft orientation in the orbital coordinate system
by ”airborne” angles ¢, 0,1 (Fig. 2), then the elements of the matrix A will
have the form

a1 = coscosl, ag = —cospsiny + sinpcosysinb,

a3 =sinpsiny + cospcosysinf, [ = sin cosb,

Bo = cospcosty +sinpsinysing, [z = —sinp cosy + cos psin sin b,
v = —sinf, -~ =sinpcost, 3= cospcosl.
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When the spacecraft is moving with respect to the Earth’s magnetic field,
the interaction of the shield charge with the geomagnetic field results in
Lorentz forces excitation. The principal moment of these forces with respect
to the spacecraft mass center is defined by the formula

ML:/p (7 x B)dV,
|4

where p' is the radius-vector of the element dV of the shield with respect
to the spacecraft mass center, and ¥ is the velocity of the element dV with
respect to the geomagnetic field. It was demonstrated in [5] that for any
real spacecraft and especially for spacecrafts operating in modes close to
the oriented attitude motion, the moment M, can be approximated by the
expression

My =P x AT (5c x B), (1)

where P = Qpo, po= Toi + yoj—i— zOE =Q ! JopdV is the radius-vector of

14
the center of charge of the spacecraft with respect to its mass center,
Go =R — &g x R = R(wy — wg cosi) & + Rwg sin i cos w1 (2)

is the velocity of the spacecraft mass center with respect to the geomagnetic
filed, Jg = wEk:: is the angular velocity of the Earth’s daily rotation. The
Farth’s magnetic field can be considered in this case to be uniform in the
spacecraft volume. Therefore, the value of B in (1) coincides with the value
of B at the spacecraft mass center. Considering the vector T = AT Gz x B),
let us represent the moment M 7, in the form

Mp=PxT.
Such approximation of the moment M, is admissible in the presence
of not very small quantities of |gy| due to the negligible influence of the
charge-distribution character within the spacecraft volume on its dynamics.

In conditions of the octupole approximation of the geomagnetic field, the
vector B is defined by the formula obtained in [6]:

3 . n+2
B = ZB(”)——gradZ 2n+1

where 7 is the radius-vector of a point in the near-FEarth space with respect

oo (@), (3)

n

to the Earth mass center, M(n) are multipole tensors of the first, second
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and third ranks that are dipole, quadrupole and octupole magnetic moments
respectively, earlier obtained in [6].
In projections on the orbital coordinate system we have:

(n) (n)
nMg” - Ty
B ) o
" (n (n)
B7(7”) =— <}ZS> nMg" T, ; (4)
B () ()
¢ — .
(’I’l + 1) MO Tr
where
T, = (cosu, sinu, 0) ', T = @"T,, (5)
Ty = (—sinwu, cosu, 0)", T/\n) =T\@" 'T,, (6)
Ty = (0,0,1)7, Ty =Ty ©" ' T, (7)

M(()n) - the multipole tensor of n-th rank, reformed with matrix I' = (v;)
(i =1,3,j =1, 3) according to the formula

3
(n) (n)
(MO o .= E : Yi1,g1Viz g2 - - - Vin,gn Mjl,jz,..-,jn'
11,225--45tn

J1,J250Jn=1

The components of matrix (7;;) are expressed in terms of the orbit inclination
i and the hour angle of the ascending node ¢ = wgt in the following way:

Y11 = cos ¢, Y12 = —sin g, Y13 =0,
Y21 = COs%Sin @, Y22 = COS1 COS ¢, Vo3 = sin ¢,
Y31 = —sint sin ¢, Y32 = —sin ¢ cos @, Y33 = COS 1.

For completeness of contents we shall cite also the specified expressions
for multipole tensors [6]:

Mlzgia Mzzh%v M3:g?7
1 V3 V3
My = B (\/ggg - 98) ) Mo = oY h%, Mg = 795’
1 V3
M22=—§ (934-\/39%) ) M23:7h§, M33:98’
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M111_1—26(\/ﬁg§—39§), M112=\1/26(\/Bh§h§>,
M113:é<\/ﬁg§—3gg), M122——\1/§< 1593%—1—9%),
Mgz = \/61»5 h3, Mgz = \26931,

Mage = — \€<\/»h +3hi1;), M223=—é <\/ﬁg§+3gg),
Mass = \éé h3, Mszs = g9,

In detailed form the components of vector Bin octupole approximation are
the following:

Rp\®
Be =— <R> ((f0,1,0,1,1,0 = f1,0,0,0,0,1) M1 + (f1,0,0,0,1,0 + fo,1,0,1,0,1) M2

REg
R

+ (Maz — M) fo,00,1,1,1 + (—Maz + M33) f1.1,0,0,00 + M23£0,0,1,0,1,0
+Mi2f0.00,1,00 — Mi3fo0.1,001+ (2 M1 —2 M) fo2,01,1,1

+2 M2 f11,001,1 +2Miafi10211 +2Mizfi1,1,1,10

+ (Mg — M1) f11.0202 +2Masfi111.01 — 2 Mi2f020.1.00

—2 M2 fo0,0,1,02 + (M11 — M3s3) f1,1,02,00 + 4 M12f0,2,0,1,0,2

+M3£0.1,1,0,00) — 2 ( ) (2 Mi3f0,2,1,001 + (Maz — Mi1) f1,1,0,0,0,2

REg

—2M23f021010)—3< I

) ((3 Mi12 — M292) f1,2,0,0,1,2

+ (3 Mi33 — 3 M122) 12,0001 — 6 Mi123fo3,1,2,1,1 +6 Mi23fo1,1,2,1,1
+ (2 Mao3 — 2 Mi13) fi0,1,1,1,1 + (=3 Mi22 + Mi11) fo,3,03,1,2

+ (3 Mas3 — 3 M112) f1,2,02,1,0 + (Maz2 — 3 Mi12) £1,0,0,2,1,2

—4 Mi23f1,0,1,1,02 — 6 M123f1,2,1,1,0,0
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(—6 Miga — 3 Miz3 + 3 Mi11) f1,2,020,1

(=2 Mi11 + 6 Mi22) fo1,01,1,2 + (=3 M1z + 3 M223) fo,1,1,2,0,2
(=M1 + 3 Mi22) f1,2,0,0,0,3 + (=Mi11 + 3 Mi22) fo,1,0,3,1,2

(=3 M111 + 9 M122) f12,02,03 + (=3 Ma2ss + Ma22) f1.2,00,1,0

+ (3 Maaz — M333) £0.3,1,0,0,0 + (—2 Maoz + Ms333) £0,1,1,0,0,0
—Mi33£1,0,0,0,0,1 + Ma233f1,0,0,0,1,0 + (3 Mazz — 3 M112) £0.3,0,3,0,1

—3 Moass + 3 Mazg — 6 Mi12) f0,3,0,1,01 + (—3 Mass + 3 M112) f0,1,0,3,0,1
3 M1z — Mag2) f03.0303+ (—3 Mi22 + Mi11) f1,0,0,2,0,3

—3 M3 + M333) fo,3,1,2,0,0 + (Mazz — 3 M112) f0,1,0,3,0,3

9 Mii2 — 3 M222) f0,3,0,1,03 + (3 M113 — 3 Mags) fo3.1.002

3 Mass + 4 Mi12 — 2 Ma92) fo,1,0,1,01 + (—6 Mi12 + 2 Ma22) f0,1,0,1,0,3
2 Mooz — 2 M113) fo,1,1,0,02 + (Miss + 2 Mg — Mi11) f1,00.2,0.1
M1z — Mass) f1,00,21,0 + (3 Mi22 — 3 Mi33) fo,3,01,1,0

—2 M2 + 3 Mi33) fo.1,0,1,1,0 + (—3 Mizz + Mi11) fo,1,03,1,0

(3 Mizz — Ma11) fo,3,03,1,0 + (—Msssz + 3 M113) f0,1,1,2,00

+2 Mi123f1,0,1,1,00 + (9 Mi12 — 3 Ma22) f1,2,0,2,1,2

+ (6 M113 — 6 M223) fi2,1,1,11 + 12 M2z f12.1,1,0,2

+ (3 Mi11 — 9 Mi22) fo3,0,1,1,2 — 6 Mi23f0,31,01,1

+4 Mi23fo,1,1,0,1,1 + (3 M113 — 3 M223) fo,3,1,2,02)

.
+
.
+

(8)
R 3
B, = (RE) (M1 £0,0,1,0,1,0 + M2 f0,0,1,001 — M3£0,0,0,1,0,0)
Rp\*
-2 (R) ((Maa — Mi1) fo1,1,0110 — 2 Miafo1,1,0,02 + Mi3fo,1,0,1,01

+Mi2f0,1,1,0,00 — Masfo1,0,1,1,0 + (Mszz — Mi1) f1,0,1,1,00
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+ (M1 — M22) fi01,1,02 —2Miafi01,1,1,1 +2Mi3f1,00.2,1,0

It Rat] It Rt At ] 1<ty

+2 M>3 f1,0,0,2,0,1 — M13£1,0,0,0,1,0 — M23f1,0,0,0,0,1)

R
-3 ( RE> ((=3 M112 + 3 Mas3) f0,0,1,2,01 — 4 M123£1,1,0,2,0,0
3 Mi12 — Ma22) fo,0,1,2,03 + (Ma222 — 3 M112) £0,2,1,0,0,3

Mooo + 2 Mi1a + Mas3z) fo,2,1,0,0,1 + (Mi3s — Mi22) f0,2,1,0,1,0
3 Mi13 — 3 M223) f0,2,03,0.2 + (Mazz — M113) fo0,2,0,1,0,2
M1 — 3 Mia2) foo1,2,1,2 + (Mi11 — 3 Mis3) fo,2,1,2,1,0

(

(—

(

(

(Ma2a — 3 Mi12) fo.2,1,2,0,3 + (=M1 + 3 Mi22) fo2,1,21,2
(3 Mi12 — 3 Mas3) fo.2,1,2,01 — 4 Mi23f0001,1,1

(

(

(

(—

1Ly sy It it ]

9)
2 Mi12 — 2 Ma3s3) fii1,1,1,0 + (=2 Miin + 2 Migs + 4 Mi22) fi,1,1,1,0,1

2 My11 — 6 Mg

4 My13 — 4 M223) f1,1,02,11 —4 Mi123f1,1,00,0,2 + 8 M123f1,1,0,2,0,2
Mi11 + 3 Mi22) fo2,1,0,1,2 + 2 M123f0,2,0,1,1,1

+ (=3 Mi13 + M3s3) f0.2.03.00 + (—Msss + Mooz + 2 Mi13) f0.2.0,1,00

—M>33£0,0,1,0,01 — M133f0,0,1,0,1,0 + (=2 Mi13 + 2 M223) f1,1,0,0,1,1

+ (2 My13 — 2 M223) £0,0,0,1,02 + (—3 Mi13 + 3 M223) £0,0,0,3,0,2

+ (3 M113 — M333) £0,0,0,3,0,0 + (M333 — 2 M113) f0,0,0,1,0,0

+6 Mi23f0,0,0,31,1 + (3 Mi3z — Mi11) fo.0,1,2,1,0

—6 Mi23f0,2,03,1,1 + 2 Mi23f1,1,0,0,0,0)

4
.
+
.
+
N
+
.
+
.

)
) f1,1,1,1,03 + (=6 Mi12 + 2 Mago) fi1,1,1,1,2
)
)

REg

3
B¢ =2 (R) (M1 £0,1,0,0,01 — M2fo,1,0,0,1,0 + M1f1,0,0,1,1,0 + M2f1,0,0,1,0,1

REg

+M3f101000)+3< I

) (M33f0,0,0,00,0 + 2 Mi3f0,0,1,1,1,0
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+ (=Ms3 + M11) £0,002.00 + 2 Ma2sfo01,1.01 — 2 Mi2f0.2001,1

+ (Maz2 — M11) fo,0,0202 +2Mi2fo0021,1 + (—Mi1 + M3s3) £0.20,2,00
+ (M11 — M22) £0,2,0,002 —2Mi2f1,1,01,00 + (M1 — M22) f0.2.02,0,2
+(2My1 —2M>3) fr1,01,1,1 +4Miafi101,02 +2Mizfi1,1,00.1

—2M>3f1,1,1,01,0 — 2 Mi2fo2,02,1,1 — 2Mi13fo,2,1,1,1,0 — 2 M23fo0,.2,1,1,0,1

R 5
+ (Moo — M33) fo,2,0,0,0,0) +4 <RE> ((3 Mi22 — 3 M133) f0,3,0,0,0,1

+ (3 Maza — 9 Mi12) fo3.021,2 + (=M1 + 3 Miss) f1.2,0,3,1,0

+ (=Mi11 + 3 M122) f1,003,1,2 — 3 M233£0,1,00,1,0 — 6 M123f1,2.1,0,1,1
+6 M123f0,3,1,1,00 — 6 Mi23f1.2.1,2,1,1 + (=3 Maza + 9 M112) f1,2,0,1,0,3
+ (Mi11 — 3 Mi22) f1203,1,2 + (=3 Mi3z + 3 Mi22) f1,2,0,1,1,0

+ (=3 Mazz + 3 Moy — 6 Mi12) f1,2,0,1,0,1 — 12 Mi23f0,3,1,1,0,2

+ (6 Mazz — 6 Mi13) fo3,1,1,11 + 3 M2331,00,1,0,1

+ (9 Mi22 — 3 Mi11) f0,1,02,03 + (=3 Mi12 + Ma22) f0.3.0,0,1,2

+3 Mi33£1,0,0,1,1,0 + 6 M123f1,0,1,2,1,1 + (M111 — 3 M122) f0,3,0,0,0,3

+ (=6 Magz + 6 Mi13) fo11,1,,10 + 12 Mi2sfo.1,1,1,02

+ (—M333 + 3 M113) £1,0,1,2,0,0 + (3 Mazz — 3 M112) f1.2.0.3.0,1

+ (3 M113 — 3 M223) f12,1,2,02 + (=3 Maszs + 3 M112) f0,3,0,2,1,0

+ (=3 Mizs + Mi11) f1,0,03,1,0 + (Mszs — 3 M113) f1,2,1,2,0,0

+ (3 Masz — 3 Mi12) fo,1,0,2,1,0 + (3 Mazz — Ms33) f1,2,1,0,0,0

+3 M133£0,1,0,0,0,1 + (3 M113 — 3 M223) f1,2,1,0,0,2

+ (3 Ma33 — Ma2) f0,3,0,0,1,0 + (—3 Mazz + 3 M112) f1,0,0,3,0,1

+ (3 M1 — 9 Mi22) fi201,1,2 + (=3 Mii2 + M222) f1,0,0,3,0,3

+ (=3 Maga + 9 Mi12) fo,1,0,2,1,2 + (—3 Miszz + 3 Mi11 — 6 Mi22) f0,1,0,2,0,1
—6 Mi23f0,1,1,1,0,0 + (3 Ma23 — 3 M113) f1,0,1,2,0,2

+ (3 M111 — 9 M122) fo,3.02,03 + (3 M112 — M222) 12,0303

+ (6 Mi22 — 3 My11 + 3 Miss) £0,3,0,2,01 + M333/1,0,1,000) »
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where fi i .is.isisic = SN’ (u) cosi?(u) sin’ (i) cos™ (i) sin’ (¢) cosi® ().

It is shown in [3] that the moment M7, of Lorentz forces can considerably
exceed gravitational and other perturbing moments and can be used as a
restoring moment in the system of spacecraft orientation.

3 Control synthesis

Let the program orientation of the spacecraft in the orbital coordinate system
is prescribed by some value of the matrix of direction cosines A = Ay =const.
In particular, the matrix Ay can be unitary. Substituting A = Ay into
expression (1), we obtain the values of the vector P such that My, becomes
zero in the program orientation of the spacecraft, i.e., is a restoring moment
in the neighborhood of the orientation Ag. It is obvious that the vector P
must comply with the condition P =k, T, , where kr, = kr(t) is an arbitrary
scalar function, Ty = A (T é) Components of the vector P are specified
by the formulas

P, = ki (t)[cioven Be — Brovee Be + v10(vee By — venBe)l,
Py = kr(t)[aooven Be — Baovee Be + v20(vee By — vonBe)], (11)
P, = kr(t)[czoven Be — B30vce Be + v30(voe By — voy Be)]-

Hence, if the coordinates of the center of charge of the spacecraft will change
according to law (11), then the moment My will be restoring in the neigh-
borhood of the prescribed position and can be used for maintaining the pre-
scribed orientation of the spacecraft. Equalities (11) can be considered as a
control law for the position of the center of charge for performing the pre-
scribed orientation of the spacecraft. Further in the paper we shall assume
for distinctness that kr,(t) = kr = const.

The dependencies of the maximum values of || (and, hence, of |P|) for
different parameters of orbits were computed in [7]; also, there was demon-
strated that |gy| assumes values that are small comparing with the sizes of
the spacecraft or comparable with them. Therefore, the practical realization
of the spacecraft attitude orientation using the moment of Lorentz forces does
not present serious difficulties.

We shall note the following functional particular features of the systems
using M, for the spacecraft attltude stabilization. The first of them is that
M;, is orthogonal to the vector T = AT (Vo % B) and, therefore, it is impos-
sible to create a control moment of Lorentz forces directed along the vector
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T. The second one is that |M| is proportional to |T'. So the use of My, for
the spacecraft attitude stabilization is most effective for spacecrafts on low
inclined orbits because the averaged by orbital period values of |f| for these
orbits are larger than the same values for the orbits with large inclinations.

It should be emphasized that the program control of vector P by ensuring
the validity of equalities (11) is based on the use of predetermined laws of
variation for vectors ¥ and B as the functions of time and so it does not
require the measuring of any physical properties on the board of spacecraft
during the stabilization process.

Let us consider the moment of magnetic interaction M. Neglecting the
spacecraft magnetization in geomagnetic field we define My according to the
formula [1, 2]:

My =1xA"B, (12)

where vector B is defined by its projections on the axes of the orbital coor-
dinate system C¢n¢ (Fig.2), the eigen magnetic moment vector I is defined
by its projections on the spacecraft principal central axes of inertia Cxyz
(Fig.2). As is known, the moment of magnetic interaction can be used for
the stabilization of the spacecraft angular position. Indeed, the moment of
magnetic interaction is restoring in vicinity of equilibrium position Ay by
analogy with the Lorentz moment if vector I changes in program way ac-
cording to the law I = kMgo, where éo = AOT B and kns is some scalar
coefficient of proportionality. In scalar form vector I becomes

I = kar(t) [onoBe + BroBy + v10B¢],
I, = k() [0 Be + B20By + 720Bc] (13)
I. = k() [asoBe + B30By + v30Bc] -

Equalities (13) may be considered as the control law for the spacecraft eigen
magnetic moment vector in execution of the orientation defined by matrix
Ay. Further in the paper we shall assume for distinctness that ks (t) = kp =
const.

The magnetic control systems can be successfully used on long time func-
tioning spacecrafts as they are sufficiently simple, possesses high reliability
and don’t need fuel consumption [1, 2].

At the same time the magnetic control systems possesses some specific
features which limits their possibilities. Firstly, it follows from (12) that the
moment of magnetic interaction is orthogonal to vector B and therefore it is
impossible to create the control moment directed along vector B. Secondly,
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| M| is proportional to | B|. Therefore the magnetic control systems are used
mainly on the orbits with large inclinations since the averaged by orbital
period values of \é | for these orbits are larger than the same values for the
orbits with small inclinations.

It should be emphasized that the program control of vector I by ensuring
the validity of equalities (13) is based on the use of predetermined law of
variation for vector B as the functions of time and so it does not require the
measuring of vector B on the board of spacecraft during the stabilization
process. Let us remind that the octupole approximation is used for vector
B , describing the geomagnetic field.

After comparing the mentioned above functional features of magnetic
control systems and systems using the moment My, and shortcomings that
follow from them, it is easy to see that these shortcomings disappear when
a unified electrodynamic control system for spacecraft attitude orientation is
created using simultaneously both restoring moments:

ML = kao X f, (14)

Indeed, the first shortcomings consisting in the presence of the directions
such that the uncontrolled rotation of the spacecraft is possible along them
(the directions T and E) disappear, when M 1, and M M are united in one
electrodynamic control system. This is explained by the fact that the vec-
tors T and B are always orthogonal. The second of the mentioned above
shortcomings are naturally compensate each other and therefore the orbit in-
clination is not the limiting factor for the control possibilities if the satellite
is supplied with electrodynamic control system.

4 The differential equations of motion

Let us consider the question of spacecraft attitude stabilization in the direct
equilibrium position in the orbital coordinate system, i.e., in such position
when the axes x, y, z coincide with the axes &, n,  and hence p =0 = ¢ = 0.
At the same time

041:62:’}/3:1, wm:wzzoawy:WO- (16)

Substituting (16) into (11) we obtain the law of controlled changing for
the center of charge coordinates for the case of the direct equilibrium position
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in the form:
g = kL Uanc, Yo = —kL chBC, zZ0 = kL(UCan — UCnB&j)- (17)

On the base of expression (14) the projections Mr,, My, M. of the
restoring moment M, under conditions of control (17) have the following
form:

=Qkr, [Bc((ﬁz — Y3)vce — aoven)(voe By — von Be) a8)
18
—v2(vee By — vey Be)* + voe B (Bsuce — asvey) }

Mp, =Qky, [BC((al — 73)ven — Brvce) (Voe By — vonBe) 19)
19

+m(vee By — vonBe)? + von BE (Bsvce — asvcn)} ,
M. =Qk1 B¢ [(w}cg + Y2ven) (vee By — ven Be) (20)
20

+B¢(veevey(on — f2) + (U%WOQ - 511%5))} :
Similarly substituting (16) into (13) we obtain the law of controlled chang-
ing for the coordinates of vector I in the form:

I, =kyBe, I,=kyB,, I =kyB:. (21)

On the basis of expression (15) the projections Myrz, My, Mar. of the
restoring moment Mj; in conditions of control (21) have the following form:

Mre = kar [By (a3Be + B3B8y + v3B¢) — Be (aaBe + Bo By + 72 B¢)]
My =k [Be (oaBg + B1By + 11 B¢) — Be (a3Be + B3By, +73B¢)] s
My, = kg [Be (a2 Be + Bo By + v2B¢) — By (a1 Be + B1By + 11 B¢)] -

Let the spacecraft attitude control system has also the damping moment
Mp. Without going into details of technical realization of the oscillations
damping system we shall consider the moment Mp of model type, for example
proportlonal to the spacecraft relative angular velocity in the orbltal frame:
Mp = —Hpw, where Hp = diag(hi, ho, hs), hi >0 (i =1,2,3), o' = &—uwyp,
and & is the absolute spacecraft angular velocity. Then

Mp, = —hi(wz —wof1), Mpy = —ha(wy —woB2), Mp. = —h3(w. — wof33).
(22)
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We shall take into account the gravitational moment Mg as the largest
of disturbing moments acting upon spacecraft.

Let us prove that the suggested control (17), (21) in presence of damping
(22) in the attitude control system ensures the existence and asymptotic
stability of the satellite’s direct equilibrium position in the case of small
orbit inclinations and the total stability in other cases, i.e. solve the problem
of the spacecraft attitude stabilization in the orbital frame.

Differential equations of the spacecraft attitude motion under the influ-
ence of control moments (14), (15) are constructed according to the Euler-
Poisson scheme:

d - - o -
%(JQ) + W x (J(E) = My + My + Mp + Mg,
B} 3 } (23)
dso _ ¢z dijo _ dbo _ =

= x@—wq, — =1y X W, = (o X @ + woo,
I &o 0o g Mo 7 o + wobo

where J = diag(A, B, C) is the spacecraft inertia tensor in the coordinate
system C'xyz.

While considering small spacecraft oscillations in the neighborhood of
the direct equilibrium position, the assumption that the angles ¢, 6,1 and
their time derivatives are small is true. At the same time, the moments
M L, M M, Mg, M p can be extended into series according to degrees of these
small quantities. As a result, we obtain their projections accurate within the
terms of the second order of smallness in the form

Mp, =l (t)e + l2(0)0 + li3(t)p,  Mpre = bii(t) + bi2(t)0 + bi3(t)e,
My =l2(t)p 4 loa ()0 + la3(t)y),  Mary = bi2(t)p + baa(t)6 + bas(t)v,
My, =lig(t)p + l23(t)0 + l33(t), M, = bi3(t)e + baz(t)0 + bzz(t)1),

Mg, =3wi(C — B)ep, Mpy = —h1¢,
Mg, =3w2(C — A)9,  Mp, = —hyf, (25)

MGZ :07 MDZ = _h3¢7
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where
l1(t) = — Qkg [(venBe — vee By)® + vge BE
Lig(t) =lo1(t) = —Qkchgvanf,
li3(t) =l31(t) = QkrveyBe(voe By — voy Be),
loo(t) = — Qkp, [(Uang — vchn)2 + v%nt] ,
I23(t) =l32(t) = —Qkrvoe B¢ (vog By — voy Be),
ls3(t) = — Qkr (v + vEy,) B
bi1(t) = — kar(B] + BE), bia(t) = bo1(t) = knBe By,
la(t) =ls1(t) = knBeBe, baa(t) = —knr(BE + BY)

bgg(t) :bgz(t) = kMBnBCa bgg(t) = —k‘]u(Bg2 + BTQ])
The Euler equations of motion (23) in the matrix form will look like

") @ P

Il 6 |+H| 6 |+M| 6 | +X =0, (26)
G (4 (4
A 0 O h1 0 wO(A — B+ C)
where J=| 0 B 0 |, H= 0 ha 0 ,
0 0 C —wy(A—B+C) 0 hs
4w(2)(B — C) — lll(t) — bll(t) —llg(t) — blg(t) —llg(t) — blg(t)
M = —l91(t) — b1 (t) 3w (A —C) —laa(t) — baa(t)  —laz(t) — baz(t)
—l31(t) — b3 (t) —lsa(t) = ba2(t)  wi(B — A) = ls3(t) — bas(t)

X is a vector with the components X;(t,¢,0,v) (j = 1,3), nonlinearly
dependent on ¢, 8, ).

5 Analysis of stabilization process at the orbits of
small inclinations

The components m;;(t) of matrix M, depending, generally speaking, on the

small parameter sini, we represent as the sum of the terms mg-)) (t), inde-

(1)

pendent on sin(z), and the terms m, J (t), containing small parameter sin as
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multiplier. Then U;;(t) = 1{)) (t) +sini - 1} (t), byj(t) = b () +sini - b)) ().
Therefore
M = MO 4 sini - MW = diag(4w2(B — C), 3w2(A — C),wi (B — A))
= [ (0) + G ()] +sini - [~ (1) = 67 @) (27)
Consider the system of linear approximation of equations (26) at i = 0
(the spacecraft orbit is equatorial):

¢ @ ©
J(é)+H<é)+M<0><9)o. (28)
(G (0 (0

In this case the equalities voe = R(wo — w3), von = vee = 0 are valid on
the basis of (2). Relying on (8) — (10) we have the following projections of
vector B on the axes of orbital frame in octupole approximation at ¢ = 0:

Rp\°®
B: = (R) (g% sinug — hj sin uo)

4
+V3 (];E) (g5 sin(2ug) — h3 cos(2up))
V6 (R’ -
+ e <R> (\/ng sin(3ug)
—gasinug + h cosug — V15h3 cos(3uo)) ,

(29)

Rg ’ 1 Rp ! 1 1 -
Bn:_< > go—\/§<R> (QQCOSUO+hQSlnu0)

) (30)
<RE> (\/ﬁgg cos(2ug) + V15h3 sin(2u) — 39??) ,
3

R 3 /Rg\*
B; = <E> (g% COoS ug + h% sinuo) + B <RE> (\/395 cos(2ug)+

5
+v/3h32 sin(2ug) — gg> +V2 (}?) (\/593 cos(3ug) (31)
+V/5h3 sin(3ug) — V/3h} sin(ug) — V34 COS(U()),>

where ug = u — ¢. Then

0 0 0 0 0
10(t) = —Qkpvde (B2 +BE), 191 =1501) =153(t) =15 (t) =0,
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0 0 0
153 (1) = ~Qk1Zc B}, L33 () = 153 (t) = ~Qhpe By Be.
3 (1) = —Qkrvd B2

Let us represent lg.)) (t) and bf;?) (t) in the form

@) =190, +10@), b5(#) = b, + 5 (1), (32)

1) Ccp 1] cp

(0) (0) (0) (0)
where ;7 = (I;;" (1)), and b;;,, = (I;;"(t)), are the averaged values of func-
tions l(o)( t) and bz(?) (t) over t accordingly. Then

0 0
10 = — Qi ((B2), + (BY) ), 1S, = —Qhuve(B2),,

0 0

léi})cp = li(’>2)cp QkLUC‘§<B BC>ta li(i,g)cp = *QkLU%§<B§>tv (33)
10 0 0 _ 0
12¢p = "21cp 13cp = "3lep —

0 0 0

b, = —kn((B2), + (BY)), bﬁglp:béllp=kM<Ban>t,

0

Dy = Uty = kar(BeBe),, by, = —kar((B2), + (B2) ), (34)

Dy = by = kit (ByBe),. Do, = —kar((B2), + (B2),).

Let us calculate the necessary time averaged functions:

3= (B2) o+ 3 (B (o1 na? 20t
+:<if>”<5<z2+h> il
)

> 16\f (gigh + hind) — 27 ( 2y h§2) - 18932)
<5 (g§’2 +hd ) +3 (g§2 + h§2)) ,

> 39795 —2V3 (h2h1 + 9291))

LR
-

LAY
R

:U‘tio :U‘tq

+

/‘\OO\H
\/
=

(B, Be),

-3(%
+3(%

oo\oo [\;JM—A

> V2 (9393 + hyhy) — 3V5(g395 + h3h3) — 393) :
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1 /Rg 6 2 2
m8,=5 () (o8 )
V6 (Rp\® 2 2
(%) (oot + vt - VB (aE" + 1)
3 (Rg\"™ 2 2 2 2
+16<R> (15(9§ +h3) + g3 +h?1)),

\/g RE ! 121 1.1 3\/§ RE K
WBebo) == <R> (912 = hig2) = =~ <R>

x (m(g% — h393) — gihy + h%Q%) :

V6 (Rg\*®
<B£B<>t = T4 (R) (hzlag% - Qéh%) .

In accordance with such expansion the matrix M will have the form

M = M© 4 sini MO (1) = MO + MO(#) +sini MO (5),  (35)

where the matrix ME?,) will look like

0 0 0 0
4&)8(3 - C) ?Ofgl)cp - bgl)cp 7b§2)c<%) ©) (O;b§3)cp(0)
0
Mgp) = *b%é)cp 3wp (A — g)) - l22(8€ — by cp —ly3 cp *((?)23 cp ©
—bs, cp —l3; cp by cp W%(B —A) =33 cp b

The inequalities

4(")8(3 - C) - l§?)cp - bg(i)cp >0
RO

0 0 0
(3B~ C) =19 — b ) BwR(A—C) =15, — b5y ) — (b15,)2 > 0
det MY > 0
(36)

hold true, the matrix M((;g) is positive—definite and, hence, the zero solution
of the system
v 4
J 6 ) +H[ 6 |+MD| 0 | =0
(0 (G (G
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is asymptotically stable.

In assumption that control moments M 1, and M M are absent, the space-
craft is under influence of gravitational moment Mg only. In this case the
inequalities (36) degenerates into the well-known Beletsky conditions [8] of
spacecraft gravitational stabilization: B > A > C. The presence of control
moments M, and M M, as is shown with the help of computer modeling, lead
to essentially increasing of the region corresponding to Beletsky conditions.
For example the region of validity of inequalities (36), constructed on the
plane of dimensionless inertial parameters § = B/A and ¢ = C//A, is shown
by horizontal shading in the Fig. 3 for the following parameters of spacecraft
and its orbit:

R = 7-10%m,i=0rad, A=10kg-m?, Q=5-10"3C,
kr, = 10s/T, kyy =2-10° N - m/T? (37)

This region, evidently from the Fig. 3, is rather wide. This is the evidence
of efficiency of proposed method for such parameters ¢ and e, which are
beyond the bounds of Beletsky triangle (§ > 1, ¢ < 1) [8], shown by vertical
shading in the same figure.

1,5
] P 7
/ 4
/ 7
/ 7
/ 4
7/
1 - ’
/ 7
A g
& AN
AN
~
N
0,5
AN
AN
~
AN
~
] ~
0 —
0 0,5 1 5 1,5 2 2,5
Figure 3:

This implies that this method is applicable to the spacecraft that can-
not be stabilized by the moment of gravitational forces. At the same time
parameter ks, taken in this example as equal to 2 -10° N - m/ T2, ensures
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the arising of sufficiently small control moment M M, not even exceeding the
gravitational moment Mg in degree of value.

Comparing the parameters regions obtained in the case of joint use of the
moments M v and M 1, (Fig. 3) with the corresponding regions constructed
for the cases when only one of the moments M M Or M 1, is in use, we notice
the significantly increasing of the mentioned region in conditions of joint use
of the moments. The results of computer modeling for parameters taken
from (37) except the cases when one of the moments My, or M, is absent
and correspondingly kj; = 0 or k7, = 0, are shown in Fig. 4.

1,5
7
7
7
7
7
7

14 g
£
0,5

\\
0 —
0 0,5 1 5 1,5 2 2,5

Figure 4:

The horizontal shading in this figure mark the region corresponding to
the use of only one control moment M, the vertical shading mark the region
corresponding to the use of only one control moment M M, the grey color
mark the region which arises only thanks to the joint use of the both control
moments. The union of mentioned three regions give the resultant region of
asymptotic stability, corresponding to the inequalities (36).

Further we consider the matrix M©(t) = (ﬁ@l(?) (t)) and estimate its
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norm.
3
IMO @) = >~ [ ()] = Im (1) = m{T,,| + 2m3 (1) = mi3, |
ij=1
+20m (1) — m Q| + [mS) (£) — mY|
+20my (1) — m$Y | + [miy (£) — mfy|
= |19, + 05D, — 10 — 0 )] + 2060,
- b12 )]+ 2‘b13cp - b13 )]+ |l220p
+ béQ)cp - l§2)( t) — 522 )|+ 2“23 ep T bg%)cp - lgz)a) (t)
= b5 ()] + 1153y + 53y — 153 (1) — b3 ()]
= [(QkLR*(wo — wr)® + kar) (B, + B — (By),
— (BY),)| + 2lkar ((BeBy), — BeBy)| + 2|k ((BeBc), — BeBe)|
+ |QkL R (wo — wp)*(B2 — (B2),) + kar (B + B — (BE), — (BY),)]
+2[(QkLR*(wo — wg)® — k) (ByBe — (ByBe),)|
+|QkLR*(wo — wp)*(BZ — (B?),) + km(BE + B; — (Bf), — (B7),)]
< 6 (R2(wo — wr)2|Qky| + 2kar) (Bg + <B§>t)
2 RS
< 108 ((wo — wr)?|QkL| + 2knr) gf R—f

ECl.

(0

Since C7 = const depends only the matrix Mcp), then the zero solution
of differential system (28) is also asymptotically stable [10]. At that this
asymptotical stability is uniform since the coefficients in the system (28) are
almost-periodic in t. Furthermore the exponential asymptotic stability of the
zero solution of the system (28) implies the exponential asymptotic stability
of the zero solution of the initial nonlinear system (26) at ¢ = 0 [11]. This
prove the possibility of spacecraft stabilization at ¢ = 0 with the help of the
moments ML and ]\7[M.
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In more general case i.e. in the case of slightly inclined orbits (i # 0 but
sini is small) it is appropriate to write the differential equations of perturbed
motion (26) in the form

¥ 4 v e .
Il 6 | +H[ 6 | +MO| 6 | +sini- MY [ 6 | +X=0 (38)
(0 (0 (4 (0

According to the theorem of total stability [11] the uniform asymptotic
stability of the zero solution of the system (28) is the sufficient condition
of the total stability (the stability in the presence of constantly affecting
perturbations) of this solution. As the constantly affecting perturbations one
can consider small in their norm perturbations

f=fau f3)T =sini MW (p,0,9) " + (X1, X2, X3) " (39)

Furthermore, the exponential asymptotic stability of the zero solution of
the system (28) according to the inequalities

|15t 0,9, 0)] < sini (o + 6] + [¢]) (G =1,3) (40)

implies the asymptotic stability of the zero solution of the initial nonlinear
system (26) for sufficiently small values of i [11].

Thus, it was proved the total stability of direct equilibrium position and
asymptotic stability at sufficiently small values of ¢ and therefore the adapt-
ability of suggested stabilization method based on the joint use of the mo-
ments M A and M 1, is well founded for the orbits of small inclinations.

The computer modeling was implemented in order to confirm the effi-
ciency of suggested stabilization method and approbate it for concrete values
of parameters of spacecraft, its orbit and initial conditions of motion. The
results shown in Fig.5, 6, 8 were obtained for the following parameters val-
ues: R =7-10m, i =0rad, A = 103 kg-m?, Q =5-103C, 6§ =
22 e=14, hy = hg = h3 = h = 0.5Awg kg - m?/s, kp = 10 s/T, ky =
2-10% N - m/T2 The initial conditions of motion were chosen as follows
©(0) = 0.2rad, ¥(0) = —0.2rad, 6(0) = 0.2rad, w;(0) = 0.1wy, wy(0) =
1.1wp, w:(0)=0.1wp.

In Fig. 5 the graphs of ”airborne” angles via the argument of a latltude
are plotted for spacecraft under the action of control moments M, and Myy;.
In Fig. 6 the graphs of quaternion components are plotted for the case of
stabilized motion, and in Fig. 7 are the same components in the absence of
control moments M, (k, = 0), My (kar = 0) and the damping moment
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Figure 8:

Mp (h = 0). The values of the moments My, Mg, Mp and My, acting
upon the spacecraft in the process of stabilization, are shown in Fig. 8. It
is obvious that the mentioned values are in such limits that make evident
the operability of suggested method of attitude control. The comparison of
obtained results with similar results obtained with the use of only one of the
moments M 1, or M M is made. It is revealed that the joint use of both control
moments My, and My, in electrodynamical attitude stability system result in
reduce of the transition time.

6 Analysis of stabilization process at the orbits of
mean and large inclinations
For substantiation of suggested attitude control method let us again turn to

the dynamical Euler equations (26) and at first consider the system of linear
approximation of these equations:

4 @ @
gl 6 |+H[ 6 )+Mm[| 6 | =0 (41)
(0 (0 (0

Represent the matrix M in the form M = M., + M(t). Here the matrix
M., is the result of time componentwise averaging of the matrix M, i.e.,
4013(3 - C) - lllcp - bllcp *112(:17 - b12cp *l13cp - b13cp
Mcp = _121cp - b21cp 3“}3 (A - C) - 122cp - b22€p _l23cp - b235p

_l310p - b31cp _l32cp - b32cp w% (B - A) - l330p - b33cp
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where
ey = —Qk[(vE BE), — 2vce(vonBeBy), + v ((By), + (BE) ), (42)
l12cp = l21cp = _QkLUC§<UCnt>t¢ ( )
l3ep = I31p = QkL(vee(ven By Be), — (Ve BeBe),), (44)
lazep = —QkL[(v2,BE), — 2vce (von Be By), + vée(B), + (v, BE),],  (45)
l23cp = l320p = _QkLUCﬁ(UC§<BnBC>t - <UCWB§BC>15)3 ( )
lazep = —Qkr(vEe(BE), + (v8, BE),)- (47)
biiep = —kn((By), + (BE),), bizep = barep = knr(BeBy),.,
blScp = bBlcp = kM<B§BC>t7 b22cp = _kM(<B§2>t + <Bg>t)7
bazep = bazep = knr(ByBe)ys  bssep = —kar((BE), + (B7),)

The averaged values appearing in l;j., and b;j¢, are calculated with the
use of components of vector B in octupole approximation (8) — (10):

1 (Rg\° 2 2 2 2 2
B2, = 5 (52) (268 - o = 1) cost) 4 117 4 01%)

3 (Rg\®
+8<RE> ((~1208" + 83" + 56 (nhnl + gigh) — 28" + 80}

209098 — 2137) cos (i) + (12 (48" + g?gg) — 66 (hbh! + glgh)

—6 (952 + hf)) cos®(i) + 2(g3% + g7 + hi + h3%) + V6 (hdhl + gégi))
+ % (if)m (45 (2008 = (" + 13") =15 (h4 + 64°)

+6 (h22 s ) 0 (i) + 5 (3 (h§2 + g§’2) 1181 (931,2 + h§2)

264 g§2) cost(i) + 3 (1729g2 +10 (g§2 + h§2)
—5( h32>) cos?(i)

+45 (g3 + 137) + 43 (b3 + 017))

52 (h§2 + g2

91 <h§2 +gi°

\-/\_/Vv

+40 (h§2 + g3
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w2 sin?i RS 2 2 2
<U%nB§2>t:—ETR7§ ((69? —3y9 —3h1 )COS (i) — g1 — hi

2 w2 P8
2 wssin® it R 2 2

ot) - EE I o o0+ 8) -2 1+ )
+5v6 (héh% + g%g%) —12 982 - QOQ?gg) Cos4(z') +2 (36982 + 24g?gg
—~7V6 (niht + gigl) = 18 (68" + 137) ) cos() + 76 (hh1 + gigl)
_ _ 22 22 00 02

24 h2 +92 6lgy + hy ) +12g793 — 36 g5

3w sin zR 2 2 2
- 2Eo48 R8( (<§+3> <h3+3)_h§_g§

22 12 12

+2093)cos ( <3+gg>+157<h3 -l—gg)
45 (h” + 98°) — 348687 cos’(i) + (247 (4 + 637)
615 (h§ + 637) — 310 (63" + 13) + 1356 6§”) cos?(3)

270 (98" + 137) = 75 (13" + g§) — 421 (n” + 9§ - 516.487)

(49)
2
wp sin?icosi RS 2 2 2
<UCnB€Bv7>t L — ?(2 0 hl —9% )
4 R
. 2 . . 8
wgsin“icost R 2 2 2 2
S 0 (3 (o 48) 2 64
+5 V6 (hshi + g391) — 204999 — 123 >COS3( ) + (36 99 + 129748
—18 (9%2 + h22) — 11V6 (h3hi + 9391)) COS(i))
3w sin? i cosi RLY
256 R (50)

B g3+ 20 932) cos® () 4 10 < (h3 +93 ) -3 <h§2 + 9§2>
+19 (}%2 4 g§2) — 36 g§2> cos3(i) +3 (9 (9%2 + h:f)

10 (13" + g3”) — 25 (13" + g37) + 52087 cos (1)
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RE 6 12 12 02 12 12
=\ R ((91 +hy —2g; )COS() +hi +247 +91 )

1 (R

- < RE> (3 (108 (h3* + gb”) — 27 (63" + 13")
+80v/6 (hih! + gigl) — 16269” — 320 ggg?> cost (i) + 3 (180 99’
3849999 — 18 <92 + h22> — 72 (h 12)

~32V6 (niht + ghgl) ) cos(i) — 81 (63" + 13") = 16 V6 (hihi + gigl)

—108 (h2 + g3 ) —192939?—198982) 116 (23) ( ( <h3 + 3)

~15 (h3 + gl ) —h¥ - g 20 ggz) cos®(3) + 15 (33 (g§2 + h}f)
6 (13" + g8") — g3 — 13" — 52087 cos’ (i) + 3 (116,98 — 5 (g3 + 1Y)
43 (g4 + 13") = 10 (k3 + 637) ) cos(i)

=25 (g8 + h3") = 39 (13" + 63”) — 30 (n3" + g3") - 63"
(51)

2 in2 'RG
(v3,BE), = —E°L 0B ((2 i h?) cos” (i)

4 R?

_3 h12 _ 3g12 _ 2902) wElzlg ‘ fﬁ ((108 ( g2 + h§2>

+80V/6 (h3hl + ghgl) — 27 <g§2 + h§2) 162497 — 320 ggg?) cos’ (i)
+2 <16 V6 (hyhl + ghgl) — 27 (g§2 + h§2) +128 9% + 54 g82) cos?(i)

135 (93" + n3”) — 108 (94" + h3") +16V/6 (hhnl + gigh)

2

+64gggg_90932) %Zg (25 (6(h3 + 3)—15(h3 + 3)



On the spacecraft attitude stabilization... 155

18— g3 +2045°) cosd(i) + 15 (19 (h3 + g1 =3 (5 + 17)
(h3 +93 ) - 369;(3)2) cos4(i) +3 < (hs +gs ) _95 <g§’2 +h§2>
<10 (13" + 63") + 526" ) cos?(i) — 175 (93" + 1’

129 (h3 +gh ) — 150 (h3 + g2 ) - 116g§2)

wp sin? i RTE

<Uan§Bg>t = — 6 RS (7 (f (h2h1 + 9291) 3989?) COS2(i)

SwEsiHQiRQE 9,9
~ias g (175 (gi + vind)

—85/2 (h2h3 + 9293) + 170 9392) cos* (i) + (48 V2 (hzhg + 9293)

+v3 (hhi + g391) + 99291)

+65 (g%g% + h%h%) — 148 gggg) COSQ(i)

+V5 (9395 + h3h3) + 52 (h3h} + g3g3) + 26 9398)

(ByBc), = —Cozl <RE> (7 (\/5 (h3hi + g3g1) — 39291> cos® (i)

. 9
Beont @) ((51v5 (4363 + 1313)

255 V2 (hihl + ghg}) + 510 9998 ) cos® (i) + (266 V2 (hh} + gbai)

+15g99) —3V3 3 (hyhi + 9291))

225 (g3 + h3h3) — 636 393 ) cos?(i)

—5/5 5 (9395 + h3h3) — 43 V2 (h3h} + ghg3) + 1749392)

(54)
(venBE), = 0 (55)
9 V6w sin? i cos i RS 9.
(ven BeBe), = "= 6 (h3gt — higz) (5 cos®i—1)  (56)
V6wg sin?i RS )
(veyByBe), = 572 Rg (h hlg3) (5 cos? i — 1) (57)
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1 6 2 2 2 2
<B§>t:4<R> ((h — 2% 4 gt )cosz(z')Jrg% +24° +h%>

1 (Rp\®
t 35 <RE> (3 (20 9V98 — 5V6 (hihi + gigs) + 2 <h§2 4 932) +1249°

-8 ( g + hb )) cos4(i)) + (6 <6 <g§2 + h%2> —12 (gg + 982)

+\/f§(g%g31) —&-héh%))cos (¢ )—i—\[(glgg —|—h3h ) +6 <29 g3 +3982

+ang’ +dgh’ + 63"+ 13) ) +% <}ZE)1O (15 (15 (13" + 64%)
6 (13" + g37) = 2008 + 98" — 13" cos®(i) + 5 (21 (g3 + 13")
=53 (94" + n7) — 34 (137 + 637) + 132497 cos’ (i)
+3 (35 (2 2 ron?? 1 gy h32) ~19 <h3 + g ) 172 g§2> cos(i)

+50 (93" + 13") + 15 (g8 + h3") + 113 (h3 + 637) + 156 657)

7
e, = (B2) (8 (high— o) cos?i) + (ol — hlad)

6% <}§{E> ( (2 V5 (g3h3 — g3h3) + 52 (higs — h%g%)) cos? (i)
( g%hg) +7V2 (h%gé — hég%)) cosz(i)
+3 (3 V2 (higy — high) +2V5 (g3h3 gghg)» 7

(BeBY), = cos(i)v/6 (RE

3 R> (5COS (i) — 3) (h1g3 hég%).

Let us replace the matrix M by its averaged value M, in the system of
equations (41):

¥ » v
J{ 0 |+H| 0 | +My| 0 | =0 (58)
) W W
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By the change

dy o dip

T T A T du

, Ty =@, x5 =0, x6 =

the system (41) can be reduced to the dimensionless form

Zi: — (N + N(u))x, (59)

where the matrix N have the block structure:

J'H | I 'Mgp

B wo B w%
N =

1 00 0 00

010 0 00

0 01 0 00

d
All solutions of the system o _ Nx, corresponding to (58), are asymp-

totically stable if and only if all %he real parts of the roots of characteristic
equation det(A] — N) = 0 are negative. The numerical computer analy-
sis showed that there exists a domain of parameters of the Earth’s artificial
satellite and its orbit, in the presence of which this condition is fulfilled, and,
hence, in this domain, real parts o; of eigenvalues of the matrix IN satisfy
the inequalities a; < —p, where j = 1..6, pu = const > 0.

For visualization of such domain it is advisable to construct its section
fixing some parameters of spacecraft and its orbit. For example the section
of mentioned domain at the following fixed parameters

R=7-10m, A=103kg-m?, Q=5-10"3C,
h1 = h2 = h3 =h= 0.5Aw0 kg . m2/s, (60)
kr =10s/T, ky =2-106 N-m/T?,

by the plain of inertial parameters (0, €) at ¢ = 7/3rad is plotted in the
Fig. 9.

Moreover, the comparison of the given domain of parameters, obtained
with the joint use of the moments My and My, (Fig. 9), with corresponding
domains, constructed for the cases, when only one of these moments is in use,
was fulfilled. All calculations were performed for parameters of spacecraft and
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Figure 9:

its orbit, cited in equalities (60), except the cases of absence of one of control
moments M M Or M 1, for which kp; = 0 or k, = 0 accordingly. The results
are shown in the Fig. 10.

The horizontal shading mark the region corresponding to the use of only
one control moment M, 1, the vertical shading mark the region corresponding
to the use of only one control moment M M, the grey color mark the region
which arises only thanks to the joint use of the both control moments.

According to [9], let us consider the function

k
12max |n; ;|
x(u) = exp (—Hu> i ( e i ) ub (61)

2 k!
k=0

The maximum value of this function on semiaxis [0, +00) we denote as

D. If 6
< o
N = max Y | < 4D, (62)
i=1
then the zero solution of the system (59) (the same system in dimension

form is (41)) is asymptotically stable [9]. Hence, the zero solution of initial
nonlinear system (23) will be total stable [11].
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]

Figure 10:

It is easy to verify that in domain of parameters of spacecraft and its orbit
where the real parts of all eigenvalues of the matrix N are negative, the in-
equality (62) is valid. As is obvious from the foregoing, the suggested method
of spacecraft attitude stabilization is operable in the mentioned domain and

this is confirmed by computer modeling.

0,3
0,24
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"
0,114 1
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14 L FEACRY
o "’.‘f"_‘-“'i"\-d-\_f-g , . . .
i RS AT 7
IR WA SR 20 30 U 40
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Figure 11:

In Fig. 11 — Fig. 13 are represented the computational results of space-
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Figure 12:

Figure 13:

craft stabilized attitude motion in the presence of the following values of
parameters of the spacecraft and its orbit: R =7-10m, i = /3 rad, 4 =
103 kg - m?, Q =5-103C, 6 =07, ¢ =07, hi = hg = hg = h =
0.5Awy kg - m?/s, kr = 10 s/T, kp = 2-10% N-m/T2 At such choice of
parameter § the gravitational moment Mg is disturbing from the point of
view of stabilization process in the direct equilibrium position. As initial val-
ues, ¢(0) = 0.2rad, (0) = —0.2rad, 6(0) = 0.2rad, w,(0) = 0.1lwprad/s,
wy(0) = L.lwprad/s, w.(0) = 0.lwgrad/s.

In Fig. 11 the graphs of "airborne” angles via the argument of a latltude
are plotted for spacecraft under the action of control moments M7, and M.
In Fig. 12 the graphs of quaternion components are plotted for the case of
stabilized motion, and in Fig. 7 are the same components in the absence of
control moments My, (k, = 0), My (kp = 0) and the damping moment Mp
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(h = 0). The comparison of Fig. 11 and Fig. 12, Fig. 7 make it clear that
the suggested stabilization system permits to reach the prescribed spacecraft
attitude position, and the stabilization process is rather fast as in the case of
the equatorial orbit (i = 0). The values of the moments M L, M M, Mg, M D
acting upon the spacecraft in the process of stabilization, are shown in Fig. 13.
It is obvious that the mentioned values are in such limits that make evident
the operability of suggested method of attitude control. The comparison of
obtained results with similar results obtained with the use of only one of the
moments M I, or M  is made. It is revealed that the joint use of both control
moments M}, and My, in electrodynamical attitude stability system result in
reduce of the transition time.

Conclusion

Thus, the possibility of spacecraft attitude stabilization on the orbits with
arbitrary inclinations with the help of control moments M L, M A and M D is
proved. It is proved and verified by computer modeling that the suggested
attitude control permits to reach the stabilized motion in the short time. It
should be noted that all computations were carried out with the use of the
octupole approximation of geomagnetic field in order to achieve the necessary
calculation accuracy. It was revealed that the use of more simple models of
geomagnetic field (dipole or quadrupole approximations) may give rise to
incorrect results.
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O stabilizaciji letilice u orbitalnom koordinatnom sistemu

U radu se razmatra letilica u kruznoj orbiti bliskoj zemlji. Letilica med-
judejstvuje sa geomagnetnim poljem momentima Lorencove i magnetne sile.
Prihvaéena je oktupolna aproksimacija zemljinog magnetnog polja. Elek-
tromagnetni parametri letilice, naime, elektrostaticki moment naelektrisanja
prvog reda kao i sopstveni magnetni moment su kontrolisane kvaziperiodi¢ne
funkcije. Upravljajuéi algoritmi za elektromagnetne parametre letilice koji
dozvoljavaju stabilizovanje polozaja letilice u orbitalnom koordinatnm sis-
temu su dobijeni. Stabilnost stabilizovane orijentacije letilice je dokazana
kako analiticki tako i PC izracunavanjima.
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