
Effect of viscosity on wave propagation in
anisotropic thermoelastic medium with

three-phase-lag model

Rajneesh Kumar∗ Vijay Chawla†

Ibrahim A. Abbas‡

Theoret. Appl. Mech., Vol.39, No.4, pp. 313–341, Belgrade 2012

Abstract

The aim of the present paper is to study the wave propagation in
anisotropic viscoelastic medium in the context of the theory three-
phase-lag model of thermoelasticity. It is found that there exist two
quasi-longitudinal waves (qP1, qP2) and two transverse waves (qS1,
qS2). The governing equations for homogeneous transversely isotropic
thermoviscoelastic are reduced as a special case from the considered
model. Different characteristics of waves like phase velocity, attenua-
tion coefficient, specific loss and penetration depth are computed from
the obtained results. Viscous effect is shown graphically on different
resulting quantities for two-phase-lag model and three-phase-lag model
of thermoelasticity. Some particular cases of interest are also deduced
from the present investigation.

Keywords: Wave propagation, Viscoelastic, Three-Phase-lag, Two-
Phase-lag model, Anisotropic.

∗Department of Mathematics, Kurukshetra University Kurukshetra-136119, Haryana,
India, e-mail: rajneesh-kuk@rediffmail.com

†Department of Mathematics, Kurukshetra University Kurukshetra-136119, Haryana,
India, e-mail: vijay.chawla@ymail.com

‡Department of Mathematics, Faculty of Science and Arts - Khulais, King Abdulaziz
University, Jeddah, Saudi Arabia; Department of mathematics, Faculty of Science, Sohag
University, Sohag, Egypt, e-mail: ibrabbas7@yahoo.com

313



314 Rajneesh Kumar, Vijay Chawla, Ibrahim A.Abbas

1 Introduction

The generalized theory of thermoelasticity is one of the modified version of
classical uncoupled and coupled theory of thermoelasticity and have been
developed in order to remove the paradox of physical impossible phenomena
of infinite velocity of thermal signals in the classical coupled thermoelastic-
ity. Hetnarski and Ignaczak [1] examined five generalizations of the coupled
theory of thermoelasticity.

The first generalization is due to Lord and Shulman [2] who formulated
the generalized thermoelasticity theory involving one thermal relaxation time.
This theory is referred to as L-S theory or extended thermoelasticity theory
in the Maxwell-Cattaneo law replaces the Fourier law of heat conduction by
introducing a single parameter that acts as a relaxation time,who obtained
a wave-type equation by postulating a new law of heat conduction instead
of classical Fourier’s law. Green and Lindsay [3] developed a temperature
rate- dependent thermoelasticity that includes two thermal relaxation times
and does not violate the classical Fourier’s law of heat conduction, when the
body under consideration has a center of symmetry. One can refer to Het-
narski and Ignaczak [4] for a review and presentation of generalized theories
of thermoelasticity. Chadwick [5-6] discussed propagation of plane harmonic
waves in transversely isotropic and homogeneous anisotropic heat conduc-
tion solids respectively. Sharma et al. [7-9] studied the wave propagation in
anisotropic solids in generalized theory of thermoelasticity. Sharma [10] dis-
cussed the existence of longitudinal and transverse in anisotropic thermoelas-
tic media. The third generalization of the coupled theory of thermoelasticity
is developed by Hetnarski and Ignaczak and is known as low-temperature
thermoelasticity. The fourth generalization to the coupled theory of ther-
moelasticity introduced by Green and Naghdi and this theory is concerned
with the thermoelasticity theory without energy dissipation, referred to as
G-N theory of type II in which the classical Fourier law is replaced by a
heat flux rate-temperature gradient relation. The heat transport equation
does not involve a temperature rate term and as such this model admits
undamped thermoelastic waves in thermoelastic material. The fifth general-
ization of the coupled theory of thermoelasticity is developed by Tzau [11]
and Chandrasekhariah [12] and is referred to dual phase- lag thermoelasticity.
Raychoudhuri [13] has recently introduced the three-phase-lag heat conduc-
tion equation in which the Fourier law of heat conduction is replaced by an
approximation to a modification of the Fourier law with the introduction of
three different phase-lags for the heat flux vector, the temperature gradient
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and the thermal displacement gradient. The stability of the three-phase-lag
heat conduction equation is discussed by Quintanilla and Racke [14].Quin-
tanilla has studied the spatial behavior of solutions of the three-phase-lag heat
conduction equation. Subsequently Kar and Kanoria [15] have employed this
theory of thermoelasticity with three-phase-lag to discuss a problem of ther-
moelastic interactions on functional graded orthotropic hollow sphere under
thermal shock. Mukhopadhyay and Kumar [16] has analyzed the effects of
phase-lags on wave propagation in a thick plate under axisymmetric temper-
ature distribution. The linear thermoviscoelastic remains an important area
of research not only due to the advent and use ogf polymer, but also because
most solids when subjected to dynamic loading exhibit viscous effects. Ku-
mar [17] discussed wave propagation in mocropolar viscoelastic generalized
thermoelastic solid. El-Karamany [18] studied uniqueness and reciprocity
theorems in a generalized in linear micropolar themoelasticity. Simonetti
[19] investigated Lamb wave propagation in elastic plates coated with vis-
coelastic materials. Sharma [20] discussed the problem of Rayleigh-Lamb
wave propagation in visco-thermoelastic plate. Baksi et al.[21] discussed the
two-dimensional visco-elastic problems in generalized thermoelastic medium
with heat source. Sharma et al. [22] investigated the Lamb wave’s propaga-
tion in viscothermoelastic plate under fluid loadings. Kumar and Partap [23]
discussed the vibration analysis of wave micropolar thermoviscoelasic plate.
Kumar and chawla [24] discussed the plane wane propagation in anisotropic
three phase lag model and two-phase lag model.

Keeping in view of these applications, we studied the propagation of waves
in the context of three-phase-lag of medium, for anisotropic thermoviscoelas-
tic medium. As a special case, the basic equations for homogeneous trans-
versely isotropic thermoelastic three-phase lag are reduced. Viscous effect
is shown graphically on different characteristics of waves like phase-velocity;
attenuation coefficient, specific loss and penetration depth.

2 Fundamental equations

The basic equations for homogeneous anisotropic thermoelastic solid, without
body forces and heat sources are given as

Constitutive relations

σij = cijklekl − βijT, βij = cijklαkl, (1)

ρST0 = ρC∗T + βijT0eij , eij = (ui,j + uj,i)/2. (2)
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Equations of motion in the absence of body force

σij,j = ρüi. (3)

The energy equation (without extrinsic heat supply) is

ρṠT0 = −qi,i. (4)

The Fourier law (for thermoelastic three- phase- lag model) is given by
Roy Choudhuri [11] as

qi = −[KijT,j(P, t+ τt) +K∗
ijυ,j(P, t+ τυ)]. (5)

Here cijkm(= ckmij = cijkm = cijmk) are elastic parameter; υ̇ = T, u⃗ is the
displacement vector, cijkl are the elastic parameter, βij are the tensor of ther-
mal respectively. ρ and C∗ are density and specific heat at constant strain; T0

is the reference temperature assumed to be such that
∣∣∣ TT0

∣∣∣ << 1. qi, S is the

heat flux vector and entropy per unit mass respectively. T (x1, x2, x3, t) is the
temperature distribution from the reference temperature T0;σij(= σji),Kij(=
Kji),K

∗
ij(= K∗

ji), eij are the components of stress, thermal conductivity, ma-
terial constants characteristic of the theory and strain tensor respectively.

In the above equations symbol (“,”) followed by a suffix denotes differen-
tiation with respect to spatial coordinate and a superposed dot (“.”) denotes
the derivative with respect to time respectively.

3 Formulation of the problem

We consider a homogeneous, thermally conducting, anisotropic viscoelastic
solid in the undeformed state at the uniform temperature T0.

In order to account for the material damping behavior the material coef-
ficient cijkl are assumed to be function of the time operator D = ∂

∂t , i.e.

cijkl = c̄ijkl,

c̄ijkl = cijkl(D). (6)

Assumed that the viscoelastic nature of the material is described by the
Voigt model of linear viscoelasticity (Kaliski[25]), we write

c̄ijkl = cijkl(1 + τ
∂

∂t
). (7)
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The general system of equations for anistropic thermoviscoelastic material
are obtained by using equation (1), (2) and (5),in equation (3) and (4), and
with the aid of equation (7), the equation of motion and heat conduction are

Equations of motion

c̄ijklekl,j − βijT,j = ρüi. (8)

Equation of heat conduction

Kij

(
1 + τT

∂

∂t

)
Ṫ,ji +K∗

ij

(
1 + τv

∂

∂t

)
T,ji =(

1 + τq
∂

∂t
+

τ2q
2!

∂2

∂t

)[
v21(ρC

∗T̈ + βijT0ëij)
]
,

(9)

We define the dimensionless quantities:

x′i =
ω∗
1xi
v1

, u′i =
ω∗
1ui
v1

, T =
T

T0
, τ ′T = ω∗

1τT ,

τ ′v = ω∗
1τv, τ ′q = ω∗

1τq, v21 =
c̄1111
ρ

, ω∗
1 =

ρC∗v21
K11

.

(10)

Here ω∗
1 is the characteristic frequency of the medium, v1 is the longitudinal

wave velocity in the isotropic version of the medium.

4 Solution of the problem

Using the dimensionless quantities defined by equation (10) in equations (8)
- (9), after suppressing the primes and assuming the solution of the resulting
equations as

(u1, u2, u3, T ) = (U1, U2,U3, T
∗) exp[i(ξxmnm − ωt)], (11)

where ω is the circular frequency and ξ is the complex wave number. U1, U2, U3

and T ∗ are undetermined amplitude vectors that are independent of time t
and coordinates xi. nm is the unit wave normal vector, we obtain

[c̄ijklnlnjξ
2 − ρv21ω

2δik]Uk + iξT0βijnjT
∗ = 0, (12)

iξβijnjv
2
1ω

2τ1qqUk + [ξ2(iωω∗
1Kijninjτ

11
T − τ11v K∗

ijninj)

+ ω2ρv21τ
11
q ]T ∗ = 0, (13)
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with

τ11T = 1− iωτT , τ11v = 1− iωτv, τ11q = 1− iωτq −
τ2q
2
ω2.

Equations (12)-(13) constitute the linear system of four homogeneous
equations in four unknowns U1, U2, U3 and T ∗.

The Christoffel’s tensor notation may be expressed as follows

γ̄ij = c̄ijklnlnk, βi = βijnj , K = Kijninj , K∗ = K∗
ijninj . (14)

Using (14) in equations (12)-(13), we obtain

[γ̄ijξ
2 − ρω2δikv

2
1]Uk + iξT0βiT

∗ = 0, (15)

iξω2v21τ
11
q Uk + [ξ2(iωω∗

1Kτ11T − τ11v K∗) + ω2ρC∗v21τ
11
q ]T ∗ = 0. (16)

The non-trivial solution of the system of equations (15)-(16) is ensured by
the determinant equation∣∣∣∣∣∣∣∣∣∣

γ̄11ξ
2 − ρω2v21 γ̄12ξ

2 γ̄13ξ
2 iξT0β̄1

γ̄21ξ
2 γ̄22ξ

2 − ρω2v21 γ̄23ξ
2 iξT0β̄2

γ̄31ξ
2 γ̄32ξ

2 γ̄33ξ
2 − ρω2v21 iξT0β̄3

iξω2τ11q ir1ξω
2τ11q ir2ξω

2τ11q −r3ξ
2 + r4ω

2

∣∣∣∣∣∣∣∣∣∣
(17)

The equation (17) yields to the following polynomial equation in ξ as

Aξ8 +Bξ6 + Cξ4 +Dξ2 + E = 0. (18)

The coefficients A,B,C,D,E are given as:

A =r3(γ̄11f1 + γ̄12f2 + γ̄13f3),

B =ρv21r3ω
2f4 − r4(γ̄11f1 + γ̄12f2 + γ̄13f3)ω

2 + T0ω
2τ11q (β1f5 + γ̄13f6 + f7),

C =ρv21ω
4
{
r4f9 + f10T0 + τ11q T0(β1f11 + f12) + γ̄13f13 − ρv21f14

}
,

D =ρ2v41ω
4
{
f15 + ω2(τ11q T0f16 + f17)

}
, E = ω8f18,
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f1 = γ̄23γ̄32 − γ̄22γ̄33, f10 = γ̄11(r2β3 − r1β2) + γ̄12(r4γ̄21 + β2τ
11
q ),

f2 = γ̄21γ̄33 − γ̄23γ̄31, f11 = (r1γ̄21 + r2γ̄31) + (γ̄21 + γ̄33),

f3 = γ̄31γ̄22 − γ̄32γ̄21, f12 = (r2γ̄32 − r1γ̄33)β2 + (r1γ̄23 − r2γ̄22)β3,

f4 = (γ̄11γ̄22 + γ̄11γ̄33)− (γ̄12γ̄21 + γ̄13γ̄31)− f1, f13 = r4γ̄31 + β3,

f5 = (r2γ̄32 − r1γ̄31) + γ̄23(r1γ̄31 − γ̄32) + γ̄21(γ̄33 − r2γ̄31), f14 = r3(γ̄11 + γ̄33),

f6 = r1(β3γ̄21 − β2γ̄31) + (β2γ̄32 − β3γ̄22), f15 = r4ω
2(γ̄11 + γ̄22 + γ̄33)− γ̄22r3,

f7 = r11γ̄11 + r12γ̄12, f16 = (r1β2 − r2β3) + β1,

f8 = (γ̄11γ̄22 + γ̄11γ̄33), f17 = ρv21r3,

f9 = f1 − f8, f18 = −ρ3v61r4,

r1 =
β2
β1

, r2 =
β3
β1

, r3 =
K̄∗τ11v − iωω∗

1K̄τ11t
β1v21

, r4 =
ρC∗τ11q

β1
,

r11 = γ̄11[(r1γ̄33 − r2γ̄32)β2 − (r2γ̄22 + r1γ̄23)β3],

r12 = γ̄12[(β3γ̄23 − β2γ̄33)β2 + (β2γ̄31 − β3γ̄21)r2].

On solving equation (18), we obtain eight roots of ξ that is, ±ξ1,±ξ2,±ξ3
and ±ξ4 corresponding to these roots, there exists four waves corresponding
to descending order of their velocities namely a quasi P-wave (qP1) and two
quasi transverse(qS1,qS2) and a quasi-thermal wave (qP2).

The expressions of phase velocity, attenuation coefficient, specific loss and
penetration depth of these types of waves are given in Appendix A.

5 Special cases

5.1 Three phase lag thermoelasticity

If we take

τ → 0, (19)

then the above analysis is reduced to three phase lag model of thermoelasic.
The above results are similar as those obtained by Kumar and Chawla [24].
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5.2 Two-phase lag model

If we take K∗
ij → 0, in the above analysis, we obtain result corresponding to

the two-phase-lag model of viscothermoelastic solid.

5.3 Anisotropic viscoelastic media

In the absence of thermal effect, we obtain from equation (16), the polynomial
equation corresponding to anisotropic viscoelastic medium as

ρ3V 6 − ρ(γ̄11 + γ̄22 + γ̄33)V
4 + ρΓ1V

2 + Γ2 = 0. (20)

Here V = ω
ξ is the wave velocity and

Γ1 = γ̄23γ̄32 + γ̄12γ̄21 + γ̄13γ̄31 − γ̄11γ̄22 − γ̄11γ̄33 − γ̄22γ̄33,

Γ2 = γ̄13(γ̄21γ̄32 − γ̄31γ̄22) + γ̄12(γ̄23γ̄31 − γ̄21γ̄33) + γ̄11(γ̄22γ̄33 − γ̄23γ̄32).

As a special case, in the absence of viscosity effect, the equations (20) are the
same as those obtained by Rose [26] for anisotropic elastic medium.

5.4 Transversely isotropic media:

Applying the transformation

x′1 = x1 cosϕ+ x2 sinϕ, x′2 = −x1 sinϕ+ x2 cosϕ, x′3 = x3, (21)

(ϕ is the angle of rotation in the x1 − x2 plane) in the equations (8)-(9),
the basic equations for homogeneous transversely isotropic thermoviscoelastic
three- phase- lag model are

c̄11u1,11 + c̄12u2,21 + c̄13u3,31 + c̄66(u1,22 + u2,12)

+ c̄44(u1,33 + u3,13)− β1T,1 = ρü1, (22)

c̄66(u1,21 + u2,11) + c̄12u1,12 + c̄11u2,22

+ c̄44u2,23 + (c̄13 + c̄44)u3,32 − β1T,2 = ρü2, (23)

(c̄13 + c̄44)(u1,13 + u2,23) + c̄44(u3,11 + u3,22)

+ c̄33u3,33 − β3T,3 = ρü3, (24)
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K1

(
1 + τT

∂

∂T

)
(Ṫ,11 + Ṫ,22) +K3

(
1 + τT

∂

∂T

)
Ṫ,33+

K∗
1

(
1 + τv

∂

∂T

)
(T,11 + T,22) +K∗

3

(
1 + τv

∂

∂T

)
T,33 =(

1 + τq
∂

∂t
+ τ2q

∂2

∂t2

)
ρC∗T̈ +

(
1 + τq

∂

∂t
+

τ2q
∂2

∂t2

)
T0

[
β1(ü1,1 + ü2,2) + β3ü1,1

]
.

(25)

Here βij = βiδij , Kij = Kiδij , K∗
ij = K∗

i δij , i is not summed,

β1 = (c11 + c12)α1 + c13α3, β3 = 2c13α1 + c33α3,

and α1 and α3 are the coefficients of linear thermal expansion.
In the above equations, we use the contracting notations 1 → 11, 2 →

22, 3 → 33, 4 → 23, 5 → 31, 6 → 12 to relate cijkm to cϖϑ (i, j, k,m =
1, 2, 3) and (ϖ,ϑ = 1, 2, 3, 4, 5, 6).

Applying the dimensionless quantities defined by (10) in equations (21)-
(25) and using the solutions defined by (11), we obtain the following charac-
teristic equations

A∗ξ8 +B∗ξ6 + C∗ξ4 +D∗ξ2 + E∗ = 0, (26)

where

A∗ = g14(s1g1 + s4g2 + s3g3),

B∗ = Λ1g1 + Λ2g2 + Λ3g3 + Λ4g4 + Λ5ω
2,

C∗ = ω2(s16g1 + s17ω
2 + s18 + s19 + s20 + s21),

D∗ = ω4(s22 − s23 − g14ω
2), E∗ = −ω6g13,

g1 = n2
1 + δ3n

2
2 + δ4n

2
3, g6 = δ2n2n3,

g2 = δ1n1n2 g7 = iγ1n2,

g3 = δ2n1n3, g8 = (n2
1 + n2

2)δ4 + δ5n
2
3,

g4 = iγ1n1, g9 = iγ3n3,

g5 = n2
2 + δ3n

2
1 + δ4n

2
3, g10 = in1ω

2q∗6,

g11 = in2ω
2q∗6, g12 = in3ω

2q∗7,

g13 = q5ω
2, g14 = iω[q∗1(n

2
1 + n2

2) + q∗2n
2
3]− q∗3(n

2
1 + n2

2)− q∗4n
2
3 ,
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s1 = g5g8 − g6g6, s2 = g3g8 − g2g8, s3 = g2g6 − g3g5,

s4 = g5g14 + g8g14, s5 = g6g11 − g5g12, s6 = g8g11 − g6g12,

s7 = g9g12 − g8g13, s8 = g3g13 − g9g10, s9 = g8g10 − g3g12,

s10 = g6g13 − g9g11, s11 = g7g11 − g5g13, s12 = g4g12 − g6g11,

s13 = g6g6 − g5g8g10, s14 = g22g14, s15 = g10(g5g9 − g6g7),

s16 = g9g12 − g5g13, s17 = g14(g1 + g5 + g8), s18 = g5(g9g12 − g8g13),

s19 = g13(g6g6 − g1g8), s20 = g10(g4g8 − g8g7), s21 = g3(g3g14 − g4g12),

s22 = g13(g1 + g5 + g8)− (g9g12 − g7g11 + g4g10),

Λ1 = (s1g13 − s4ω
2 + s9g9 + s6g7), Λ2 = s7g2 + s8g8 + s9g7 + s10g3 + s6g4,

Λ3 = s11g3 + s15, Λ4 = s12g3 + s13, Λ5 = g14(1− s1)ω
2,

δ1 =
c̄12 + c̄66

c̄11
, δ2 =

c̄13 + c̄44
c̄11

, δ3 =
c̄66
c̄11

,

δ4 =
c̄44
c̄11

, γ1 =
β1T0

c̄11
, γ3 =

β3T0

c̄11
,

q∗1 =
K̄1τ

1
t

v21
, q∗2 =

K̄3τ
1
t

v21
, q∗3 =

K̄∗
1τ

1
v

ω∗
1v

2
1

, q∗4 =
K̄∗

3τ
1
v

ω∗
1v

2
1

,

q∗5 =
ρC∗τ1q
ω∗
1

, q∗6 =
β1τ

1
q

ω∗
1

, q∗7 =
β3τ

1
q

ω∗
1

.

Now we study the propagation of plane waves in different principle plane
as follows:

Case1. Let us consider plane harmonic waves propagating in a principal
plane perpendicular to the principal direction (0, 1, 0) i.e. wave normal
n = (sin θ, 0, cos θ) inclined at angel θ to x3-axis. The characteristic equation
(26) reduces to

ξ2(δ3 sin
2 θ + δ4 cos

2 θ)− ω2 = 0, (27)

E1ξ
6 + E2ξ

4 + E3ξ
2 + E4 = 0 (28)
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where

E1 = r8(r1r4 − r2r8),

E2 = r1ω
2(r4q

∗
5 − r8)− ω2(r4r8 + q∗5r

2
2)

+ r5(r2r6 − r1r7) + r3(r2r7 − r4r6),

E3 = ω4[r8 − q∗5(r1 + r4)] + ω2(r7r5 + r3r6), E4 = ω6q∗5.

r1 = sin2 θ + δ4 cos
2 θ, r2 = δ2 sin θ cos θ, r3 = iγ1 sin θ,

r4 = δ4 sin
2 θ + δ5 cos

2 θ, r5 = iγ3 cos θ, r6 = iω2q∗6 sin θ,

r7 = iω2q∗7 cos θ, r8 = iω(q∗1 sin
2 θ + q∗2 cos

2 θ)− q∗3 sin
2 θ − q∗4 cos

2 θ,

h1 = r1r4 − r2r2, h2 = r2r3 − r1r5, h3 = r2r5 − r3r4, h4 = r3r6 − r1q
∗
5ω

2,

G1 = Γ2, G2 = (q5 − Γ2)ω
2 − iγ1Γ1, G3 = −q5,

Γ1 = iω2q∗6, Γ2 = iωq∗1 − q∗3.

Equation (27) corresponds to purely transverse wave (SH) wave, which is
not affected by thermal variations.

Case 11. For θ = 900, i.e. when the wave normal n = (1, 0, 0) is
perpendicular to the x3− axis, the equation (26)reduces to

δ3ξ
2 − ω2 = 0, δ4ξ

2 − ω2 = 0, (29)

G1ξ
4 +G2ξ

2 +G3 = 0, (30)

where

G1 = iq∗1ω − q∗3, G2 = ω2(q∗5 − iωq∗1 + q∗3 + γ1q
∗
6), G3 = −q∗5ω

4.

Equation (29) corresponds to purely transverse waves, which are not af-
fected by thermal variations.

6 Particular cases

1. Taking

c̄11 = c̄22 = c̄33, c̄12 = c̄13, c̄44 = c̄66, β1 = β2 = β3, (31)

K1 = K3 = K, K∗
1 = K∗

3 = K∗, (32)

yields the corresponding results for cubic crystal materials.
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2. The corresponding results for isotropic thermoviscoelastic are obtained
by taking

c̄11 = c̄33 = λ̄+ 2µ̄, c̄12 = c̄13 = λ̄, c44 = µ̄, β1 = β3, (33)

K1 = K3 = K, K∗
1 = K∗

3 = K∗. (34)

7 Numerical results and discussion

For numerical computations, we take the following values of the relevant
parameters given as follows

c11 = 18.78× 1010Kg.m−1s−2, c12 = 6.76× 1010Kg.m−1s−2,

c13 = 8.0× 1010Kg.m−1s−2, c33 = 10.2× 1010Kg.m−1s−2,

c44 = 10.06× 1010Kg.m−1s−2, T0 = 0.293× 103K,

α1 = 1.96× 10−5K−1, α3 = 1.4× 10−5K−1,

K1 = 0.12× 103Wm−1K−1, K3 = 0.33× 103Wm−1K−1,

C∗ = 0.6331× 103JKg−1K−1, ρ = 8.954× 103Kg.m3,

K∗
1 = c̄11C

∗/4, K∗
3 = c̄33C

∗/4.

We can solve equation (28) with the help of the software Matlab 7.0.4 and
after solving the equation (30) and using the formulas given in Appendix
A [A.1-A.4], we can commute the values of phase velocity(V1,V2, V3), at-
tenuation coefficient(Q1,Q2, Q3), specific loss (W1,W2, W3) and penetration
depth(P1,P2, P3) for intermediate values of frequency (ω) in theories of two
phase and three phase lag model. The solid line corresponds to two-phase-lag
model (11 phase lag), doted lines correspond to three-phase-lag model (111
phase lag) and center symbols on these lines corresponding to two-phase-lag
model (11 phase lag (Vis)),(111 phase lag (Vis)) with viscous respectively.

8 Phase velocity

Figs.1,2 and 3 depict the variation of phase velocity V1, V2 and V3 of waves
with frequency ω. It is evident from fig.1 that the values of V1 increase
for initial values ω whereas for higher values of ω, the values of V1 slightly
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Figure 1: Variation of phase velocity (V1) with frequency
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Figure 2: Variation of phase velocity (V2) with frequency
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Figure 3: Variation of phase velocity (V3) with frequency
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decreases. It is noticed that due to viscosity effect, the values of V1 remain
more. Fig.2 represents that the values of V2 increases for smaller values of
ω, although for higher values of ω, the values of V2 slightly decreases. It is
evident that that the values of V2 in case of with viscous effect remain more
(In comparison with without viscous effect). Fig.3 shows that the values of
V3 in case of without viscous effect increases for smaller values ω, but for
higher values of ω, the values of V3 slightly decreases and due to viscosity
effect, the values of V3 decrease for higher values of ω. It is evident that the
values of V3 due to viscosity effect become smaller in comparison to without
viscous effect for higher values of ω.

9 Attenuation coefficient and specific loss

Figs.4,5 and 6 depict the variation of attenuation coefficient (Q1,Q2, Q3) of
waves with frequency ω. Fig.4 shows that the values of Q1 slightly increase for
smaller values of ω, whereas for higher values of ω, the values of Q1 decrease.
It is evident that the values of Q1 in case of without viscous effect remain
more(In comparison with viscous effect). Fig.5 indicates that the values of
Q2 increase for initial values of ω although for higher values of ω, the values
of Q2. It is evident that due to viscosity effect the values of Q2 remain more.
Fig.6 exhibits the variation of Q3 with ω and it indicates that the behavior
and variation of Q3 is same as Q2, although the magnitude values of Q3 are
different.

Fig. 7 depicts the variation of specific loss (W1) of waves with frequency
ω. It is evident that the values of W1 decrease for higher values of ω. If we
compare the results we find that the values of W1 in case of with viscous
effect remain more (In comparison with without viscous effect).Fig. 8 shows
that the values of specific loss (W2) increases for smaller values of ω, but
for higher values of ω reverse behavior occurs. It is noticed that the values
of W2 due to viscosity effect remain more. Fig.9 shows the variation of W3

with ω and it indicates that the behavior and variation of W3 is same as W2,
whereas the magnitude values of W3 are different.

Penetration depth

Figs.10, 11 and 12 represent the variation of penetration depth (P1, P2, and
P3) of wave with frequency ω. It is evident from fig.10 that the values P1

increase for higher values of ω. Fig.11 shows that the values P1 decrease for
initial values of ω, but for higher value of ω the values of P1 increase. Fig.12
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Figure 4: Variation of attenuation coefficient (Q1) with frequency
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Figure 5: Variation of attenuation coefficient (Q2) with frequency
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Figure 6: Variation of attenuation coefficient (Q3) with frequency
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Figure 7: Variation of specific loss (W1) with frequency
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Figure 8: Variation of specific loss (W2) with frequency
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Figure 9: Variation of specific loss (W3) with frequency
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Figure 10: Variation of penetration depth (P1) with frequency

depicts the variation of penetration depth (P3) with ω. It is noticed that
due to viscosity effect, the values of P1, P2, P3 are smaller (in comparison to
without viscous effect).

Concluding remarks

The propagation of waves in anisotropic thermoviscoelastic medium in the
context of the theory of three-phase-lag model has been studied. The gov-
erning equations for homogeneous transversely isotropic thermoviscoelastic
three-phase-lag are reduced as a special case. When plane waves propragate
in a principle plane of transversely thermoviscoelastic three-phase-lag model,
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Figure 11: Variation of penetration depth (P2) with frequency
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Figure 12: Variation of penetration depth (P3) with frequency
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purely transverse wave mode decouple from the rest of the motion and is not
affected by the thermal variation. In case of plane wave propagation along
the axis of solid, two purely transverse wave modes decouples from the rest of
motion and not affected by the thermal vibration. Different characteristics of
waves like phase velocity, attenuation coefficient, specific loss and penetration
depth are computed numerically and presented graphically.

From numerical and graphical results, it is clear that due to viscosity
effect, the values of phase velocity V1, V2, attenuation coefficient Q2, specific
loss (W1,W2) remain more, whereas for the case of without viscous effect
the values of phase velocity V3, attenuation coefficient (Q1, Q3), specific loss
(W3) and penetration depth (P1,P2,P3) remain more.

Appendix A

(i) Phase velocity
The phase velocities are given by

Vi =
ω

Re(ξi)
, i = 1, 2, 3, 4, (A.1)

where V1, V2, V3, V4 are the velocities of qP1, qS1, qS2 and qP2 waves respec-
tively.
(ii) Attenuation Coefficient

The attenuation coefficient is defined as

Qi = Img(ξi), i = 1, 2, 3, 4, (A.2)

whereQi, i = 1, 2, 3, 4 are the attenuation coefficients of qP1, qS1, qS2andqP2
waves respectively.
(iii) Specific Loss

The specific loss is the ratio of energy (∆W ) dissipated in taking a spec-
imen through cycle, to elastic energy (W ) stored in a specimen when the
strain is maximum. The specific loss is the most direct method of defining
internal friction for a material. For a sinusoidal plane wave of small ampli-
tude it was shown by Kolsky [25] that specific loss ∆W/W equals 4π times
the absolute value of the imaginary part of ξ to the real part of ξ i.e.

Wi =

(
∆W

W

)
i = 4π

∣∣∣∣Img(ξi)

Re(ξi)

∣∣∣∣ , i = 1, 2, 3, 4. (A.3)

(iv) Penetration depth The penetration depth is defined by

Bi =
1

Img(ξi)
, i = 1, 2, 3, 4. (A.4)
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Uticaj viskoznosti na prostiranje talasa u anizotropnoj
termoelastičnoj sredini sa modelom trofaznog zaostajanja

Proučava se prostiranje talasa u anizotropnoj viskoelastičnoj sredini u kon-
tekstu teorije trofaznog zaostajanja termoelastičnih matrerijala. Nadjena su
dva kvaziuzdužna talasa (qP1, qP2) i dva poprečna talasa (qS1, qS2). Vodeće
jednačine za homogenu poprečno izotropnu termoviskoelastičnu sredinu su
redukovane kao poseban slučaj posmatranog modela. Razne karakteristike
talasa kao: fazna brzina, koeficijent slabljenja, specifični gubitak i dubina
prodiranja su izračunate iz dobijenih rezultata. Viskozni efekt je pokazan
grafički za različite rezultujuće veličine za modele dvofaznog zaostajanja i
trofaznog zaostajanja termoelastičnosti. Neki posebni značajni slučajevi su
takodje izvedeni iz datog istrazživanja.
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