
Steady Stokes flow past dumbbell shaped axially
symmetric body of revolution-an analytic approach

Deepak Kumar Srivastava∗ Raja Ram Yadav†

Supriya Yadav ‡

Theoret. Appl. Mech., Vol.39, No.3, pp. 255–289, Belgrade 2012

Abstract

In this paper, the problem of steady Stokes flow past dumbbell-shaped
axially symmetric isolated body of revolution about its axis of symmetry
is considered by utilizing a method (Datta and Srivastava, 1999) based
on body geometry under the restrictions of continuously turning tangent
on the boundary. The relationship between drag and moment is estab-
lished in transverse flow situation. The closed form expression of Stokes
drag is then calculated for dumbbell-shaped body in terms of geometric
parameters b, c, d and a with the aid of this linear relation and the
formula of torque obtained by (Chwang and Wu, part 1, 1974) with the
use of singularity distribution along axis of symmetry. Drag coefficient
and moment coefficient are defined in various forms in terms of dumb-
bell parameters. Their numerical values are calculated and depicted in
respective graphs and compared with some known values.

Keywords: Stokes flow, dumbbell shaped axially symmetric body,
drag, torque.

1 Introduction

In physical and biological science, and in engineering, there is a wide range
of problems of interest like sedimentation problem, lubrication processes etc.
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concerning the flow of a viscous fluid in which a solitary or a large number of
bodies of microscopic scale are moving, either being carried about passively
by the flow, such as solid particles in sedimentation, or moving actively as
in the locomotion of micro-organisms. In the case of suspensions containing
small particles, the presence of the particles will influence the bulk properties
of the suspension, which is a subject of general interest in Rheology. In the
motion of micro-organisms, the propulsion velocity depends critically on their
body shapes and modes of motion, as evidenced in the flagellar and ciliary
movements and their variations. A common feature of these flow phenomena
is that the motion of the small objects relative to the surrounding fluid has
a small characteristic Reynolds number Re. Typical values of Re may range
from order unity, for sand particles settling in water, for example, down to
10−2 to 10−6, for various micro-organisms. In this low range of Reynolds
numbers, the inertia of the surrounding fluid becomes insignificant compared
with viscous effects and is generally neglected and the Navier-Stokes equations
of motion reduce to the Stokes equations as a first approximation. The zero
Reynolds number flow is called Stokes flow.

All these motions are characterized by low Reynolds numbers and are
described by the solution of the Stokes equations. Although the Stokes equa-
tions are linear, to obtain exact solutions to them for arbitrary body shapes
or complicated flow conditions is still a formidable task. There are only rela-
tively few problems in which it is possible to solve exactly the creeping motion
equations for flow around a single isolated solid body. Stokes in [1] calculated
the flow around a solid sphere undergoing uniform translation through a vis-
cous fluid whilst Oberbeck in [2] solved the problem in which an ellipsoid
translates through liquid at a constant speed in an arbitrary direction. Ed-
wards in [3], applying the same technique, obtained the solution for the steady
motion of a viscous fluid in which an ellipsoid is constrained to rotate about
a principal axis. The motion of an ellipsoidal particle in a general linear flow
of viscous fluid at low Reynolds number has been solved by Jeffery [4], whose
solution was also built up using ellipsoidal harmonics. The analysis described
by Jeffery extended further by Taylor in [5]. Goldstein in [6] obtained a force
on a solid body moving through viscous fluid. Lighthill in [7] studied the
problem of squirming motion of nearly spherical deformable bodies through
liquids at very small Reynolds number. Hill and Power [8] have obtained
arbitrarily closed approximations of drag by proving a complimentary pair of
extremum principles for a Newtonian viscous fluid in quasi-static flow.

Payne and Pell [9] used the methods of generalized axially symmetric
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potential theory to calculate the flow past a class of axisymmetric bodies,
including the lens, ellipsoid of revolution, spindle, and two separated spheres.
Brenner [10] gave the general expression for Stokes resistance over an arbi-
trary particle. Brenner and Cox [11] obtained the expression of resistance to
a particle of arbitrary shape in translational motion at small Reynolds num-
ber. Tuck [12] developed a method for a simple problem in potential theory
and is applied to a problem in Stokes flow, yielding a procedure for obtaining
the Stokes drag on a blunt slender body of arbitrary shape. Acrivos and Tay-
lor [13] presented the general solution of the creeping flow equations for the
motion of an arbitrary particle in an unbounded fluid in terms of spherical
coordinates. They derived the force exerted on the particle, and the particu-
lar case of a slightly but otherwise arbitrarily deformed sphere was treated by
them. Brenner [14, 15, 16, 17, 18] further presented a theoretical calculation
of the low Reynolds number resistance of a rigid, slightly deformed sphere
to translational and rotational motions in an unbounded fluid. In which, he
derived explicit expressions, to the first-order in the small parameter charac-
terizations, which relates the Stokes resistance dyadic with the torque dyadic
and the location of the centre of hydrodynamic stress of the particle to its
geometry. Cox [19] generalized the result of resistance of a particle of arbi-
trary shape in translation at small Reynolds number given by Brenner and
Cox [11]. He also obtained quantitative results for both a spheroid and a
dumbbell shaped body in pure translation and also for a translating rotat-
ing sphere and for a dumbbell shaped body in pure rotation. O’Brien [20]
expressed the change in drag with change in shape from a sphere in terms
of a form factor. Taylor [21] studied the motion of axi-symmetric bodies in
viscous fluids. Batchelor [22] has studied Stokes flow past a slender body
of arbitrary(not necessarily circular) cross-section. Morrison [23] derived the
force on an accelerating body in an axisymmetric slow viscous flow which is
valid for any axisymmetrical body, irrespective of the conditions at the sur-
face. Naruse [24] studied the low Reynolds number flow of an incompressible
fluid past a body by solving the Navier-Stokes equations, on the basis of the
method of matched asymptotic expansions. It is shown that, when the shape
of the body is symmetric with respect to a point, the force on the body is
determined to the order of Re squared times log Re, where Re denotes the
Reynolds number.

In a series of work over low Reynolds number hydromechanics, Chwang
andWu [25, 26], have explored the fundamental singular solution of the Stokes
equation to obtain solutions for several specific body shapes translating and
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rotating in a viscous fluid. Regarding the distribution range of the singular-
ities, it was pointed out that some results for plane-symmetric bodies in a
potential flow may also be valid in all types of Stokes flow. By providing the
exact solution of the Stokes equation in an elegant, closed form, the singular-
ity method proved to be a useful alternative to the more standard methods
of solution. Unfortunately, one cannot, in a straight forward manner, gen-
eralize this approach to the systems of many particles or to particles in the
vicinity of a wall. Alawneh and Kanwal [27] obtained closed form solutions
for various boundary value problems in mathematical physics by considering
suitable distributions of the Dirac delta function and its derivatives on lines
and curves. They have derived equations for the n-dimensional dumbbell
shaped body.

In a series of paper, Gluckman et al. [28, 29] developed a new numerical
method for treating the slow viscous motion past finite assembles of parti-
cles of arbitrary shape, termed the multipole representation technique. The
approach is based on the theory that the solution for any object conforming
to a natural coordinate system in a particle assemblage can be approximated
by a truncated series of multi-lobular disturbances in which the accuracy of
the representation is systematically improved by the addition of higher-order
multipoles. For example, for a system of spherical particles the solution is
found in terms of Legendre functions. Youngren and Acrivos [13] used the
boundary-element method to calculate hydrodynamic forces and torques act-
ing on spheroidal and cylindrical particles in a uniform and simple shear flow.
They expressed the solution of Stokes equations in the form of linear inte-
gral equations for the Stokeslet distribution over the particle surface. The
required density of the Stokeslets, identical with the surface stress forces can
be obtained numerically by reducing the integral equations to a system of lin-
ear algebraic equations. The technique has been successfully tested against
the analytical solutions for spheroidal particles in a shear flow. Fischer et al.
[31] calculated the total force exerted on the isolated rigid obstacle in three
dimensional space and in two dimensions placed in the stationary flow of an
incompressible viscous fluid with the help of matched asymptotic expansions.
Wu [32] proposed a new method of the line distribution of discrete singu-
larities and continuous singularities to solve the Stokes flow that passes the
arbitrary non-slender prolate axisymmetrical body. Wu applied this method
to calculate the drag factor and the pressure distribution for the Cassini pro-
late oval as an example of the non-slender prolate arbitrary body. Wu and
Qing [33] have proposed the same singularity method to treat the creeping
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motion of the arbitrary prolate axisymmetrical body. They obtained analytic
expressions in closed form and numerical results for the prolate spheroid and
Cassini oval for the flow field. Tun [34] calculated the drag factor and the
pressure distribution for the Cassini oval as an example of the nonslender
prolate arbitrary axisymmetric body using the same method of line distribu-
tion of discrete singularities and continuous singularities. Zhu and Wu [35]
discussed the problem of Stokes flow of the arbitrary oblate axisymmetrical
body by using the same method of singularity distribution. They have ob-
tained the drag factor for oblate Cassini oval. Dabros [36] attempted to find
the hydrodynamic forces and velocities of arbitrary shaped particles, placed
in an arbitrary flow field, particularly in the vicinity of the wall, using a singu-
lar point solution as the base function. Kim [37] wrote a note on Faxen laws
for non-spherical particles and gave the formula of hydrodynamics resistance
experienced by particle deviates from spherical shape.

Leith [38] extended the Stokes law on a sphere to a non-spherical object
by allocating the interaction of the fluid with the object into its interaction
with two analogous spheres, one with the same projected area and one with
the same surface area as the object. He used this approach to characterized
dynamic shape factor for objects whose shape factors are already exists in
the literature. He reported the shape factor for a sphere, cylinders, prisms,
spheroids and double conicals. Yuan and Wu [39] obtained the analytic ex-
pressions in closed form for flow field by distributing continuously the image
Sampsonlets with respect to the plane and by applying the constant density,
the linear and the parabolic approximation. They calculated the drag fac-
tor of the prolate spheroid and the Cassini oval for different slender ratios
and different distances between the body and the plane. Power and Miranda
[40] have successfully given the Fredholm integral equation representation of
second kind for Stokes resistance problems i.e. when the velocity of particle
is known, and the forces and moments are to be found. They represented
the velocity as a double layer integral to which they added a Stokeslet and a
Rotlet, both located at the centre of the body. Equating the representation to
the given velocity resulted in a Fredholm integral equation of the second kind
in the double layer density, and a numerical solution became possible after re-
lating the Stokeslet and Rotlet strengths(force and moment) to the unknown
double-layer density. Karrila and Kim [72] showed the completion of the dou-
ble layer representation by Power and Mirinda [40] to be one of many possible
completions. They suggested the same representation for the velocity as did
by Power and Mirinda [40] and discuss various completions, suggesting one
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which is advantageous to an iterative numerical process for multiparticle sys-
tems. Both these completions are successful because, as observed by Power
and Mirinda [40] and previously by Ladyzhenskaya [42], the double layer rep-
resentation alone is able to represent flow fields that correspond to the total
force and total moment equal to zero. A much more extensive review over
numerical methods may be found in the paper of Weinbaum and Ganatos
[43] and to the paper of Karrila and Kim [41]. Hsu and Ganatos [44] have
studied the motion of a rigid body in a viscous fluid bounded by a plane wall.
Chester [45] considered the motion of a body through a viscous fluid at low
Reynolds number. He derived general formulae for the force and couple acting
on a body of arbitrary shape and implemented over to reduce some special
cases. Liron and Barta [46] have presented a new singular boundary-integral
equation of the second kind for the stresses on a rigid particle in motion in
Stokes flow. They also produced the forces and moments on the particle
with the help of generalized Faxen law. Hubbard and Douglas [47] presented
simple and accurate method of estimating the translational hydrodynamic
friction on rigid Brownian particles of arbitrary shape. Keh and Tseng [48]
presented a combined analytical and numerical study for Stokes flow caused
by an arbitrary body of revolution and calculated drag on prolate and oblate
Cassini ovals. Lowenberg [49] computed the Stokes resistance, added mass,
and Basset force numerically for finite-length, circular cross-section cylinders
using a boundary integral formulation. In this study, he found analytical
formulas for the Stokes force, added mass, Basset force of spheroids which
contrasted with the numerical results for cylinders of the aspect ratio in the
range: 0.01 ≤ a/b ≤ 100. He concluded that for some of these parameters,
significant differences persist for disk and rod shaped particles. Feng and Wu
[50] gave the convergent results for prolate Cassini ovals by using a method
of combined analytic-numerical method. Douglas et al. [51] calculated the
translational friction coefficient and the capacitance of a variety of objects
with a probabilistic method involving hitting the probed objects with ran-
dom walks launched from an enclosing spherical surface. Zhou and Pozrikidis
[52] implemented the method of fundamental solutions to compute Stokes
flow past or due to the motion of solid particles. The computed locations
and strengths of the singularities have been compared by them with those
corresponding to exact discrete and continuous singularity representations,
and the computed force and torque exerted on the particles are compared
with exact values available from analytical solutions. Brenner [53] studied
the hydrodynamic Stokes resistance on non-spherical particles.
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Datta and Srivastava [54] developed a new approach to evaluate the Stokes
drag force in a simple way on an axially symmetric body with some geomet-
rical constraints placed in axial flow and transverse flow under the no-slip
boundary conditions. The results of drag on both the flow situations were
successfully tested not only for sphere, prolate and oblate spheroid but also
for other bodies like deformed sphere, cycloidal and egg-shaped bodies of
revolution with acceptable limit of error. This method has been described in
the section 2 as the same is exploited here to study the problem of Stokes
flow around dumbbell shaped axially symmetric body. Datta and Srivas-
tava [55] obtained the optimum drag profile in axi-symmetric Stokes flow
under the restrictions of constant volume and constant cross section area
by exploiting DS conjecture given by Datta and Srivastava [54]. Palaniap-
pan and Ramkissoon [56] provided a complete survey of drag formula over
axi-symmetric particle in Stokes flow. Tsai et al. [57] have provided the prac-
tical and numerical implementations of the method of fundamental solutions
for three-dimensional exterior Stokes problems with quiet far-field condition.
This numerical scheme has been checked by them for sphere and rotating
dumbbell shaped body. Srivastava [58] obtained the optimum volume profile
in axi-symmetric Stokes flow by exploiting the DS conjecture given by Datta
and Srivastava [54]. Scolan and Etienne [59] have discussed some aspects of
the force and moment computations in incompressible and viscous flows on
bodies of arbitrary shaped by using the projection techniques developed by
Quartapelle and Napolitano [60] without explicitly calculating the pressure.
Bowen and Masliyah [61] obtained an approximate solution to the equation
of motion governing Stokes flow past a number of isolated closed bodies of
revolution by the least square fitting of a truncated series expression for the
stream function to known boundary conditions. They found reasonably ac-
curate (±5%) estimate for the Stokes resistance on body shapes, such as
cylinders and cones, for which the solutions are exceedingly difficult. They
applied the computed drag values in determining the limitations of the various
empirical expressions used to predict the drag resistance of these geometri-
cally simple bodies. Blake et al. [62] have considered some of the properties
of the S-transform as well as exploiting the special properties associated with
Legendre polynomials to generate a range of slender body shape with fixed
Stokes drag. Radha et al. [63] have described a new approximate method to
discuss uniform flow past rigid bodies of two different shapes using a com-
plete general solution [64, 65] of Stokes equations in an incompressible viscous
fluid. They have proposed that with this new method approximate values of
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physical quantities like drag experienced by a rigid body could be obtained
in a simple way in accurate manner. Sherief et al. [66] have investigated the
translational motion of an arbitrary body of revolution in a micropolar fluid
by using a combined analytical-numerical method. They have evaluated the
drag exerted on a prolate spheroid for various values of the aspect ratio and
for different values of the micropolarity parameters. They further applied
this technique to the prolate Cassini ovals for justifying good convergence.
Srivastava [67] presented the optimum cross-section profile in axisymmetric
flow by utilizing the same method proposed by Datta and Srivastava [54].

For the detailed study over the concerned topic, reader is advised to go
through the books of Lamb [68], Batchelor [69], Happel and Brenner [70],
Langlois [71], Kim and Karrila [72], Pozrikidis [73, 74], Kohr and Pop [75].

In most of these investigations the main result of physical interest is the
drag experienced by body and torque on body rotating about its axis of
revolution. In the analysis presented in this paper, we targeted to study
the salient features of class of dumbbell axi-symmetric bodies by applying
the method proposed by Datta and Srivastava [54] and the results given by
Chwang and Wu [25] described in the section 2 briefly.

1.1 Applications

Stokes flow of an arbitrary body is of interest in biological phenomena and
chemical engineering. In fact, the body with simple form such as sphere or
ellipsoid is less encountered in practice. The body, which is presented in
science and technology, often takes a complex arbitrary form. For example,
under normal condition, the erythrocyte is a biconcave disk in shape, which
can easily change its form and present different contour in blood motion due to
its deformability. In second half of twentieth century, a considerable progress
has been made in treating the Stokes flow of an arbitrary body.

The study of isolated dumbbell shaped axially symmetric body has great
importance in biological and engineering applications. Such type of shapes
plays a vital role in swift swimming or self propulsion of microorganisms and
human bodies in which pushing or pulling is based on dumbbell([76], [77]),
aerobic and spore forming bacteria which plays an important part in cell divi-
sion and spore germination ([78], [79]), shape of red blood cells in healthy or
infected mammalian and human bodies([80], [81, 82]). In circulating blood,
the red blood cells are severely deformed. The study of red blood cell geom-
etry and deformability throws light on the mechanical properties of cells and
cell membranes, and thus is of basic importance to biology and rheology. It
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is also of value clinically, because change of shape and size and strength of
red blood cells may be indicative of disease like Malaria for example. Evans
and Fung [83] gave the pictorial presentation of infected red blood cells in
the arteries of human body in the shapes of dumbbell(bi-concave) described
exactly in the present analysis. According to Fung [84], red blood cell, during
the flow, get deformed either due to the translation or rotation. But in either
situation, it took the shape of dumbbell of various aspect ratios discussed
in the present analysis. In this way, the author claims at this stage, being
mathematician apart from biologist, can say that this analysis may be very
helpful in finding the drag and couple of infected blood cells which may be
very helpful in the prevention of disease and drug delivery system.

2 Body geometry and method

Let us consider the axially symmetric body of characteristic length L placed
along its axis(x-axis, say) in a uniform stream U of viscous fluid of density
ρ1 and kinematic viscosity ν. When Reynolds number UL/ν is small, the
motion is governed by Stokes equations (Happel and Brenner, 1964, cf. [70]),

0 =

(
1

ρ1

)
gradp+ ν∇2u , divu = 0, (2.1)

subject to the no-slip boundary condition.

We have taken up the class of those axially symmetric bodies which pos-
sesses continuously turning tangent, placed in a uniform stream U along the
axis of symmetry (which is x-axis), as well as constant radius ‘b’ of maximum
circular cross-section at the mid of the body. This axi-symmetric body is
obtained by the revolution of meridional plane curve (depicted in Figure 1)
about axis of symmetry which obeys the following limitations:

i. tangents at the points A, on the x-axis, must be vertical,

ii. tangents at the points B, on the y-axis, must be horizontal, and

iii.the semi-transverse axis length ‘b’ must be fixed.

The point P on the curve is may be represented by the Cartesian coor-
dinates (x, y) or polar coordinates (r, θ) respectively, PN and PM are the
length of tangent and normal at the point P. The symbol R stands for the
intercepting length of normal between the point on the curve and point on
axis of symmetry and symbol α is the slope of normal PM which can be vary
from 0 to π.
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Figure 1: Geometry of axially symmetric body

Axial flow

The expression of Stokes drag on such type of axially symmetric bodies placed
in axial flow(uniform flow parallel to the axis of symmetry) is given by [54]

F|| =
1

2

λb2

h||
, where λ = 6πµU || (2.2)

and

h|| =

(
3

8

)∫ π

0
Rsin3αdα (2.3)

where the suffix || has been introduced to assert that the force is in the axial
direction.

Sometimes it will be convenient to work in Cartesian co-ordinates. There-
fore, referring to the Fig. 1, for the profile geometry, we have

y = RSinα, tanα = −
(
dy

dx

)−1

= − dx

dy
= − x′. (2.4)

Using above transformation, we may express (2.3) as

h|| = −3

4

∫ a

0

yy′′(
1 + y′2

)2dx, (2.5)
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where 2 am represents the axial length of the body and dashes represent
derivatives with respect to x. In the sequel, it will be found simpler to work
with y as the independent variable. Thus, h|| assumes the form

h|| = −3

4

∫ b

0

yx′2x′′(
1 + x′2

)2dy, (2.6)

where dashes represent derivatives with respect to y.

Transverse flow

The expression of Stokes drag on such type of axially symmetric bodies placed
in transverse flow(uniform flow perpendicular to the axis of symmetry) is
given by [54]

F⊥ =

(
1

2

)
λb2

hy
, where λ = 6πµU⊥, (2.7)

and

h⊥ =

(
3

16

)∫ π

0
R
(
2sinα− sin3α

)
dα. (2.8)

According to the same manner as we did in axial flow, equation (2.8) may
also be written in Cartesian form as (in both cases having x and y treated as
independent)

h⊥ = −3

8

∫ a

0

yy′′
[
1 + 2 (y′)2

]
[
1 + (y′)2

]2 dx, (2.9)

and

h⊥ = −3

8

∫ b

0

yx′′
[
2 + (x′)2

]
[
1 + (x′)2

]2 dy, (2.10)

In (2.9) and (2.10), the dashes represents derivative with respect to x and
y respectively. where the suffix ⊥ has been placed to designate the force due
to the external flow along the y-axis, the transverse direction.

The proposed conjecture is, of course, subject to restrictions on the ge-
ometry of the meridional body profile y(x) of continuously turning tangent
implying that y′(x) is continuous together with y′′(x) ̸= 0, thereby avoid-
ing corners or sharp edges or other kind of nodes and straight line portions,
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y = ax + b, x1 ≤ x ≤ x2. Also, it should be noted here that the method
holds good for convex axially symmetric bodies which possesses fore-aft sym-
metry about the equatorial axis perpendicular to the axis of symmetry(polar
axis). Apart from this argument, It is interesting to note here that the pro-
posed conjecture is applicable also to those axi-symmetric bodies which fulfill
the condition of continuously turning tangent but does not possess fore-aft
symmetry like egg shaped body [54]. This conjecture is much simpler to eval-
uate the numerical values of drag than other existing numerical methods like
Boundary Element Method (BEM), Finite Element Analysis (FEA) etc. as
it can be applied to a large set of convex axi-symmetric bodies possessing
fore-aft symmetry about maximal radius situated in the middle of the body
for which analytical solution is not available or impossible to evaluate.

Since both axial and transverse flows have been considered in a free stream
results of the force at an oblique angle of attack may be resolved into its
components to get the required result. The present analysis can be extended
to generate a drag formula for axi- symmetric bodies for more complex flows
like paraboloidal flow for which free stream may be represented by average
velocity [26]. Authors are working in this direction and also searching the
avenues of this analysis for non-linear Stokes flow.

The proposed analysis can be extended to calculate the couple on a body
rotating about its axis of symmetry. Description of the same is given below.

Torque on rotating axially symmetric body

The moment on a sphere of radius ‘b’ with angular velocity Ω is given by the
formula [70]

M = 6πµb3Ω

∫ π

α=0
sin3αdα

=

∫ π

0
dm (say)

(2.11)

where
dm = 6πµb3Ω sin3αdα. (2.12)

Comparing it with the elemental force df(with R replaced by b) as given by
[54]

df =
3

4
λRsin3αdα (2.13)

keeping in mind that two forces constitute a couple, we have (by equation
(2.12))
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dm = 6πµb3Ωsin3αdα = 6πµb
(
b2sin3αdα

)
=

(
2πµb2Ω

)(2

3

df

πµU

)
=

(
4

3

)(
b2Ω

U

)
df,

(2.14)

on integrating this differential equation over upper part of axis of symmetry
(Figure 1.) from α=0 to α = π or θ=0 to θ = π, we can have the expression
of couple in terms of axial drag as

M|| =
4

3

b2Ω

U
F|| . (2.15)

3 Closed form drag expression for dumbbell shaped
axially symmetric body

We consider a class of dumbbell-shaped bodies in rotation about axis of sym-
metry (z-axis) that can be represented by a pair of isolated rootlets of equal
strength (Figure 2) similar to that used in [25] as

Γ(z) = (1/2)Γ0 δ(x+ c) + (1/2)Γ0δ(x− c), (3.1)

for which the no-slip boundary condition, requiring uθ(z, ρ0(z)) = Ωρ0(z),
becomes

R−3
1 +R−3

2 =
2Ω

Γ0
, (ρ = ρ0 (z) , |z| ≤ a), (3.2)

where

R1 =
[
(z + c)2 + ρ2

] 1
2
, R2 =

[
(z − c)2 + ρ2

] 1
2
. (3.3)

At the terminal points (z = ±a, ρ0 = 0) and at the dumbbell neck (z =
0, ρ0 = d) condition (3.2) reduces, respectively, to

(
a2 − c2

)3
= a

(
a2 + 3c2

) (
c2 + d2

) 3
2 , (3.4)

and (
c2 + d2

)− 3
2 =

Ω

Γ0
. (3.5)
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Figure 2: A class of dumbbell-shaped bodies in rotation that can be repre-
sented by a pair of isolated rotlets

Elimination of Ω/Γ0 between (3.4) and (3.5) provides

a
(
a2 + 3c2

) (
a2 − c2

)−3
=

Ω

Γ0
, (3.6)

which provides a relationship between the geometric parameters d, c and a.
This relationship may be re-written in the various forms:(

1− c2

a2

)3

=

(
1 + 3

c2

a2

)(
c2

a2
+

d2

a2

) 3
2

, (3.7a)

(
a2

b2
− c2

b2

)3

=
(a
b

)(
a2

b2
+ 3

c2

b2

)(
c2

b2
+

d2

b2

) 3
2

, (3.7b)

and (
a2

d2
− c2

d2

)
=

(a
d

)(
a2

d2
+ 3

c2

d2

)(
1 +

c2

d2

) 3
2

. (3.7c)

The same elimination between (3.2) and (3.4) results in an algebraic equation
which determines the shape function ρ0/a = f(z/a, c/a), which depends on
one geometric parameter, c/a. This algebraic equation may be written in the
form

1[(
z
a + c

a

)2
+

ρ20
a2

] 3
2

+
1[(

z
a − c

a

)2
+

ρ20
a2

] 3
2

= 2

(
1 + 3 c2

a2

)
(
1− c2

a2

)3 . (3.8)
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The torque [25] on rotating dumbbell-shaped body about its axis of symmetry(z-
axis) with angular velocity Ω, is

Mz = 8πµΩ
(
c2 + d2

) 3
2 , (3.9)

= 8πµΩa3
(
c2

a2
+

d2

a2

) 3
2

. (3.10)

The torque coefficient CM in that paper [25] has been defined with reference
to 8πµΩa b2, where ‘b’ is the maximum radial extent, that is b = max[ρ0(z)]

CMZ
=

M

8πµΩab2
=

(
c2 + d2

) 3
2

ab2
, (3.11)

=

(
c2

a2
+ d2

a2

) 3
2

b2

a2

, (3.12a)

=

(
c2

b2
+ d2

b2

) 3
2

a
b

, (3.12b)

=

(
1 + c2

d2

) 3
2(

a
d

) (
b
d

)2 . (3.12c)

Let Fz be the Stokes drag experienced by dumbbell body (described in Figure
2) in transverse flow situation and Mz be the torque on rotating dumbbell-
shaped body about its axis of symmetry(z-axis), then by using the linear
relationship between drag and torque in section 2(eq. 2.15), we get, by using
(3.9),

Fz = 6πµU

(
c2 + d2

) 3
2

b2
. (3.13)

This closed form solution of axial Stokes drag on dumbbell body is found
to be new and never seen in the literature. In equation (3.13), U is uniform
stream velocity along the axis of symmetry.

Now, we can define the drag coefficient CF in various forms with reference
to 6πµUa, 6πµUb, 6πµUd, i.e. drag on sphere with radius a, b, and d as
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CFz =

(
c2

a2
+ d2

a2

) 3
2

b2

a2

, (3.14)

=

(
c2

b2
+ d2

b2

) 3
2

a
b

, (3.15)

=

(
1 + c2

d2

) 3
2(

a
d

) (
b2

d2

) , (3.16)

=

[
c2

a2
+ d2

a2

] 3
2(

b
a

)3 (3.17)

=

[
c2

b2
+

d2

b2

] 3
2

, (3.18)

=

(
1 + c2

d2

) 3
2(

b
d

)3 , (3.19)

=

[
c2

a2
+ d2

a2

] 3
2(

d
a

) (
b2

a2

) , (3.20)

=

[
c2

b2
+ d2

b2

] 3
2(

d
b

) , (3.21)

=

[
1 + c2

d2

] 3
2(

b
d

)2 . (3.22)

Now, the moment coefficient CM , apart from that defined in (3.12) by
[25] can be defined in various other ways with reference to 8πµΩa3, 8πµΩb3,
8πµΩd3 i.e. the moment or torque on rotating sphere with radius a, b and d
respectively, as
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CMz =

[
c2

a2
+

d2

a2

] 3
2

, (3.23)

=

[
c2

b2
+ d2

b2

] 3
2(

a
b

)3 , (3.24)

=

[
1 + c2

d2

] 3
2(

a
d

)2 , (3.25)

=

[
c2

a2
+ d2

a2

] 3
2(

b
a

)3 , (3.26)

=

[
c2

b2
+

d2

b2

] 3
2

, (3.27)

=

[
1 + c2

d2

] 3
2(

b
d

)3 , (3.28)

=

[
c2

a2
+ d2

a2

] 3
2(

d
a

)3 , (3.29)

=

[
c2

b2
+ d2

b2

] 3
2(

d
b

)3 , (3.30)

=

[
1 +

c2

d2

] 3
2

. (3.31)

On utilizing the fact that the sum of maximum radius ‘b’ and half of the
focal distance ‘c’ is equal to semi axial length ‘a’ i.e.

b+ c = a ⇒ b

a
+

c

a
= 1, (3.32)

which is the extension of fact used in [25] that the sum of two geometric pa-
rameters b/a and c/a is nearly unity. This restriction may be easily achieved
for dumbbell shaped body(Figure 2) by locating the rootlets of equal strength
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exactly at those points on axis of symmetry which are the centers of hemi-
spheres having radius ‘b’, the maximum radial extent.

By using relation (3.32) and the relationship (3.7A), the expressions of
drag coefficient (3.14) and moment coefficient (3.12) may be re-written in
single parameter c/a and found to be same as

CFz =

[
1− c2

a2

]3[
1 + 3 c2

a2

] [
1− c

a

]2 , (3.33)

CMz =

[
1− c2

a2

]3[
1 + 3 c2

a2

] [
1− c

a

]2 , (3.34)

the various other forms of drag coefficient and moment coefficient may also
be obtained with the use of relation (3.32) and geometric relationship (3.7A-
C) as well the previously defined non-dimensional values of drag [(3.15) to
(3.22)] and torque [(3.23) to (3.31)].

4 Parametric analysis

The azimuthal component, uθ, of velocity for flow field around rotating dumb-
bell shaped body of revolution may be written, by using (3.2), as

uθ = Ωρ(z)

=
Γ0

2

[
1{

(z + c)2 + ρ2
}3/2

+
1{

(z − c)2 + ρ2
}3/2

]
ρ(z)

(4.1)

by using (3.5), it can be written in parameters c and d as

=
Γ0

2

[
1

{(z + c)2 + ρ2}3/2
+

1

{(z − c)2 + ρ2}3/2

]
ρ (z), (4.2)

by using (3.4), it can be written in parameters a and c as

=

(
a2 − c2

)3
Ω

2a (a2 + 3c2)

[
1

{(z + c)2 + ρ2}3/2
+

1

{(z − c)2 + ρ2}3/2

]
ρ (z), (4.3)
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The last expression may be also written in parameter c/a as follows:

=

(
1− c2

a2

)3
Ω

2
(
1 + 3 c2

a2

) [
1{(

z
a + c

a

)2
+ ρ2

a2

}3/2
+

1{(
z
a − c

a

)2
+ ρ2

a2

}3/2

]
ρ (z) , (4.4)

for one piece dumbbell body, 0 ≤ c/a ≤ 0.556, and for class of dumbbell
shaped bodies, -1 ≤ z/a ≤ 1 and -1 ≤ ρ/a ≤ 1. Tsai et al. [57] verified
their numerical technique for quiet far-field conditions and carried numerical
experiments for a = 1, c = 0.4, Γ0 = 1, d = 0.619123, and Ω = 2.497031. They
obtained the azimuthal velocity contour(Figure 10, page 321, [57]) around the
corresponding rotating dumbbell body. As b = max[ ρ0(z) ], the numerical
value of b cannot be less than the value of neck radius ρ0(0) = d, for isolated
one piece dumbbell body(Figure 2). So, for single dumbbell body, we must
have relationship between parameters d ≤ b ≤ c ≤ a or d/a ≤ b/a ≤ c/a ≤
1. Analysis does not cover the description for the situation when the body
splits into the two equal spheres of same radius for c/a > 0.556. The present
analysis holds only for c/a ≤ 0.556 which is valid only for one piece dumbbell
body. All the calculations has been done by imposing the restriction (3.32) in
which the sum of b and c is kept exactly equal to a. In the paper [25], the sum
of b and c is nearly unit and has been achieved by placing the rootlet on axis
of symmetry at which b = max[ρ0(z)]. All the numerical values of drag and
torque corresponding to various forms have been given in tables 1-3 and their
variations are depicted in figures 3-8. All the values given in tables 1-3 are
based on geometrical forms (3.7A-C) connecting dumbbell parameters a, b, c
and d. In table 1, c/a and d/a are calculated from relation (3.7A), b/a from
restriction (3.32), non-dimensional values of drag from forms (3.14), (3.17),
(3.20) and non-dimensional values of torque from forms (3.23), (3.26), (3.29),
(3.12a). In table 2, c/b and d/a are calculated from relation (3.7B), a/b from
restriction (3.32), non-dimensional values of drag from forms (3.15), (3.18),
(3.21) and non-dimensional values of torque from forms (3.24), (3.27), (3.30),
(3.12b). In table 3, c/d and b/d are calculated from relation (3.7C), a/d from
restriction (3.32), non-dimensional values of drag from forms (3.16), (3.19),
(3.22) and non-dimensional values of torque from forms (3.25), (3.28), (3.31),
(3.12c).
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Table 1: Numerical values of drag, torque with respect to dumbbell param-
eters b/a, c/a and d/a based on relationship (3.7A) for one piece isolated
dumbbell body

b
/a

c/
a

d
/a

C
F
z

C
M

z

(3
.3
2)

(3
.7
A
)

(3
.7
A
)

(3
.1
4)

(3
.1
7)

(3
.2
0
)

(3
.2
3
)

(3
.2
6
)

(3
.2
9
)

(3
.1
2
a
)

0.
44
55

0.
55
45

0.
00
28

0
.8
5
90

2
1.
8
09
0

29
7.
7
70
4

0.
1
70
4

2
1
.8
0
9
0

∞
0
.8
5
9
0

0.
45
05

0.
54
95

0.
10
89

0
.8
6
61

1
.9
2
27

7.
9
53
9

0.
1
75
7

1
.9
2
2
7

1
3
6
.1
1
8
0

0
.8
6
6
1

0.
46
04

0.
53
96

0.
20
04

0
.8
9
97

1
.9
5
42

4.
4
89
7

0.
1
90
7

1
.9
5
4
2

2
3
.6
9
7
0

0
.8
9
9
7

0.
48
03

0.
51
97

0.
30
15

0
.9
4
01

1
.9
5
75

3.
1
18
3

0.
2
16
8

1
.9
5
7
5

7
.9
1
3
7

0
.9
4
0
1

0.
51
00

0.
49
00

0.
40
27

0
.9
8
09

1
.9
2
33

2.
4
35
8

0.
2
55
1

1
.9
2
3
3

3
.9
0
6
8

0
.9
8
0
9

0.
54
48

0.
45
52

0.
50
39

1
.0
5
49

1
.9
3
64

2.
0
93
6

0.
3
13
1

1
.9
3
6
4

2
.4
4
7
3

1
.0
5
4
9

0.
59
12

0.
40
88

0.
60
02

1
.0
9
56

1
.8
5
33

1.
8
25
5

0.
3
82
9

1
.8
5
3
3

1
.7
7
1
2

1
.0
9
5
6

0.
64
58

0.
35
42

0.
70
62

1
.1
8
24

1
.8
3
09

1.
6
74
3

0.
4
93
1

1
.8
3
0
9

1
.4
0
0
1

1
.1
8
2
4

0.
71
20

0.
28
80

0.
80
25

1
.2
2
26

1
.7
1
71

1.
5
23
5

0.
6
19
8

1
.7
1
7
1

1
.1
9
9
2

1
.2
2
2
6

0.
80
14

0.
19
86

0.
90
37

1
.2
3
33

1
.5
3
90

1.
3
64
8

0.
7
92
1

1
.5
3
9
0

1
.0
7
3
3

1
.2
3
3
3

1.
00
00

0.
00
00

1.
00
00

1
.0
0
00

1
.0
0
00

1.
0
00
0

1.
0
00
0

1
.0
0
0
0

1
.0
0
0
0

1
.0
0
0
0
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Table 2: (Numerical values of drag, torque with respect to dumbbell param-
eters a/b, c/b and d/b based on relationship (3.7B))

a/
b

c/
b

d
/b

C
F
z

C
M

z

(3
.3
2)

(3
.7
B
)

(3
.7
B
)

(3
.1
5)

(3
.1
8)

(3
.2
1)

(3
.2
4)

(3
.2
7
)

(3
.3
0
)

(3
.1
2
b
)

2.
24
46

1.
24
46

0.
0
06
4

0.
85
89

1.
92
79

29
7.
72
06

0.
85
8
9

1.
92
7
9

∞
0
.8
5
8
9

2.
21
97

1.
21
97

0.
2
41
7

0.
86
60

1.
92
24

7.
95
28

0.
86
6
0

1.
92
2
4

1
3
6
.0
9
9
9

0
.8
6
6
0

2.
17
20

1.
17
20

0.
4
35
2

0.
89
97

1.
95
41

4.
48
94

0.
89
9
7

1.
95
4
1

2
3
.6
9
5
7

0
.8
9
9
7

2.
08
20

1.
08
20

0.
6
27
7

0.
90
11

1.
95
73

3.
11
81

0.
90
1
1

1.
95
7
3

7
.9
1
3
2

0
.9
0
1
1

1.
96
07

0.
96
07

0.
7
89
6

0.
98
08

1.
92
30

2.
43
54

0.
98
0
8

1.
92
3
0

3
.9
0
5
8

0
.9
8
0
8

1.
83
55

0.
83
55

0.
9
24
9

1.
05
49

1.
93
63

2.
09
35

1.
05
4
9

1.
93
6
3

2
.4
4
7
1

1
.0
5
4
9

1.
69
14

0.
69
14

1.
0
15
2

1.
09
56

1.
85
31

1.
82
53

1.
09
5
6

1.
85
3
1

1
.7
7
1
0

1
.0
9
5
6

1.
54
84

0.
54
84

1.
0
93
5

1.
18
23

1.
83
07

1.
67
41

1.
18
2
3

1.
83
0
7

1
.4
0
0
0

1
.1
8
2
3

1.
40
44

0.
40
44

1.
1
27
1

1.
22
26

1.
71
70

1.
52
34

1.
22
2
6

1.
71
7
0

1
.1
9
9
1

1
.2
2
2
6

1.
24
78

0.
24
78

1.
1
27
6

1.
23
33

1.
53
90

1.
36
48

1.
23
3
3

1.
53
9
0

1
.0
7
3
3

1
.2
3
3
3

1.
00
00

1.
00
00

1.
0
00
0

1.
00
00

1.
00
00

1.
00
00

1.
00
0
0

1.
00
0
0

1
.0
0
0
0

1
.0
0
0
0
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Table 3: (Numerical values of drag, torque with respect to dumbbell param-
eters a/d, c/d and b/d based on relationship (3.7B))

a/
d

c/
d

b
/d

C
F
z

C
M

z

(3
.3
2)

(3
.7
C
)

(3
.7
C
)

(3
.1
6)

(3
.1
9)

(3
.2
2
)

(3
.2
5
)

(3
.2
8
)

(3
.3
1
)

(3
.1
2
c)

34
6.
62
04

19
2.
20
10

15
4
.4
1
94

0
.8
9
06

1
.9
2
82

29
7.
7
70
0

0.
1
70
4

1
.9
2
8
2

∞
0
.8
9
0
6

9.
18
27

5.
04
59

4.
13
68

0
.8
6
61

1
.9
2
27

7.
9
53
9

0.
1
75
7

1
.9
2
2
7

1
3
6
.1
1
7
9

0
.8
6
6
1

4.
99
00

2.
69
26

2.
29
74

0
.8
9
97

1
.9
5
42

4.
4
89
7

0.
1
90
7

1
.9
5
4
2

2
3
.6
9
7
0

0
.8
9
9
7

3.
31
67

1.
72
37

1.
59
30

0
.9
4
01

1
.9
5
75

3.
1
18
3

0.
2
16
8

1
.9
5
7
5

7
.9
1
3
7

0
.9
4
0
1

2.
48
32

1.
21
67

1.
26
64

0
.9
8
09

1
.9
2
33

2.
4
35
8

0.
2
55
1

1
.9
2
3
3

3
.9
0
6
8

0
.9
8
0
9

1.
98
45

0.
90
33

1.
08
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1
.0
5
49

1
.9
3
64

2.
0
93
6

0.
3
13
1

1
.9
3
6
4

2
.4
4
7
3

1
.0
5
4
9

1.
66
61

0.
68
11

0.
98
50

1
.0
9
56

1
.8
5
33

1.
8
25
5

0.
3
82
9

1
.8
5
3
3

1
.7
7
1
2

1
.0
9
5
6

1.
41
60

0.
50
15

0.
91
44

1
.1
8
24

1
.8
3
09

1.
6
74
3

0.
4
93
1

1
.8
3
0
9

1
.4
0
0
1

1
.1
8
2
4

1.
24
61

0.
35
88

0.
88
72

1
.2
2
26

1
.7
1
71

1.
5
23
5

0.
6
19
8

1
.7
1
7
1

1
.1
9
9
2

1
.2
2
2
6

1.
10
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0.
21
97

0.
88
67

1
.2
3
33

1
.5
3
90

1.
3
64
8

0.
7
92
1

1
.5
3
9
0

1
.0
7
3
3

1
.2
3
3
3

1.
00
00

0.
00
00

1.
00
00

1
.0
0
00

1
.0
0
00

1.
0
00
0

1.
0
00
0

1
.0
0
0
0

1
.0
0
0
0

1
.0
0
0
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Figure 3: Variation of drag coefficients (all three forms) with respect to dumb-
bell parameters d/a, b/a and c/a (based on table 1)

5 Conclusion

The expression of Stokes drag Fz presented in (3.13) on axially symmetric
dumbbell isolated one piece body translating through uniform flow velocity
U is seems to be new and never seen in the literature. The drag Fz is non-
dimensionalize here with respect to 6πµUa, 6πµUb, 6πµUd, i.e. drag on
sphere having radius a, b, and d, which is the main reason for getting the nine
forms (3.14-3.22). Also, the expression of torque CM on rotating dumbbell
body about z-axis with angular velocity Ω is non-dimensionalize here with
respect to 8πµΩa3, 8πµΩb3, 8πµΩd3i.e. the torque on rotating sphere with
radius a, b and d respectively which is the main reason for getting nine forms
(3.23-3.31). According to the author’s point of view, the present analysis is
very useful in the study of prevention of infected blood cells deformed from
its actual disk shape to dumbbell(or biconcave) caused due to some reasons
or the other. It can be done by finding the aspect ratio of the infected blood
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Figure 4: Variation of moment coefficients (all four forms) with respect to
dumbbell parameters d/a, b/a and c/a (based on table 1)

cell in form of dumbbell by microscopic analysis. Then the corresponding
values of drag and torque value can be evaluated from the tables provided in
this paper. Prevention can be owned in terms of supply of accurate medicine
may be injected in the infected body through drug delivery systems.
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Figure 5: Variation of drag coefficients (all three forms) with respect to dumb-
bell parameters d/b, c/b and a/b (based on table 2)
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Figure 6: Variation of moment coefficients (all four forms) with respect to
dumbbell parameters d/b, c/b and a/b (based on table 2)
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Figure 7: Variation of drag coefficients (all three forms) with respect to dumb-
bell parameters b/d, c/d and a/d (based on table 3)
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Figure 8: Variation of moment coefficients (all four forms) with respect to
dumbbell parameters b/d, c/d and a/d (based on table 3)
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Stacionarno Stoksovo tečenje preko osno simetričnog obrtnog
tela oblika tega - analitički pristup

Problem stacionarnog Stoksovog tečenja preko osno simetričnog obrtnog tela
oblika tega je razmatran metodom [Datta and Srivastava, 1999] zasnovanom
na geometriji tela pri ograničenju neprekidnog okretanja tangente na granici.
Relacija izmedju otpora i momenta je ustanovljena za slučaj poprečnog tečenja.
Eksplicitni izraz za Stoksov otpor je tada izračunat za tela oblika tega u zavis-
nosti od geometrijskih parametara b, c, d i a dok je formula za spreg dobijena
u (Chwang and Wu, deo 1, 1974) pomoću distribucije singularnosti duž ose
simetrije. Koeficijent otpora i koeficijent momenta su definisani u različitim
oblicima u zavisnosti od geometrijskih parametara tega. Njihove brojne vred-
nosti su izračunate i nacrtane na priloženim graficima i uporedjeni sa nekim
poznatim veličinama.
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