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Abstract

In this paper, an analysis has been carried out to study heat and mass
transfer effects on steady two-dimensional flow of an electrically con-
ducting incompressible dissipating fluid past an inclined semi-infinite
porous surface with heat generation. A scaling group of transformations
is applied to the governing equations. The system remains invariant due
to some relations among the parameters of the transformations. Af-
ter finding three absolute invariants, a third-order ordinary differential
equation corresponding to the momentum equation, and two second-
order ordinary differential equations corresponding to energy and diffu-
sion equations are derived. The coupled ordinary differential equations
along with the boundary conditions are solved numerically. Many re-
sults are obtained and a representative set is displayed graphically to
illustrate the influence of the various parameters on the dimensionless
velocity, temperature and concentration profiles. Comparisons with pre-
viously published work are performed and the results are found to be
in very good agreement.
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Nomenclature

B0−applied magnetic field

C−species concentration in the boundary layer

C∞ −the species concentration in the fluid far away from the plate

cp−specific heat at constant pressure

D−mass diffusivity

Ec−Eckert number

f−dimensionless stream function

g−acceleration due to gravity

Gr−local temperature Grashof number

Gm−local mass Grashof number

K ′ −the permeability of the porous medium

K−permeability parameter

k−thermal conductivity of the fluid

M−magnetic field parameter

Pr−Prandtl number

Q0−heat generation constant

Q−heat generation parameter

Sc−Schmidt number

T −the temperature of the fluid in the boundary layer

T∞ −the temperature of the fluid far away from the plate

u, v−velocity components in x, y directions

Greek Symbols

η−similarity variable

α−angle of inclination

β−coefficient of thermal expansion

β∗−coefficient of concentration expansion

σ−electrical conductivity

ρ−density of the fluid

ν−kinematic viscosity

θ−dimensionless temperature

φ−dimensionless concentration

Subscripts

w−condition at wall
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∞−condition at infinity

Superscript

()′−differentiation with respect to η

1 Introduction

Simultaneous heat and mass transfer from different geometries embedded
in porous media has many engineering and geophysical applications such as
geothermal reservoirs, drying of porous solids, thermal insulation, enhanced
oil recovery, packed-bed catalytic reactors, cooling of nuclear reactors and un-
derground energy transport. An analysis is performed to study the natural
convection flow over a permeable inclined surface with variable wall tem-
perature and concentration by Chen [1]. Convective heat and mass transfer
along a semi-infinite vertical flat plate in the presence of a strong non-uniform
magnetic field and the effect of Hall currents is analyzed by using the scaling
group of transformations, see in Megahed et al. [2]. Beithou et al. [3] studied
the effect of porosity on the free convection flow along a vertical plate embed-
ded in a porous medium is investigated. Ibrahim et al. [4] investigated the
similarity reductions for problems of radiative and magnetic field effects on
free convection and mass-transfer flow past a semi-infinite flat plate. They
obtained new similarity reductions and found an analytical solution for the
uniform magnetic field by using Lie group method. They also presented the
numerical results for the non-uniform magnetic field.

There has been a renewed interest in studying magnetohydrodynamic
(MHD) flow and heat transfer in porous and non-porous media due to the
effect of magnetic fields on the boundary layer flow control and on the per-
formance of many systems using electrically conducting fluids. In addition,
this type of flow finds applications in many engineering problems such as
MHD generators, plasma studies, nuclear reactors, and geothermal energy
extractions. Soundalgekar et al. [5] analysed the problem of free convection
effects on Stokes problem for a vertical plate under the action of transversely
applied magnetic field. Elbashbeshy [6] studied the heat and mass transfer
along a vertical plate under the combined buoyancy effects of thermal and
species diffusion, in the presence of magnetic field. Helmy [7] presented an
unsteady two-dimensional laminar free convection flow of an incompressible,
electrically conducting (Newtonian or polar) fluid through a porous medium
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bounded by an infinite vertical plane surface of constant temperature.

Kalpadides and Balassas [8] studied the free convective boundary layer
problem of an electrically conducting fluid over an elastic surface by group
theoretic method. Their results agreed with the existing result for the group
of scaling symmetry. They found that the numerical solution also does so.
The Navier-Stokes and boundary layer equations for incompressible flows
were derived using a convenient coordinate system by Pakdemirli [9]. The
results showed that the boundary layer equations accept similarity solutions
for the constant pressure gradient case. The importance of similarity trans-
formations and their applications to partial differential equations was studied
by Pakdemirli and Yurusoy [10]. They investigated the special group transfor-
mations for producing similarity solutions. They also discussed spiral group
of transformations. Using Lie group analysis, three dimensional, unsteady,
laminar boundary layer equations of non-Newtonian fluids are studied by
Yurusoy and Pakdemirli [11, 12]. They assumed that the shear stresses are
arbitrary functions of the velocity gradients. Using Lie group analysis, they
obtained two different reductions to ordinary differential equations. They
also studied the effects of a moving surface with vertical suction or injection
through the porous surface. They further studied exact solution of bound-
ary layer equations of a special non-Newtonian fluid over a stretching sheet
by the method of Lie group analysis. They found that the boundary layer
thickness increases when the non-Newtonian behaviour increases. They also
compared the results with that for a Newtonian fluid. Yurusoy et al. [13]
investigated the Lie group analysis of creeping flow of a second grade fluid.
They constructed an exponential type of exact solution using the transla-
tion symmetry and a series type of approximate solution using the scaling
symmetry.

Viscous mechanical dissipation effects are important in geophysical flows
and also in certain industrial operations and are usually characterized by the
Eckert number. In most of the studies mentioned above, viscous dissipation is
neglected. Gebhart [14] reported the influence of viscous heating dissipation
effects in natural convective flows, showing that the heat transfer rates are
reduced by an increase in the dissipation parameter. Gebhart and Mollen-
dorf [15] considered the effects of viscous dissipation for the external natural
convection flow over a surface. Gnaneswara Reddy and Bhaskar Reddy [16]
studied the radiation and mass transfer effects on unsteady MHD free convec-
tion flow past a vertical porous plate with viscous dissipation by using finite
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element method. Recently, Gnaneswara Reddy and Bhaskar Reddy [17] in-
vestigated mass transfer and heat generation effects on MHD free convection
flow past an inclined vertical surface in a porous medium. Sivasankaran et
al. [18] analyzed lie group analysis of natural convection heat and mass
transfer in an inclined surface. Gnaneswara Reddy and Bhaskar Reddy [19]
have presented soret and dufour effects on steady MHD free convection flow
past a semi-infinite moving vertical plate in a porous medium with viscous
dissipation.

In this article, application of scaling group of transformation for heat
and mass transfer effects on steady free convection flow in an inclined plate
in the presence of MHD, heat generation and viscous dissipation have been
employed. This reduces the system of nonlinear coupled partial differential
equations governing the motion of fluid into a system of coupled ordinary
differential equations by reducing the number of independent variables. The
system remains invariant due to some relations among the parameters of
the transformations. Three absolute invariants are obtained and used to de-
rive a third-order ordinary differential equation corresponding to momentum
equation and two second-order ordinary differential equations corresponding
to energy and diffusion equations. With the use of Runge-Kutta fourth or-
der along shooting method, the equations are solved. Finally, analysis has
been made to investigate the effects of thermal and solutal Grashof numbers,
magnetic field parameter, permeability parameter, heat generation param-
eter, Prandtl number, Viscous dissipation parameter, and Schmidt number
on the motion of fluid using scaling group of transformations, viz., Lie group
transformations.

2 Mathematical analysis

A steady two-dimensional hydromagnetic flow heat and mass transfer effects
of a viscous, incompressible, electrically conducting and dissipating fluid past
a semi-infinite inclined plate embedded in a porous medium with an acute
angle αto the vertical. The flow is assumed to be in thex- direction, which
is taken along the semi-infinite inclined plate and y- axis normal to it. A
magnetic field of uniform strength B0is introduced normal to the direction
of the flow. In the analysis, we assume that the magnetic Reynolds number
is much less than unity so that the induced magnetic field is neglected in
comparison to the applied magnetic field. It is also assumed that all fluid
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properties are constant except that of the influence of the density variation
with temperature and concentration in the body force term. The surface is
maintained at a constant temperatureTw, which is higher than the constant
temperature T∞ of the surrounding fluid and the concentration Cw is greater
than the constant concentrationC∞. The level of concentration of foreign
mass is assumed to be low, so that the Soret and Dufour effects are negligible.
Then, under the usual Boussinesq’s and boundary layer approximations, the
governing equations are

Continuity equation
∂u

∂x
+
∂v

∂y
= 0 (1)

Momentum equation

u
∂u

∂x
+v

∂u

∂y
= ν

∂2u

∂y2
+gβ (T − T∞) cosα+gβ∗ (C − C∞) cosα− σB2

0

ρ
u− ν

K ′u

(2)

Energy equation

u
∂T

∂x
+ v

∂T

∂y
=

k

ρcp

∂2T

∂y2
+

µ

ρ cp

(
∂u

∂y

)2

+
Q0

ρcp
(T − T∞) (3)

Species equation

u
∂C

∂x
+ v

∂C

∂y
= D

∂2C

∂y2
(4)

The boundary conditions for the velocity, temperature and concentration
fields are

u = v = 0, T = Tw, C = Cw at y = 0 (5)

u→ 0, T → T∞, C → C∞ as y → ∞

The second and third terms on right hand side of the energy equation (3)
represent the viscous dissipation and the heat generation respectively.

On introducing the following non-dimensional quantities

x̄ =
xU∞
ν

, ȳ =
y U∞
ν

, ū =
u

U∞
, v̄ =

v

U∞
, M =

σB2
0ν

U3
∞

, Gr =
ν g β(Tw − T∞)

U3
∞

, K =
ν3

K ′U3
∞

(6)

Gm =
ν g β∗(Cw − C∞)

U3
∞

, θ =
T − T∞
Tw − T∞

, φ =
C − C∞
Cw − C∞

, Pr =
ν

α
, Ec =

U2
∞

cp (Tw − T∞)
, Sc =

ν

D
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Q =
Q0ν

ρcpU2
∞

Substituting (6) into equations (1) - (4) and dropping the bars, we obtain,

∂u

∂x
+
∂v

∂y
= 0 (7)

u
∂u

∂x
+ v

∂u

∂y
=

∂2u

∂y2
+ Grθ Cosα+GmφCosα− (M +K)u (8)

u
∂θ

∂x
+ v

∂θ

∂y
=

1

Pr

∂2θ

∂y2
+ Ec

(
∂u

∂y

)2

+Qθ (9)

u
∂φ

∂x
+ v

∂φ

∂y
=

1

Sc

∂2φ

∂y2
(10)

The corresponding boundary conditions take the form

u = v = 0, θ = 1, φ = 1 at y = 0 (11)

u→ 0, θ → 0, φ→ 0 as y → ∞

By using the stream function u = ∂ψ
∂y , v = −∂ψ

∂xwe have(
∂ψ

∂y

∂2ψ

∂x∂y
− ∂ψ

∂x

∂2ψ

∂y2

)
=
∂3ψ

∂y3
+GrθCosα+GmφCosα−(M +K)

∂ψ

∂y
(12)

(
∂ψ

∂y

∂θ

∂x
− ∂ψ

∂x

∂θ

∂y

)
=

1

Pr

∂2θ

∂y2
+ Ec

(
∂2ψ

∂y2

)2

+Qθ (13)

(
∂ψ

∂y

∂φ

∂x
− ∂ψ

∂x

∂φ

∂y

)
=

1

Sc

∂2φ

∂y2
(14)

Finding the similarity solutions of equations (12) - (14) is equivalent to
determining the invariant solutions of these equations under a particular con-
tinuous one parameter group. One of the methods is to search for a trans-
formation group from the elementary set of one parameter scaling transfor-
mation. We now introduce the simplified form of Lie-group transformations
namely, the scaling group of transformations (Mukhopadhyay et al. [20]),
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Γ : x∗ = xeεα1 , y∗ = yeεα2 , ψ∗ = ψeεα3 , u∗ = ueεα4 , v∗ = veεα5 , θ∗ =
θeεα6 , φ∗ = φeεα7 (15) where α1, α2, α3, α4, α5, α6 and α7 are transforma-
tion parameters andε is a small parameter whose interrelationship will be
determined by our analysis.

Equation (15) may be considered as a point-transformation which trans-
forms co-ordinates (x, y, ψ, u, v, θ, φ) to the coordinates (x∗, y∗, ψ∗, u∗, v∗, θ∗, φ∗).

Substituting transformations equation (15) in (12), (13) and (14), we get

eε(α1+2α2−2α3)
(
∂ψ∗

∂y∗
∂2ψ∗

∂x∗∂y∗ − ∂ψ∗

∂x∗
∂2ψ∗

∂y∗2

)
= eε(3α2−α3) ∂

3ψ∗

∂y∗3
+ e−εα6GrθCosα

+e−εα7GmφCosα− (M +K) eε(α2−α3) ∂ψ
∗

∂y∗

(15)

eε(α1+α2−α3−α6)

(
∂ψ∗

∂y∗
∂θ∗

∂x∗
− ∂ψ∗

∂x∗
∂θ∗

∂y∗

)
=

1

Pr
eε(2α2−α6)∂

2θ∗

∂y∗2
+eε(4α2−2α3)Ec

(
∂2ψ∗

∂y∗2

)2

+Qθ∗e−εα6

(16)

eε(α1+α2−α3−α7)

(
∂ψ∗

∂y∗
∂φ∗

∂x∗
− ∂ψ∗

∂x∗
∂φ∗

∂y∗

)
=

1

Sc
eε(2α2−α7)

∂2φ∗

∂y∗2
(17)

The system will remain invariant under the group of transformationsΓ,
and we would have the following relations among the parameters, namely

α1 + 2α2 − 2α3 = 3α2 − α3 = −α6 = −α7 = α2 − α3

α1 + α2 − α3 − α6 = 2α2 − α6 = 4α2 − 2α3 = −α6

α1 + α2 − α3 − α7 = 2α2 − α7

These relations givesα2 = 1
4α1 = 1

3α3, α4 = 1
2α1, α2 = −1

4α1, α6 = α7 =
0

Thus the set of transformations Γreduce to one parameter group of trans-
formations as

x∗ = xeεα1 , y∗ = yeε
α1
4 , ψ∗ = ψeε

3α1
4 , u∗ = ueε

α1
2 , v∗ = ve−ε

α1
4 , θ∗ = θ, φ∗ = φ

Expanding by Tailors method in powers of ε and keeping terms up to the
order ε we get

x∗ − x = xεα1, y
∗ − y = yεα1

4 , ψ∗ − ψ = ψε3α1
4 , u∗ − u = uεα1

2 , v
∗ − v = −vεα1

4 ,
θ∗ − θ = 0, φ∗ − φ = 0
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The characteristic equations are
dx
xα1

= dy
y
α1
4

= dψ

ψ
3α1
4

= du
u

α1
2

= dv
−v α1

4

= dθ
0 = dφ

0 (19)

Solving the above equations, we find the similarity transformations

η = x−
1
4 y, ψ∗ = x

3
4 f (η) , θ∗ = θ (η) , φ∗ = φ (η) (18)

Substituting these values in Equations (15) - (17), we finally obtain the
system of nonlinear ordinary differential equations

f ′′′ +
3

4
ff ′′ − 1

2
f ′2 +GrθCosα+GmφCosα− (M +K) f ′ = 0 (19)

θ′′ +
3

4
Pr fθ′ + PrEcf ′′2 + PrQθ = 0 (20)

φ′′ +
3

4
Scfφ′ = 0 (21)

The corresponding boundary conditions take the form

f = 0, f ′ = 0, θ = 1, φ = 1 at η = 0

f ′ → 0, θ → 0, φ→ 0 as η → ∞ (22)

3 Results and discussion

The set of nonlinear ordinary differential equations (19) - (21) with boundary
conditions (22) have been solved by using the Runge-Kutta fourth order along
with Shooting method. First of all, higher order non-linear differential Equa-
tions (19) - (21) are converted into simultaneous linear differential equations
of first order and they are further transformed into initial value problem by
applying the shooting technique (Jain et al. [21]). The resultant initial value
problem is solved by employing Runge-Kutta fourth order technique. The
step size ∆η = 0.01is used to obtain the numerical solution with five decimal
place accuracy as the criterion of convergence. To analyze the results, nu-
merical computation has been carried out using the method described in the
previous section for variations in the governing parameters viz., the thermal
Grashof numberGr, solutal Grashof numberGm, magnetic field parameterM ,
permeability parameterK, angle of inclinationα, Prandtl numberPr, Eckert
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number Ec, heat generation parameter Q, and Schmidt numberSc. In the
present study following default parameter values are adopted for computa-
tions: Gr = Gm = 2.0,α = 300,M = 2.0,K = 1.0Pr = 0.71,Ec = 0.01,Q =
1.0,Sc = 0.6. All graphs therefore correspond to these values unless specifi-
cally indicated on the appropriate graph.

In order to assess the accuracy of our computed results, the present result
has been compared with Sivasankaran et al. [18] for different values of Gris
shown Fig. 1 withK = 0.0. It is observed that the agreements with the
solution of velocity profiles are excellent.

The influence of the free convection parameter, Grashof number (Gr)on
velocity and temperature distributions withηcoordinate is depicted in Fig.2.
The thermal Grashof numberGrsignifies the relative effect of the thermal
buoyancy force to the viscous hydrodynamic force in the boundary layer.
Increasing Gr corresponds to an increase in thermal buoyancy force in the
regime. As such the flow is decelerated which causes the velocity to plummet
considerably. Peak velocities (as shown in Fig. 2), and fall from 0.068 for
Gr = 1.0 to 0.012 forGr = 4.0. Here, the positive values of Gr correspond to
cooling of the plate. There is a sharp rise in velocity near the sphere surface
after which velocities peak and then decrease continuously to zero far from
the surface.

Figure 3 presents typical velocity profiles in the boundary layer for various
values of the solutal Grashof number Gm, while all other parameters are kept
at some fixed values. The solutal Grashof number Gm defines the ratio of the
species buoyancy force to the viscous hydrodynamic force. As expected, the
fluid velocity increases and the peak value is more distinctive due to increase
in the species buoyancy force. The velocity distribution attains a distinctive
maximum value in the vicinity of the plate and then decreases properly to
approach the free stream value.

For various values of the magnetic parameter M , the velocity profiles
are plotted in Figure 4. It can be seen that as M increases, the velocity
decreases. This result qualitatively agrees with the expectations, since the
magnetic field exerts a retarding force on the free convection flow.

Figure 5 shows the effect of the porosity parameter on the dimensionless
velocity profiles. It is observed that the velocity decreases as the porosity
increases. The reason for this behavior is that the wall of the surface provides
an additional effect to the fluid flow mechanism, which causes the fluid to
move at a retarded rate with reduced temperature. These behaviors are
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shown in Fig. 5. Also, it is observed that the concentration of the fluid is
almost not affected with increase of the porosity parameter.

Figure 6 shows the effect of angle of inclination to the vertical direction
on the velocity profiles. From this figure we observe that the velocity is
decreased by increasing the angle of inclination. The fact is that as the
angle of inclination increases the effect of the buoyancy force due to thermal
diffusion decreases by a factor ofcosα. Consequently the driving force to the
fluid decreases as a result velocity profiles decrease.

Figures 7 & 8 display the velocity and temperature distributions for dif-
ferent values of the heat generation parameterQ. It is seen from Figure 7 that
the velocity profile is influenced considerably and increases when the value of
heat generation parameter increases. From Figure 8, when the value of heat
generation parameter increases, the temperature distribution also increases
along the boundary layer.

Figures 9 and 10 illustrate the velocity and temperature profiles for differ-
ent values of the Prandtl number Pr. The Prandtl number defines the ratio
of momentum diffusivity to thermal diffusivity. The numerical results show
that the effect of increasing values of Prandtl number results in a decreasing
velocity (Figure 9). From Figure 10, it is observed that an increase in the
Prandtl number results a decrease of the thermal boundary layer thickness
and in general lower average temperature within the boundary layer. The
reason is that smaller values of Pr are equivalent to increasing the thermal
conductivities, and therefore heat is able to diffuse away from the heated
plate more rapidly than for higher values of Pr. Hence in the case of smaller
Prandtl numbers as the boundary layer is thicker and the rate of heat transfer
is reduced.

The effect of the viscous dissipation parameter i.e., the Eckert number Ec
on the velocity and temperature are shown in Figures 11 and 12 respectively.
The Eckert number Ec expresses the relationship between the kinetic energy
in the flow and the enthalpy. It embodies the conversion of kinetic energy
into internal energy by work done against the viscous fluid stresses. The
positive Eckert number implies cooling of the plate i.e., loss of heat from the
plate to the fluid. Hence, greater viscous dissipative heat causes a rise in the
temperature as well as the velocity, which is evident from Figures 11 and 12.

The influence of the Schmidt number Sc on the velocity and concentra-
tion profiles are plotted in Figures 13 and 14 respectively. The Schmidt
number embodies the ratio of the momentum to the mass diffusivity. The
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Schmidt number therefore quantifies the relative effectiveness of momentum
and mass transport by diffusion in the hydrodynamic (velocity) and con-
centration (species) boundary layers. As the Schmidt number increases the
concentration decreases. This causes the concentration buoyancy effects to
decrease yielding a reduction in the fluid velocity. The reductions in the ve-
locity and concentration profiles are accompanied by simultaneous reductions
in the velocity and concentration boundary layers. These behaviors are clear
from Figures 13 and 14.

4 Conclusions

By using the Lie group analysis, we first find the symmetries of the partial
differential equations and then reduce the equations to ordinary differential
equations by using scaling and translational symmetries. Exact solutions for
translational symmetry and a numerical solution for scaling symmetry are
obtained. From the numerical results, it is seen that the effect of increas-
ing thermal Grashof number or solutal Grashof number is manifested as an
increase in flow velocity. It is interesting to note that the temperature de-
creases much faster than the air temperature. In the presence of a magnetic
field parameter, the permeability of porous medium, viscous dissipation is
demonstrated to exert a more significant effect on the flow field and, thus,
on the heat transfer from the plate to the fluid. It is seen that the velocity
profile is influenced considrably and increases when the value of heat gener-
ation parameter increases, and when the value of heat generation parameter
increases, the temperature distribution also increases along the boundary
layer. The velocity and concentration is found to decrease gradually as the
Schmidt number is increased.

The results of the study are of great interest because flows on a vertical
stretching surface play a predominant role in applications of science and
engineering, as well as in many transport processes in nature.
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Lie group analysis of heat and mass transfer effects on steady
mhd free convection dissipative fluid flow past an inclined

porous surface with heat generation

In this paper, an analysis has been carried out to study heat and mass transfer
effects on steady two-dimensional flow of an electrically conducting incom-
pressible dissipating fluid past an inclined semi-infinite porous surface with
heat generation. A scaling group of transformations is applied to the govern-
ing equations. The system remains invariant due to some relations among the
parameters of the transformations. After finding three absolute invariants,
a third-order ordinary differential equation corresponding to the momentum
equation, and two second-order ordinary differential equations corresponding
to energy and diffusion equations are derived. The coupled ordinary differ-
ential equations along with the boundary conditions are solved numerically.
Many results are obtained and a representative set is displayed graphically
to illustrate the influence of the various parameters on the dimensionless ve-
locity, temperature and concentration profiles. Comparisons with previously
published work are performed and the results are found to be in very good
agreement.
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