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Abstract

This paper aims to investigate the blood flow in a bell-shaped con-
stricted rigid tube, modeled as stenosed artery. The flow is assumed
to be axi-symmetric, laminar and of oscillatory type. A mathemati-
cal model of shear-thinning fluid corresponding to the shear-dependent
blood viscosity (mainly due to the behavior of the red blood cells in sus-
pension of the flowing blood) is considered. The governing equations of
motion are presented with the help of stream function-vorticity and are
solved numerically by finite-difference technique. The shear-thinning
fluid model for the flowing blood has significant contribution in the dy-
namics of oscillatory blood flow. The results reveal that the arterial
wall shear stress reduced significantly and the peak value of the wall
shear stress at the maximum area reduction is comparatively low for
Newtonian fluid viscosity. The lengths of recirculating regions formed
after the constriction are reduced for the shear-thinning blood viscosity
model and also for its different material parameters.
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1 Introduction

Of late, the study of bio-fluid dynamics has become quite interesting to many
researchers from theoretical, experimental as well as clinical point of view.
Flow through arteries becomes complicated by the formation of atheroscle-
rotic plaques on the arterial wall which impede the flow through the artery
and which may substantially affect the wall shear stress distribution. The
blockage in the coronary artery passage area has severe impact in blood flow
leading to the malfunction of the cardiovascular system. The development
of artheriosclerosis is known to be closely related with the presence of a lo-
cally irregular flow pattern, variation of arterial wall shear stress and also
the boundary layer flow separation. The exact mechanism responsible for
the initiation of such arterial constriction (stenosis) is not clearly known, but
their effects on the resulting flow dynamics are quite significant, in human
circulatory system.

Several investigations on flow through stenosed artery have been carried
out to evaluate the flow characteristics under steady and pulsatile flow con-
ditions. Attention is also given to study experimentally steady and unsteady
flows across a stenosis which can be found in Young & Tsai [1], [2] and in
Siouffi et al. [3]. In fact, blood is a complex rheological mixture showing
several non-Newtonian properties, shear-thinning, yield stress, stress relax-
ation etc. The rheological properties of fluid have important influences on
wall shear stress, oscillatory shear index etc. So it is very important to ad-
dress the significance of non-Newtonian models for the purpose of reliable
hemodynamical modeling.

Blood may be considered as a Newtonian fluid for the flow within the
heart and the aorta of the human cardiovascular system. For blood flow
in smaller arteries of diameter 0.5mm, a simple rescaling of the Newtonian
viscosity is sufficient to take account of non-Newtonian behavior of blood (Ku
[4], Caro et al. [5]). But in particular situations blood may behave as a non-
Newtonian fluid, even in large arteries, as reported in Nakamura and Sawada
[6]. Under diseased conditions, blood exhibits remarkable non-Newtonian
properties.

Extensive theoretical and experimental research works on fluid dynam-
ics through differently geometries have been carried out to evaluate the flow
pattern and the wall shear stress under steady and pulsatile flow conditions.
The nonlinear separated vorticity modifies the boundary layer structure and
its separation region which eventually changes the whole flow dynamics. The
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dynamics of this kind of steady and pulsatile flow phenomena through a mod-
eled stenosed artery and the corresponding flow separation has been studied
in detailed by several researchers viz. Layek and Midya [7], Pedrizzetti [8],
Siouuffi et al. [3]), Mittal et al. [9], Tutty [10], Tutty and Pedley [11]. Several
physical quantities have been proposed in literature in order to measure the
risk zones in blood vessel. Observations show that one reason behind this is
the oscillatory nature of the blood flow during the diastolic phase at every
single heart beat.

Number of researchers have studied flow of non-Newtonian fluids through
arterial stenosis. Best of the authors’ knowledge, only a few of them take
into account both the unsteadiness and non-Newtonian effects. Thus there is
much left to be studied with the simultaneous effect of physiological pulsatile
flow and non-Newtonian behaviour of blood in presence of stenosis. In the
present work, a numerical investigation concerning axi-symmetric pulsatile
blood flow through a bell-shaped stenosed rigid artery having a medium
degree of contraction is carried out. The assumption of wall rigidity may not
seriously affect the flow since the development of atherosclerosis in arteries
causes a significant reduction in the distensibility of its wall as is evident
from the observation of Nerem[12]. A shear thinning blood viscosity model
is considered. The rheological parameters involved in the blood flow are
investigated, in details. The sinusoidal and physically relevant pulsations are
used for this study applicable to smaller arterial flow.

2 Mathematical model for blood viscosity

The viscosity of blood depends on the viscosity of plasma and its protein con-
tent, the haematocrit, the temperature, the shear rate and the narrowness
of the blood vessel. Among these, the blood viscosity is mainly influenced
by three factors: hematocrit, temperature and flow rate. In this paper we
consider that the viscosity of streaming blood is depending on the shear-rate,
that is, the streaming blood is a shear-thinning fluid. It is experimentally
shown that the apparent viscosity of blood decreases as the shear-rate in-
creases. In recent past, many constitutive equations have been proposed for
the blood to model this shear-thinning property (Anand and Rajagopal [13],
Yeleswarapu et al. [14]).
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The shear dependent viscosity of Yeleswarapu [15] is given as

µ(γ̇) = η∞ + (η0 − η∞)
[1 + loge(1 + Λγ̇)]

1 + Λγ̇
, (1)

where η0 and η∞ (η0 ≥ η∞) are the asymptotic apparent viscosities as
γ̇ → 0 and ∞ respectively, and Λ ≥ 0 is a material constant having the
dimension of time and representing the degree of shear thinning (for η0 =
η∞, µ(γ̇) =constant and the model reduces to the Newtonian one).

According to Yeleswarapu et al. [14] the physiological values for the blood
are taken asλ=14.72 and Λ=14.81. These physiological values for blood are
taken throughout the present study except where the variation are performed.
The Fig. 1(a) and (b) represent the behaviour of viscosity of blood due to
change in physiological values.

2.1 Shape of the arterial stenosis

Arterial constriction is asymmetric and irregular in shape containing many
ups and downs. In general, the surface irregularities of the stenosis add
complexity to experimental and numerical simulations of the flow phenomena.
Keeping in view of such complexities, in the present investigation we have
taken a simple bell-shaped constriction. The rigid tube modeled as artery
has a circular cross section whose radius is R0 everywhere except in a small
region centered at z=0, with a mild smooth axi-symmetric contraction, as
represented by equation:

r0 (z) = 1− δe− σz2, (2)

where 0≤δ¡1 is a measure of the degree of contraction,σis its length. For a
slowly varying smooth profile, σis kept small. The geometry of the tube with
bell-shaped constriction has been presented in Fig. 2.

3 Flow Analysis

Consider the pulsatile flow of an incompressible viscous fluid, with constant
density ρ and shear dependent viscosity µ(γ̇) moving in an axi-symmetric
tube (modeled as artery) with a bell-shaped constriction (axi-symmeric). We
assume the axis as the z-axis of a cylindrical system of coordinates(r∗, z∗, θ∗).
The axial symmetry makes the flow independent fromθ∗. Let R0 be the



Pulsatile flow of shear-dependent fluid... 213

Λ=14.81
Λ=10
Λ=5

shear rate

vi
sc

os
ity

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0  1  2  3  4  5  6  7

(a) Variation of Λ.

λ=14.72
λ=10
λ=5

shear rate

vi
sc

os
ity

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0  1  2  3  4  5  6

(b) Variation of λ.

Figure 1: Viscosity function for shear dependent model for the variation of
the parameter λ and Λ.

radius of the tube in the unocculated portion and r∗0(z
∗) define the wall of

the vascular tube. The origin O is taken at the inlet. For pulsatile flow
condition, the mean velocity at the inlet will be time-dependent and hence
the fluid is moving inside the tube with a pulsatile flow volume rate which is



214 Mani Shankar Mandal, Swati Mukhopadhyay, G. C. Layek

R Rr0 (z)

z

r

0 0

O

Figure 2: Schematic diagram of the rigid tube with bell-shaped constriction.

prescribed at a particular location (i.e. at the inlet of the tube) as

Q∗(t∗) =
π

2
R2

0U0

[
1 + sin

(
2π
t∗

T

)]
, (3)

where U0 is maximum value (in period) of the cross-sectionally averaged
velocity at the tube inlet and T is the period of pulsation of the flow under the
approximation of the axial symmetry. The following dimensionless quantities
in this axi-symmetric two-dimensional flow are given below

z =
z∗

R0
, r =

r∗

R0
, r0 =

r∗0
R0
, u =

u∗

U0
, v =

v∗

U0
, t =

t∗

T
, p =

p∗

ρU2
0

, λ =
η0
η∞

, (4)

where p∗ is the pressure, u∗ and v∗ are the velocity components along z∗ and
r∗-axes, respectively.

The unsteady two dimensional Navier-Stokes equation of an incompress-
ible fluid with shear dependent viscosity may be written in dimensionless
form as:

st
∂u

∂t
+
∂uv

∂r
+
∂u2

∂z
+
uv

r
=− ∂p

∂z
+

1

Re

[
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{
∂2u

∂r2
+

1

r

∂u

∂r
+
∂2u

∂z2

}
+
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{
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∂r
+
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}
+ 2

∂µ1
∂z

∂u

∂z

]
,

(5)

st
∂v

∂t
+
∂v2

∂r
+
∂uv

∂z
+
v2

r
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∂r
+

1

Re
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}
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+
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(
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+
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)]
,

(6)
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and

r
∂u

∂z
+
∂vr

∂r
= 0, (7)

where Re = U0R0/ν is the flow Reynolds number and st = R0/U0T is the

Strouhal number and µ1 = 1+ (λ− 1) [1+loge(1+Λγ̇)]
1+Λγ̇ is the dimensionless fluid

viscosity with

γ̇ =

[
2

(
∂u

∂z

)2

+ 2

(
∂v

∂r

)2

+ 2
(v
r

)2
+

(
∂u

∂r
+
∂v

∂z

)2
] 1

2

. (8)

We now define the dimensionless Stokes stream function ψ(z, r, t)as fol-
lows,

u =
1

r

∂ψ

∂r
, v = −1

r

∂ψ

∂z
(9)

and the corresponding azimuthal vorticity function ω(z, r, t)as

ω =
∂v

∂z
− ∂u

∂r
. (10)

Using (9) and (10) and by cross-differentiation of the momentum equation
(5) and (6) the pressure term is eliminated and we have the following usual
coupled equations for stream function and vorticity transport

−ωr = ∂2ψ

∂z2
+
∂2ψ

∂r2
− 1

r

∂ψ

∂r
, (11)
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)]
.

(12)
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3.1 Boundary conditions for the flow problem

At the inlet cross-section of the tube, the flow is assumed to be fully devel-
oped, that is, ∂ω/∂z = ∂ψ/∂z = 0and at the outlet cross-section, we have
considered the flow field has no change which gives∂2ω/∂z2 = ∂2ψ/∂z2 = 0.
A time dependent flow rate Q(t) is given at the upper wall of the tube.

The flow symmetry gives the following conditions

ψ = 0, ω = 0 at r = 0. (13)

The conditions of ‘no slip’ at the tube wall requires that

∂ψ/∂z = 0 = ∂ψ/∂r at r = r0(z). (14)

Since the mass flux across all cross-sections of the tube is same at any instant
of time, so

r0(z)∫
0

2πr

(
1

r

∂ψ

∂r

)
dr = Q(t). (15)

This gives the value of the stream function ψ at r = r0(z) (the tube wall)

ψ(t) = Q(t)/2π (16)

where the non-dimensionalQ(t) = π/2 (1 + sin (2πt)) gives ψ(t) = 0.25 (1 + sin 2πt).
The vanishing normal velocity component at the tube wall gives that the

stream function is constant along the wall at particular instant of time and
also the zero value of the tangential velocity implies that the first order normal
derivative and the second order mixed derivative of the stream function are
zero (Batchelor [16], Pedrizetti [8]). These conditions of the stream function
when used in equation (11) provide the wall vorticity at the upper wall. Using
these conditions for stream function, the wall vorticity at r = r0(z)can be
obtained which is most crucial in finding the flow quantities of the vorticity-
stream function formulation.

We choose a suitable system of coordinates where the arterial constriction
coincides with a constant coordinate curve. A coordinate transformation is
used defining a new R-coordinate asR = r/r0(z).

The equations for stream function (11) and the vorticity transport equa-
tion (12) are transformed to the co-ordinate (R, z, t)and the transformed
equations are not presented.



Pulsatile flow of shear-dependent fluid... 217

The transformed boundary conditions on the stream function ψ and vor-
ticity ω at R=1 become

ψ (z,R = 1, t) = 0.25 (1 + sin 2πt) (17)

ω (z,R = 1, t) = − 1

r30

[
1 +

(
dr0
dz

)2
](

∂2ψ

∂R2

)
atR=1

. (18)

4 Numerical Method

The transformed governing equations together with the initial and bound-
ary conditions are solved numerically by using finite difference technique. A
very efficient implicit technique, viz. Alternating Direction Implicit (ADI)
method has been used to solve vorticity transport equation which is parabolic
in nature. The elliptic stream function equation is discretised using central
difference formula and the algebraic system is solved by using SLOR algo-
rithm (Successive Line Over relaxation Method), (Peyret and Taylor [17] ).

The finite difference representations of the derivatives and all other terms
have been written at the mesh point (j,k) which indicates a point where
z = j∆z and R = k∆R, ∆z and ∆R being the increment of z and R,
respectively. The finite difference form for time is written as t = m∆t, where
∆t is the time increment and the superscript denotes the time direction. A
tridiagonal system of algebraic equations associated with each line (constant
j) in R-direction is formed. The finite-difference representation is given below

A(k)ψ
m+1

j,k−1 +B(k)ψ
m+1

j,k
+ C(k)ψ

m+1

j,k+1 = S(k) (19)

where the quantities A(k), B(k), C(k) and S(k) are defined as

A(k) =
M2

(∆R)2
− M1

(2∆R)

B(k) = − 2

(∆z)2
− 2M2

(∆R)2

C(k) =
M2

(∆R)2
+

M1

(2∆R)

S(k) = −r0Rω
m

j,k
−
ψ

m

j+1,k
− 2ψ

m

j,k + ψ
m

j,k−1

(∆z)2

+M3

ψm
j+1,k+1 − ψ

m

j+1,k−1
− ψ

m

j−1,k+1
+ ψ

m

j−1,k−1

4∆z∆R
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and

M1 =
2R

r20

(
dr0
dz

)2

− R

r0

d2r0
dz2

− 1

Rr20
,

M2 =
R2

r20

(
dr0
dz

)2

+
1

r20
,

M3 =
2R

r0

dr0
dz

The tridiagonal system of equations can be solved by using well-known
Thomas algorithm for each (constant j) in R-direction. The successive over
relaxation scheme is used and the relaxation parameter is chosen 1.3 for the
grid size 250 x 22.

An ADI method is used to obtain a numerical solution of the momentum
equation subject to the boundary conditions. But the main difficulty with the
stream function-vorticity formulation is to derive the boundary conditions for
the vorticity. In our present computation, we obtain a second order accurate
formula for wall vorticity from the equation represented by stream-function
assuming the known values of the stream-function. The vorticity at the tube
wall are given by

ω(z,R = 1, t) = −2r30(j)

[
1 +

(
dr0
dz

)2

(j,kstp)

](
ψj,kstp−1 − ψj,kstp

(∆R)2

)
(20)

where k=kstp corresponds to the value of R at the boundary i.e. R=1. This
necessitates the evaluation of ψ at a previous level iteration (or time) level.

The momentum equation is now written in two half time-steps with one
spatial variable implicit in one half times-step and the other spatial variable
implicit in the other half time-step. Thus each half step involves the direct
solution of a tridiagonal system of equations. During the first half time-step,
the value of the vorticity ω is known at time level m and unknown at the

(m+1/2). These unknown values,ω
m+1/2
j,k are associated with the R-direction

(i.e., for R-implicit and z-explicit). The discretised version of momentum
equation is given by

P (k)ω
m+1/2
j,k−1 +Q(k)ω

m+1/2
j,k +R(k)ω

m+1/2
j,k+1 = S(k) (21)
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where P (k), Q(k), R(k)and S(k)are given by

P (k) =
1

2∆R
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uR

r0

dr0
dz

− v

r0
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Equation (21) is tridiagonal system of algebraic equations which can be solved
using well-known Thomas algorithm (Peyret and Taylor [17]).

To advance to the next half-step with the z-direction (i.e.,z-implicit and
R-explicit), the following set of equations are solved for the unknown values
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of ωm+1
j,k using the known indeterminate values obtained in the previous half-

level as
P (j)ωm+1

j−1,k +Q(j)ωm+1
j,k +R(j)ωm+1

j,k+1 = S(j) (22)

where the quantities P (j), Q(j), R(j) and S(j) are given by
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)
+
P2

Re
.

After solving the system the vorticities at (m+1)th level are obtained in
the computational plane.

4.1 Stability Criteria of the numerical scheme

Some restrictions have been incorporated on selecting time step ∆t depending
on the grid size∆z,∆R. The first restrictions i.e., CFL (Courant, Friedrichs
& Lewy) condition, is given as

∆t1 ≤Min

[
∆z

|u|
,
∆R

|v|

]
(j,k)

The second restriction related to the viscous effects and is given by

∆t2 ≤Min

[
Re

2

∆z2∆R2

(∆z2 +∆R2)

]
(j,k)
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Actually, the time step is chosen by using the following relation

∆t = βMin [∆t1,∆t2] ,

where the minimum is taken in the global sense and the time steps ∆t1
and ∆t2 must satisfy the above two inequalities. For pulsatile flow, the
parameterβ is selected 0.001 and∆t=0.0005.The different flow parameters
involve in the present study are taken asRe=10 to150, st=0.06 to 0.09, σ=0.8,
δ=0.3, λ=14.72 and Λ=14.81.

5 Results and Discussions

For the purpose of verification of the present numerical code, computations
for the stream- function (ψ), vorticity (ω) in case of steady flow through a
long circular straight tube for different values of R at the Reynolds number
Re=10 and for Strouhal number st=1 with no-slip boundary condition for
grid size 250 x 22 are made and found in excellent agreement with the exact
values of ψ and ωas shown in Table-I. The wall shear stress distribution of a
Newtonian fluid through a tube with single bell-shaped constriction centered
at z=0 under steady flow rate condition for Re=10 has been presented in
Fig.3. However, good agreement between the present simulation on Newto-
nian flow and that of G.Pontrelli [18] establishes the validity of the model
under consideration together with the numerical code used.

An extensive quantitative analysis has been performed with the help of the
present model of bell shaped constricted artery, for various physical quantities
of major physiological relevance such as the wall shear stress, velocity profiles
etc. through their graphical representations. We are mainly interested to
study the effects of pulsatile flow and purely sinusoidal unsteady flow rate on
such type of constriction. From clinical point of view, the results obtained in
this study have important bearings on flow characteristics.

The stress on the wall of the artery plays an important role in the creation
and proliferation of the arterial disease. The principal features of the flow
can also be determined by examining the wall shear stress. High wall shear
stress may damage the vessel wall and is the cause of the intimal thickening.
On the other hand, the plaque formation in an artery develops in the regions
of low arterial wall shear stress. Atherosclerotic lesions are associated with
low and oscillatory wall shear stress. Experimental studies suggest that wall
shear stress is higher on the outer wall of curvature, whereas it is low in
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Figure 3: Comparison of wall shear stress in Newtonian case for Re=10 under
steady flow condition.

the inner wall of curvature. In the aorta, atherosclerotic lesions occur along
the inner wall of curvature where there is low shear stress. Cholesterol is
actually synthesized in the arterial wall and diffuses in to the lumen where it
is washed away by the blood stream. In the region of high wall shear stresses
(and hence velocity gradients), more cholesterol is washed away by the blood
flow. On the other hand, where the shear stress is low, excess cholesterol is
deposited on the surface of the lumen initiating atheroma development (caro
et al. [19], Layek et al. [20]). So it is very important to notice the wall
shear stress distribution in the constricted region. So wall shear stress near
the throat of the constriction deserves special attention. It is observed that
the peak value of wall shear stress is higher in Newtonian case than that of
non-Newtonian case, which is presented in Fig. 4.

For the physiological values of blood (i.e. λ=14.72 and Λ=14.81), the
time-dependent wall shear stress distributions are exhibited in Fig. 5(a)-(c)
for various Strouhal number (st) at fixed Reynolds number Re=100. It is
observed that the peak value of the shear stress increases with st and flow
separation starts at the throat of the stenosis at t=0.50.
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Figure 4: The wall shear stress distribution under sinusoidal flow rate condi-
tion for both Newtonian and non-Newtonian cases at t = 0.5, Re = 100 and
st = 0.06.

At time t=0.60 the peak value of the wall shear stress decreases com-
pared to the previous case and large separation region is formed at down
stream. Length of separation increases with increasing st. Larger separation
zone at st=0.09 indicates the presence of strong eddy in the downstream.
This means that at t=0.60 shear stress is negative in down stream direction
and a flow separation region is growing. At t=0.75 the wall shear stress is
completely negative and the flow separation region is continuously increas-
ing. The negative values of wall shear stress indicate the separating region
and is substantially more prevalent than the positive values because of sep-
aration. Separation of the boundary layer gives rise to the flow structure
which has important implications in understanding and predicting the flow
characteristics. Moreover, the extent of the negative shear stress region gives
an idea about the size of the re-circulation eddies. The re-circulation zone
indicates the region where the flow is reversed. Thus, appearance of these
re-circulation regions is of pathological significance since, these are regions of
low shear and may prolong the residing time of blood constituents that can
eventually pass into the arterial wall.
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(c) t = 0.75

Figure 5: The wall shear stress distribution under sinusoidal flow rate condi-
tion for Re = 100 and for different st at diverse t
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The wall shear stresses at t=0.50 for different values of Reynolds numberReis
presented in Fig.6. It reveals that the peak value of wall shear stress increases
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Figure 6: The wall shear stress distribution under sinusoidal flow rate condi-
tion for different Re at t = 0.50 and st = 0.06.

for increasing Reynolds number Re. The peak of the shear stress is believed
to cause severe damage to the arterial lumen which in turn helps in detecting
the aggregation sites of platelets may have several consequences in circulatory
system.

Next, we pay our attention to analyse the flow characteristics, particularly
the wall shear stress due to pulsatile flow rate. For this we have consider
physiologically relevant pulsation as given by

f(t) = 0.4355 + 0.05 cos(2πt) + 0.25 sin(2πt)− 0.13 cos(4πt)

+ 0.13 sin(4πt)− 0.10 cos(6πt)− 0.02 sin(6πt)

− 0.01 cos(8πt)− 0.03 sin(8πt)

and the effects of pulsatile flow rate on wall shear stress are exhibited in Fig.
7(a)-(c) for three different time stations and st numbers. From Fig. 7(a), it
is very clear that flow separation occurs at earlier time for both the st has at
the Re=100. Fig. 7(b) represents the fluctuating nature of wall shear stress
in the separated region.



226 Mani Shankar Mandal, Swati Mukhopadhyay, G. C. Layek

z

w
al

l s
he

ar
 s

tr
es

s
= 0.06
= 0.09

st
st

−10

 0

 10

 20

 30

 40

 50

 60

 70

−5  0  5  10  15

(a) t = 0.18

z

w
al

l s
he

ar
 s

tr
es

s

= 0.09
= 0.06

st
st

−5

 0

 5

 10

 15

 20

 25

−5  0  5  10  15

(b) t = 0.30

w
al

l s
he

ar
 s

tr
es

s

z

= 0.06
= 0.09

st
st

−2

 0

 2

 4

 6

 8

 10

 12

−5  0  5  10  15

(c) t = 0.39

Figure 7: The wall shear stress distribution under physiological pulsatile flow
rate condition for Re = 100 and for different st at diverse t.
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Figure 8: The velocity profile under sinusoidal flow rate condition for Re =
100 and for different st at diverse t.
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Table 1: Result of stream-functionψand vorticity ωfor a long straight circular
tube at Re = 10, st = 1.
R 0.0 0.25 0.50 0.75 1.0

ψ 0.0 0.03027 0.109838 0.20215 0.25002

Exact ψ 0.0 0.03027 0.109838 0.20215 0.25000

ω 0.0 0.49977 0.99514 1.49622 1.99323

Exact ω 0.0 0.50000 1.00000 1.50000 2.00000

However upstream separation is noted for st=0.09 at t=0.30 at Re=100.
This result is of great physiological importance. After a later time i.e. at
t=0.39, no separation is noted [Fig. 7(c)]. The velocity profiles are of some
interest as they provide a detailed description of the flow field. The velocity
profile are shown at different time location for fixed Re=100 and for various
value of Strouhal number (st). in Fig. 8(a)-(c).

At t=0.60 and t=0.75 the region of reversal flow is evident in these figures.
In this region i.e. the back flow region, the component of velocity undergoes
a change in sign. Fig. 9 displays the nature of velocity profiles for different
values of Reynolds number (Re) at time t=0.50.
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Figure 9: The velocity profile under sinusoidal flow rate condition for st =
0.06 and for different Re at t = 0.50.
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6 Conclusions

A numerical simulation of pulsatile blood flow with shear dependent viscosity
through a modeled artery with bell-shaped constriction is carried out for
sinusoidal and physiological flow rate separately. The main findings of this
study are summarised as follows:

(i) Viscosity increases with increasing the parameterλ, but decreases with
increasing the parameterΛ.

(ii) The peak value of wall shear stress is larger in physiological flow rate
than the sinusoidal flow rate.

(iii) Length of separation is larger in sinusoidal flow rate than that of the
physiological flow rate.

Therefore it can be concluded that the non-Newtonian character of blood
can modify the flow pattern and may have some biomedical application.
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Pulzatorno strujanje fluida u zavisnosti od smicanja u arteriji
sa suženjem

Cilj istraživanja u ovom radu je strujanje krvi u krutoj cevi oblika zvona ko-
jim se modelira arterija sa suženjem. Pretpostavka za strujanje fluida je da
je osnosimetrično, laminarno i oscilatornog tipa. Razmatra se matematički
model fluida u smičućem sloju koji odgovara zavisnosti viskoznosti od smi-
canja (uglavnom zbog mešavine crvenih krvnih zrnaca u krvi). Odgovarajuće
jednačine kretanja su opisane sa korǐsćenjem strujne funkcije vrtloga i rešavane
numerički metodom konačnih razlika. Model fluida sa smičućom funkcijom
zavisnosti ima značajan uticaj na dinamiku oscilatornog strujanja. Dobi-
jeni rezultati su pokazali da se arterijski smičući napon smanjuje značajno
i da se vrednosti maksimalnog smičućeg napona na maksimalnom suženju
niži u odnosu na Njutnov viskozni fluid. Dužine recirkularnih oblasti koje se
formiraju posle suženja su manje za viskozno zavisni smičući fluidni model i
takodje za njegove različite materijalne parametre.
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