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Abstract

In this paper, the semi-analytical/numerical technique known as the
homotopy analysis method (HAM ) is employed to derive solutions for
the laminar axisymmetric mixed convection boundary-layer nanofluid
flow past a vertical cylinder. The similarity solutions are employed to
transform the parabolic partial differential conservation equations into
system of nonlinear, coupled ordinary differential equations, subject to
appropriate boundary conditions. A comparison has been done to verify
the obtained results with the purely numerical results of Grosan and
Pop (2011) with excellent correlation achieved. The effects of nano-
particle volume fraction, curvature parameter and mixed convection or
buoyancy parameter on the dimensionless velocity and temperature dis-
tributions, skin friction and wall temperature gradients are illustrated
graphically. HAM is found to demonstrate excellent potential for simu-
lating nanofluid dynamics problems. Applications of the study include
materials processing and also thermal enhancement of energy systems.
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Nomenclature

a - radius of cylinder

Cf - skin friction coefficient

ci - arbitrary constant

Cp - specific heat at constant pressure

g - acceleration due to gravity

Gr - Grashof number

~ - auxiliary nonzero parameter

H - auxiliary function

k - heat transfer coefficient

l - characteristic length of the cylinder

L - auxiliary linear operator

N - nonlinear operator

Nu - Nusselt number

p - embedding parameter

Pr - Prandtl number

qw - heat flux from the surface of the cylinder

r - radial coordinate

Re - Reynolds number

T - temperature of the nanofluid

T∞ - ambient temperature

x - axial coordinate

x̄ - dimensionless axial coordinate

u - velocity component along x-axis

U(x) - velocity of the external or potential flow

U∞ - characteristic velocity

v - velocity component along r-axis

Greek Symbols

α - thermal diffusivity

β - coefficient of thermal expansion

ϕ - nanoparticle volume fraction

γ - curvature parameter

η - similarity variable

λ - mixed convection or buoyancy parameter

µ - dynamic viscosity

ν - kinematic viscosity
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θ - dimensionless temperature

ρ - density

τw - wall skin friction

ψ - streamline function

Subscripts

f - fluid

nf - nanofluid

s - solid

w - wall

1 Introduction

The enhancement in thermal conductivity of conventional fluids via suspen-
sions of solid particles is a modern development in engineering technology
aimed at increasing the coefficient of heat transfer. The thermal conduc-
tivity of solid metals is higher than the base fluids, so the suspended parti-
cles are able to increase the thermal conductivity and heat transfer perfor-
mance. Choi and Eastman [1] were probably the first researchers to combine
a mixture of nanoparticles and base fluid, which they subsequently termed a
nanofluid. Experimental results [2-7] have illustrated that the thermal con-
ductivity of nanofluid can be increased between 10-50% via introduction of
a small volume fraction of nanoparticles. Nanofluidsoffer many diverse ad-
vantages in industrial application such as microelectronics, fuel cell, nuclear
reactors, biomedicine and transportation, many of which have been reviewed
by Wang and Leon [8]. Hwang et al. [9] measured the thermal conductivi-
ties of various nanofluids and showed that the volume fraction of suspended
particle is the effective parameter in enhancing the thermal conductivity. Sev-
eral numerical studies of nanofluids dynamics have been reported including
laminar mixed convection inside horizontal and inclined tubes in which the
nanofluid is simulated as a single phase homogeneous mixtures [10,11].

Most nonlinear equations, which are used to describe physical systems
in the form of mathematical modeling, do not yield exact solutions. One
can solve these nonlinear equations by using numerical or analytical meth-
ods. Semi-analytical methods offer certain advantages in comparison with the
numerical methods, and one such technique, the Homotopy analysis method
(HAM) is used in the present investigation to solve nonlinear differential equa-
tions. HAM was introduced into applied mathematics by Liao [12-15] and
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employed successfully to produce a general analytic solution strategy for non-
linear problems. HAM has further been employed in other nonlinear problems
[16-19], confirming the validity of this method. HAM has also been employed
recently used to solve some of nonlinear problems in nanofluid dynamics. In-
teresting investigations in this regard include Mustafa et al. [20] who studied
the steady boundary-layer flow and heat transfer near the stagnation-point
of a nanofluid towards a stretching sheet. Bég and Tripathi [21] examined
the peristaltic propulsion of nanofluids in channels using the Buongiornio
formulation and Mathematica software. Hassani et al. [22] investigated
thermo-convective boundary-layer flow of a nanofluid past a stretching sheet.
Bég et al.[23] studied Brownian motion and thermophoretic effects on mixed
convection of nanofluids in porous media using an optimized finite difference
scheme. Rana et al. [24] recently presented the first finite element simulation
of nanofluid convection from an inclined surface with applications in solar
energy collector systems.

In the present article, we derive semi-analytical solutions for axisymmet-
ric laminar mixed convection boundary-layer flow past a vertical cylinder in
a nanofluid with HAM. Newtonian thermal boundary layers along a verti-
cal cylinder were investigated for a viscous fluid (ϕ = 0, regular fluid) by
Mahmood and Merkin [25]. More recently this problem was extended to a
nanofluid by Grosan and Pop [26] numerically. Similarity transformations are
employed to render the nonlinear dimensional partial differential boundary
layer equations into set of ordinary differential equations, which are solved
with HAM. In the current study, we study in detail the influence of nano-
particle volume fraction, curvature parameter and mixed convection (buoy-
ancy) parameter on the dimensionless velocity and temperature profiles, skin
frictions and wall temperature gradients.

2 Mathematical model

In this article, we assume the steady axisymmetric mixed convection boundary-
layer flow along a vertical circular cylinder of radius a immersed in a nanofluid.
It is supposed that the mainstream velocity is U(x), the temperature of the
cylinder is Tw(x) and the temperature of the ambient nanofluid is T∞. Ac-
cording to these assumptions and using the Tiwari-Das nanofluid model [27],
the governing conservation equations take the form [26]:

∂

∂x
(ru) +

∂

∂r
(rv) = 0 (1)
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u
∂u

∂x
+ v

∂u

∂r
= U

dU

dx
+
µnf
ρnf

(
∂2u

∂r2
+

1

r

∂u

∂r

)

+
ϕρsβs + (1− ϕ) ρfβf

ρnf
g (T − T∞)

(2)

u
∂T

∂x
+ v

∂T

∂r
= αnf

(
∂2T

∂r2
+

1

r

∂T

∂r

)
(3)

where x and r are the Cartesian coordinates measured in the axial and radial
directions, u and v are the velocity components along x and r directions,
respectively. The boundary conditions are prescribed as follows:

u = v = 0, T = Tw(x) = T∞ +∆T (x/l) at r = a

u = U(x) → U∞(x/l), T → T∞ as r → ∞ (4)

The viscosity µnf , the thermal diffusivity αnf and the thermal conduc-
tivity knf of the nanofluid are defined following Oztop and Abu-Nada[28]
as:

µnf =
µf

(1−ϕ)2.5
, αnf =

knf

(ρCp)nf
,

(ρCp)nf = (1− ϕ) (ρCp)f + ϕ (ρCp)s

knf = kf
(ks + 2kf )− 2ϕ (ks − kf )

(ks + 2kf ) + ϕ (ks − kf )

(5)

where (ρCp)nf is the heat capacitance of the nanofluid. The expression of µnf
is in accordance with the model proposed by Brinkman [29]. Equation (5) is
confined to the case of spherical nanoparticles and therefore other geomet-
rical configurations of nanoparticles are not considered in this model. The
thermophysical properties of the base fluid (water) and nanoparticles (Cu)
are presented in Table 1 [28]. Proceeding with analysis, following Grosan and
Pop [26], we adopt similarity transformations for eqs. (1)-(3) subject to the
boundary conditions (4), in the form:

η =
r2 − a2

2νf l

(
U∞νf l/a

2
)1/2

,

ψ =
(
U∞νfa

2/l
)1/2

x f (η) , (6)

T − T∞ = ∆T (x/l) θ (η)
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Table 1: Thermophysical properties of the base fluid and the nanoparticles

Physical properties Fluid phase (water) Cu

Cp(J/kgK) 4179 385

ρ(kg/m3) 997.1 8933

k(W/mK) 0.613 400

α× 107(m2/s) 1.47 1163.1

β × 10−5(1/K) 21 1.67

where ψ is the dimensional stream function in which u = (1/r)∂ψ/dr and
v = −(1/r)∂ψ/dx

Implementing transformations (6) in (2) and (3), continuity is satisfied
and the resulting pair of nonlinear ordinary differential equations is generated:

1

(1− ϕ)2.5
(
1− ϕ+ ϕρs/ρf

) [(1 + 2γη) f ′′′ + 2 γ f ′′
]
+ ff ′′

+ 1− f ′2 +
(1− ϕ) + ϕ

(
ρs/ρf

)(
βs/βf

)
(1− ϕ) + ϕ

(
ρs/ρf

) λθ = 0, (7)

1

Pr

knf/kf
(1− ϕ) + ϕ(ρCp)s / (ρCp)f

[
(1 + 2γη) θ′′ + 2 γ θ′

]
+ fθ′ − f ′θ = 0. (8)

The transformed boundary conditions now take the form:

f (0) = f ′ (0) = 0, θ (0) = 1,

f ′ (η) → 1, θ (η) → 0 as η → ∞ (9)

where Pr = νf/af is the Prandtl number, λ = Gr/R e2 is the mixed

convection parameter, γ =
(
νf l/U∞a

2
)1/2

is the curvature parameter and

primes denote to differentiation with respect to η. Also Gr = gβf∆T l
3/v

2
f

is the Grashof number and Re = U∞l/vf is the Reynolds number. It is
pertinent to note that λ < 0 corresponds to a cooled cylinder (opposing
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flow), λ = 0 corresponds to forced convection flow (Tw = T∞) and λ > 0
corresponds to a heated cylinder (assisting flow).

The skin friction coefficient Cf and the Nusselt number Nu are also en-
gineering parameters of interest and are introduced as:

Cf =
τw

ρfU2
∞
, Nu =

lqw
kf∆T

, (10)

where τw = µnf (∂u/dr)r=a is the skin friction or the shear stress at the
surface of the cylinder and qw = −kf (∂T/∂r)r=a is the heat flux from the
surface of the cylinder. By substituting (5) into (10) and according to the
above definitions, we arrive [26] at the following expressions:

Re1/2Cf =
x̄

(1− ϕ)2.5
f ′′ (0) , Re−1/2Nu =

knf
kf

x̄
[
−θ′ (0)

]
. (11)

3 HAM semi-analytical solutions

According to the boundary conditions (9), we select theappropriate initial
approximations (for more details, see [12]) as follows:

f0 (η) = η
(
1− e−η

)
, (12)

θ0 (η) = e−η, (13)

The auxiliary linear operators ℓ1 (f) and ℓ2 (θ) are chosen as:

ℓ1 (f) = f ′′′ + f ′′, (14)

ℓ2 (θ) = θ′′ + θ′ (15)

with the following properties:

ℓ1
(
c1e

−η + c2 + c3η
)
= 0, (16)

ℓ2
(
c4e

−η + c5
)
= 0, (17)

where ci, i = 1 − 5, are the arbitrary constants. Due to Eqs. (7)-(8), the
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nonlinear operators are:

N1

[
f̂ (η; p) , θ̂ (η; p)

]
=

1

(1− ϕ)2.5
(
1− ϕ+ ϕρs/ρf

)
×

[
(1 + 2γη)

∂3f̂ (η; p)

∂η3
+ 2 γ

∂2f̂ (η; p)

∂η2

]

+ f̂ (η; p)
∂2f̂ (η; p)

∂η2
+ 1−

(
∂ f̂ (η; p)

∂η

)2

+
(1− ϕ) + ϕ

(
ρs/ρf

)(
βs/βf

)
(1− ϕ) + ϕ

(
ρs/ρf

) λθ̂ (η; p) ,

(18)

N2

[
f̂ (η; p) , θ̂ (η; p)

]
=

1

Pr

knf/kf
(1− ϕ) + ϕ(ρCp)s (ρCp)f

×

[
(1 + 2γη)

∂2θ̂ (η; p)

∂η2
+ 2 γ

∂θ̂ (η; p)

∂η

]

+ f̂ (η; p)
∂θ̂ (η; p)

∂η
− ∂f̂ (η; p)

∂η
θ̂ (η; p) .

(19)

The zero-order deformation equations are composed as:

(1− p) ℓ1

[
f̂ (η; p)− f0 (η)

]
= p~Hf (η)N1

[
f̂ (η; p) , θ̂ (η; p)

]
, (20)

(1− p) ℓ2

[
θ̂ (η; p)− θ0 (η)

]
= p~Hθ (η)N2

[
f̂ (η; p) , θ̂ (η; p)

]
, (21)

subject to the boundary conditions:

f̂ (0; p) = 0,
∂f̂ (0; p)

∂η
= 0, θ̂ (0; p) = 1,

∂f̂ (∞; p)

∂η
= 1, θ̂ (∞; p) = 0.

(22)

For p ∈ [0, 1] , we obtain

f̂ (η; 0) = f0 (η) , f̂ (η; 1) = f (η) ,

θ̂ (η; 0) = θ0 (η) , θ̂ (η; 1) = θ (η) .
(23)
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We emphasize that when p increases from 0 to 1, f̂ (η; p) and θ̂ (η; p) vary
from f0 (η) and θ0 (η) to f (η) and θ (η) . By Taylor’s theorem, finally, we
have:

f̂ (η; p) = f0 (η) +
∞∑

m=1

fm (η) pm, (24)

θ̂ (η; p) = θ0 (η) +
∞∑

m=1

θm (η) pm, (25)

where

fm (η) =
1

m!

∂mf̂ (η; p)

∂pm

∣∣∣∣∣
p=0

, θm (η) =
1

m!

∂mθ̂ (η; p)

∂pm

∣∣∣∣∣
p=0

. (26)

The convergence of the series (24)-(25) strongly depends on the auxiliary
parameter [12]. Considering that ~ is selected such that the above series are
convergent at p = 1, then due to Eq.(23) we obtain:

f (η) = f0 (η) +

∞∑
m=1

fm (η) , (27)

θ (η) = θ0 (η) +

∞∑
m=1

θm (η) , (28)

Themth-order deformation equations are produced by differentiating Eqs.(20)-
(21) m times with respect to p, and subsequently dividing by m! in p = 0,
The results now become:

ℓ1 [fm (η)−Xmfm−1 (η)] = ~Hf (η) R1,m (η) , (29)

ℓ1 [θm (η)−Xmθm−1 (η)] = ~Hθ (η) R2,m (η) , (30)
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where

R1,m (η) =
1

(1− ϕ)2.5
(
1− ϕ+ ϕρs/ρf

)
×
[
(1 + 2γη)

∂3fm−1 (η)

∂η3
+ 2 γ

∂2fm−1 (η)

∂η2

]
+ 1

+
m−1∑
n=0

(
fn (η)

∂2fm−1−n (η)

∂η2
− ∂fn (η)

∂η

∂fm−1−n (η)

∂η

)

+
(1− ϕ) + ϕ

(
ρs/ρf

)(
βs/βf

)
(1− ϕ) + ϕ

(
ρs/ρf

) λθm−1 (η) ,

(31)

R2,m (η) =
1

Pr

knf/kf
(1− ϕ) + ϕ(ρCp)s (ρCp)f

×
[
(1 + 2γη)

∂2θm−1 (η)

∂η2
+ 2 γ

∂θm−1 (η)

∂η

]

+
m−1∑
n=0

(
fn (η)

∂θm−1−n (η)

∂η
− ∂fn (η)

∂η
θm−1−n (η)

)
,

(32)

and

Xm =

{
0, m ≤ 1,
1, m ≥ 1,

(33)

with the following boundary conditions:

fm (0) = 0, f ′m (0) = 0, θm (0) = 1, (34)

f ′m (∞) = 1, θm (∞) = 0.

Finally, we select the followed auxiliary functions

Hf (η) = e−η, Hθ (η) = e−η, (35)

The symbolic software MATHEMATICA is employed to solve the system
of linear equations numerically i.e. Eqs.(29)-(30) with the boundary condi-
tions (34), systematically, one after the other, in the order of m = 1,2,3...
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4 Convergence of HAM

As expounded before, the convergence of the series of Eqs. (27)-(28) effec-
tively depends on the auxiliary parameter. It is imperative to select a proper
value of auxiliary parameter to control the rate of convergence of the ap-
proximation series – this is achieved with the assistance of the so-called ~−
curve. It is evident that the valid regions of ~ correspond to the straight line
segments nearly parallel to the horizontal axis. This aspect has also been elu-
cidated recently by Tripathi et al. [30], Béget al.[31] and Rashidiet al. [32]
in rheological flow simulations with HAM. The different types of ~− curve of
f ′′ (0) and θ′ (0) obtained by the 20th-order approximation are illustrated in
Figs. 1-2. In order to obtain the optimal value of ~, the residual errors are

h

-1.5 -1.2 -0.9 -0.6 -0.3 0

1

1.5

2

2.5

3

f = 0.0

f = 0.1

f = 0.2

Figure 1: The h-curve of f ′′ (0) obtained by the 20th-order approximation of
the HAM solution for different values of nanoparticle volume fraction when
γ = 1 and λ = −0.5.

documented in Eqs.(36)-(37). These residual errors for the 20th-order HAM
approximation solutions are depicted in Figs. 3-4. Finally, a comparison
has been done between the results of present study with the results of previ-
ously published data of Ref.[26] for the reduced skin friction coefficient and
reduced Nusselt number for different values of the flow parameters in Table
2, showing very good correlation.
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Figure 2: The h-curve of θ′ (0) obtained by the 20th-order approximation of
the HAM solution for different values of nanoparticle volume fraction when
γ = 1 and λ = −0.5.
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Figure 3: The residual errors for Eq.(36) using 20th-order of approximations
when γ = λ = 0 and ϕ = 0.2.
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Figure 4: The residual errors for Eq.(37) using 20th-order of approximations
when γ = 1, λ = 2 and ϕ = 0.2.
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Figure 5: Verification of f ′ (η) and θ (η) obtained by 20th-order of HAM
solution in comparison with the previously published data of Grosan and Pop
[26] when ϕ = λ = 0 and γ = 1.
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Table 2: Comparison between the results of present study with the results
reported by Grosan and Pop [26] for the reduced skin friction coefficient and
reduced Nusselt number for different values of the physical parameters
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−
ϕ
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Resf =
1

(1− ϕ)2.5
(
1− ϕ+ ϕρs/ρf

)
×
[
(1 + 2γη)

d3f (η)

dη3
+ 2 γ

d2f (η)

dη2

]
+ 1

+ f (η)
d2f (η)

dη2
−
(
df (η)

dη

)2

+
(1− ϕ) + ϕ

(
ρs/ρf

)(
βs/βf

)
(1− ϕ) + ϕ

(
ρs/ρf

) λθ (η) ,

(36)

Resθ =
1

Pr

knf/kf
(1− ϕ) + ϕ(ρCp)s (ρCp)f

×
[
(1 + 2γη)

d2θ (η)

dη2
+ 2 γ

dθ (η)

dη

]
+ f (η)

dθ (η)

dη
− df (η)

dη
θ (η) .

(37)

5 Results and discussion

In order to measure the accuracy of our results, we compare them with the
purely numerical computations of Grosan and Pop [26]. Excellent correlation
is observed in Fig.5 between the analytic results obtained by the 20th-order
approximation of HAM and numerical results of [26]. In our computa-
tions, we have considered a single geometry and material for the nanoparticle,
namely Copper (spherical nano-particles), with water as the base fluid. The
Prandtl number is prescribed as 6.2 (for water) [28].

The effects of nanoparticle volume fraction variations on the dimension-
less velocity and temperature profiles for the case of forced convection flow
(λ = 0) are displayed in Figs.6-7. As the values of the nanoparticles in the
base fluid increase, the momentum boundary-layer thickness increases. The
boundary layer flow is concomitantly accelerated as observed by the elevation
in f ′ (η) profiles. Velocity is clearly minimized for the purely base fluid case
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(ϕ = 0) . The presence of nano-particles is therefore beneficial to flow develop-
ment along the cylinder in the buoyant regime. Figure 6 also demonstrates
that with increasing curvature parameter (γ) , the flow is generally decel-
erated i.e. velocity function is reduced. In consistency with Mahmmod and
Merkin [25] and also Grosan and Pop [26], the flow is maximized for the verti-
cal plate scenario (vanishing curvature of the cylinder i.e. γ = 0). For strong
curvature of the vertical cylinder (γ = 5), the flow is decelerated, in particular
at increasing values of η. By increasing the concentration of nanoparticles
in the base fluid i.e. nano-particle volume fraction (ϕ), as elucidated ear-
lier, there is also an increase the thermal conductivity and thismanifests with
an enhancement in temperatures, as observed in figure 6. Again we note
that the purely base fluid (absence of nanoparticles (ϕ = 0) corresponds to
the lowest value of temperature. Furthermore, we note temperature profiles
converge faster in the case of a vertical plate (γ = 0) than the strong cur-
vature vertical cylinder case (γ = 5) for all the values of the nano-particle
volume fraction. The effect on magnitudes of temperature of an increase in
curvature parameter is however opposite to the effect sustained by velocity
profiles. For the vertical plate case (zero curvature), temperatures are signif-
icantly depressed further into the boundary layer regime (i.e. with increasing
transverse coordinate, η), whereas with strong curvature they are enhanced.

Figs.8-9 illustrate the effects of curvature parameter (γ), on dimensionless
velocity and temperature profiles for the case of a heated cylinder (assisted
flow, λ > 0). The results show that there is a point near the cylinder wall
where the velocity attains the same value for all values of the curvature pa-
rameter i.e. velocity (f ′ (η)) profiles converges asymptotically to this point.
As indicated also in figure 6, the effect of increasing curvature is to signif-
icantly decelerate the boundary layer flow i.e. reduce velocity magnitudes.
This trend is quickly reached in close proximity to the cylinder surface. Fig-
ure 9 reveals that temperature (θ (η)) also decays to a location close to the
cylinder wall as we progress into the boundary layer. However, with in-
creasing curvature, temperatures are generally elevated and this will affect
thermal boundary layer thickness very differently from momentum boundary
layer thickness. The maximum temperatures correspond to maximum cur-
vature parameter (γ = 5) and vice versa for the zero curvature scenario i.e.
vertical plate, (γ = 0).

The effects of mixed convection parameter variations on the dimensionless
velocity and temperature profiles are illustrated in Figs.10-11. The changes
in the mixed convection parameter consist of three physical cases: assisting
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flow (heated cylinder, λ > 0), opposing flow (cooled cylinder, λ < 0) and
forced convection flow (λ = 0) . The results display that for increasing posi-
tive values of the mixed convection parameter, λ, the flow (fig 10) is strongly
accelerated throughout the boundary layer i.e. for all distances transverse
to the vertical cylinder. Conversely for increasingly negative values of λ,
the flow is strongly decelerated. The parameter λ = Gr/Re2 is directly

proportional to Grashof number, Gr = gβf∆T l
3/v

2
f and this dimensionless

number embodies the relative effects of buoyancy force and viscous hydrody-
namic force. For λ > 0,the flow is assisted by buoyancy forces which enhance
the momentum boundary layer development and accelerate the flow. The
converse effect is sustained for λ < 0 (where buoyancy force is reversed in
direction and inhibits the flow- this leads to retardation in the flow and a
plummet in velocities. Furthermore, we note that for any value of λ studied,
the velocity profiles neither intersect nor do they attain negative values. Back
flow i.e. reversal in flow is therefore never instigated in the boundary layer
regime. The intermediate case of λ = 0, corresponds to vanishing buoyancy
forces i.e. pure forced convection, and as expected the velocity profile for this
scenario falls between that for assisted and opposed flow in Fig.10. Fig.11
shows that increasing mixed convection parameter positively (i.e. λ > 0) in-
duces the contrary effect on temperature compared with velocity. For λ > 0
temperatures are significantly depressed in the boundary-layer regime. This
is attributable to the elevation in thermal conduction, which is associated
with the cylinder surface being heated – thermal energy is drawn from the
boundary layer and this manifests in a reduction in the temperatures inside
the boundary layer. For λ < 0 the cylinder surface is cooled and as a result,
thermal energy is transported via thermal conduction heat transfer into the
boundary layer. This effectively accentuates temperatures in the boundary
layer as witnessed in figure 11. Buoyancy is therefore a key force influencing
flow and heat transfer in the nanofluid. It is as influential as the nano-particle
concentration effect, described earlier.

Figs.12-13 depict the distributions of wall skin friction coefficient f ′′ (0)
and the wall Nusselt number θ′ (0) for all the thermophysical parameters i.e.
buoyancy parameter (λ), curvature parameter (γ) and nanoparticle volume
fraction (ϕ). It can be seen that as the nanoparticle volume fraction, cur-
vature parameter and mixed convection parameter increase, the wall skin
friction coefficient increases. These parameters therefore clearly accelerate
the flow along the cylinder surface, as elaborated earlier. The results also
display that the magnitude of the wall Nusselt number increases, as the cur-
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Figure 6: The effects of nanoparticle volume fraction variations on the di-
mensionless velocity profiles when λ = 0.
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Figure 7: The effects of nanoparticle volume fraction variations on the di-
mensionless temperature profiles when λ = 0.
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Figure 8: The effects of curvature parameter variations on the dimensionless
velocity profiles when ϕ = 0.1 and λ = 2.
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Figure 9: The effects of curvature parameter variations on the dimensionless
temperature profiles when ϕ = 0.1 and λ = 2.
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Figure 10: The effects of mixed convection (buoyancy) parameter variations
on the dimensionless velocity profiles when γ = 1 and ϕ = 0.2.
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Figure 11: The effects of mixed convection (buoyancy) parameter variations
on the dimensionless temperature profiles when γ = 1 and ϕ = 0.2.
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Figure 12: The variation of skin friction with λ for different values of the
involved parameters.
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vature parameter or mixed convection parameter increase and conversely wall
Nusselt number is depressed with increasing values of nanoparticle volume
fraction. In the case of skin friction profiles, the gradient of ascent is steeper
however, for the base fluid(ϕ = 0) than for the nanofluid (ϕ = 0.2) and this
trend is maintained for all values of curvature parameter. With regard to
wall Nusselt number profiles, a similar response is observed- the gradients of
the base fluid profiles are always greater than the corresponding profile for
the nanofluid. However, the Nusselt number profiles are inclined less steeply
than the skin friction profiles.

6 Conclusions

The semi-analytical/numerical technique known as HAM has been imple-
mented to solve the transformed differential equations describing axisym-
metric laminar mixed convection boundary-layer flow over a vertical cylinder
in a nanofluid. The convergence of the HAM approach has been studied in
detail. Benchmarking with previous numerical quadrature solutions has also
been conducted. The effects of the three key thermophysicalparameters gov-
erning the flow i.e. nanoparticle volume fraction, curvature parameter and
mixed convection (buoyancy) parameter on dimensionless velocity and tem-
perature distributions, skin frictions and wall temperature gradients have
been presented graphically and interpreted in detail. The present HAM com-
putations agree closely with previous studies e.g. Grosan and Pop [26]. They
further identify that velocity and temperature both increase, with a rise in
nanoparticle concentrations i.e. with increasing nano-particle volume frac-
tion. Increasing curvature parameter is found to decelerate the flow but to
enhance temperatures. Increasing the mixed convection parameter positively
serves to accelerate the flow but acts to decrease temperatures; conversely
increasing negative values of mixed convection parameter effectively decel-
erates the flow but enhances nanofluid temperatures. With an elevation in
nanoparticle volume fraction, curvature parameter and mixed convection pa-
rameter, the wall skin friction coefficient is strongly elevated. The magnitude
of the wall Nusselt number is increased with increasing curvature parame-
ter and mixed convection (buoyancy) parameter and decreasing nanoparticle
volume fraction. The present study has considered steady flow only. Fu-
ture investigations will study transient nanofluid convection flows and will
be communicated imminently.



Homotopy simulation of axisymmetric laminar mixed convection... 387

References

[1] S.U.S. Choi, J.A. Eastman, Enhancing thermal conductivity of fluids with nanopar-
ticles, Materials Science 231 (1995) 99-105.

[2] H. Masuda, A. Ebata, K. Teramea, N. Hishinuma, Altering the thermal conductivity
and viscosity of liquid by dispersing ultra-fine particles, Netsu Bussei 4 (1993) 227-
233.

[3] S.K. Das, Temperature dependence of thermal conductivity enhancement for nanoflu-
ids, ASME J. Heat Transfer 125 (2003) 567-574.

[4] B.C. Pak, Y.I. Cho, Hydrodynamic and heat transfer study of dispersed fluids with
submicron metallic oxide particles, Experimental Heat Transfer: AJournal of Thermal
Energy 11 (1998) 151-170.

[5] Y. Xuan, Q. Li, Investigation on Convective Heat Transfer and Flow Features of
Nanofluids, ASME J. Heat Transfer 125 (2003) 151-155.

[6] J.A. Eastman, S.U.S. Choi, S.Y. Li, W., L.J. Thompson, Anomalously increased
effective thermal conductivity of ethylene glycol-based nanofluids containing copper
nanoparticles, Applied Physics Letters 78 (2001) 718-720.

[7] H.A. Mintsa, G. Roy, C.T. Nguyen, D. Doucet, New temperature dependent thermal
conductivity data for water-based nanofluids, Int. J. Thermal Sciences 48 (2009)
363-371.

[8] K.V. Wong, O.D. Leon, Applications of nanofluids: current and future, Advances in
Mechanical Engineering 2010 (2010) 1-12.

[9] K.S. Hwang, J.-H. Lee, S.P. Jang, Buoyancy-driven heat transfer of water-based Al2O3

nanofluids in a rectangular cavity, Int. J. Heat and Mass Transfer 50 (2007) 4003-
4010.

[10] M. Akbari, A. Behzadmehr, Developing mixed convection of a nanofluid in a horizon-
tal tube with uniform heat flux, Int. J. Numerical Methods for Heat and Fluid Flow
17 (2007) 566 - 586.

[11] M. Akbari, A. Behzadmehr, F. Shahraki, Fully developed mixed convection in hor-
izontal and inclined tubes with uniform heat flux using nanofluid, Int. J. Heat and
Fluid Flow 29 (2008) 545-556.

[12] S.J. Liao, Beyond Perturbation: Introduction to the Homotopy Analysis Method,
Chapman & Hall/CRC, Florida, USA (2004).

[13] S.J. Liao, Comparison between the homotopy analysis method and homotopy pertur-
bation method, Applied Mathematics and Computation 169 (2005) 1186–1194.

[14] S.J. Liao, On the homotopy analysis method for nonlinear problems, Applied Mathe-
matics and Computation 147 (2004) 499-513.



388M.M.Rashidi, O.Anwar Bég, N.Freidooni Mehr, A.Hosseini, R.S.R.Gorla

[15] S.J. Liao, An explicit, totally analytic approximation of Blasius viscous flow problems,
Int. J. Non-Linear Mechanics 34 (1999) 759-778.

[16] M.M. Rashidi, S.A. Mohimanian Pour, T. Hayat, S. Obaidat, Analytic approximate
solutions for steady flow over a rotating disk in porous medium with heat transfer by
homotopy analysis method, Computers & Fluids 54 (2012) 1-9.

[17] M.M. Rashidi, S.A. Mohimanian Pour, Analytic approximate solutions for unsteady
boundary-layer flow and heat transfer due to a stretching sheet by homotopy analysis
method, Nonlinear Analysis. Modelling and Control 15 (2010) 83–95.

[18] M.M. Rashidi, G. Domairry, S. Dinarvand, Approximate solutions for the Burger
and regularized long wave equations by means of the homotopy analysis method,
Communications in Nonlinear Science and Numerical Simulation 14 (2009) 708-717.

[19] S. Husnain, A. Mehmood, O. Anwar Bég and A. Ali, Suction and blowing effects
on heat transfer phenomena in unsteady flow through porous media with variable
viscosity, J. Porous Media, 15 (2012), 293-302.

[20] M. Mustafa, T. Hayat, I. Pop, S. Asghar, S. Obaidat, Stagnation-point flow of a
nanofluid towards a stretching sheet, Int. J. Heat and Mass Transfer 54 (2011) 5588-
5594.

[21] O. Anwar Bég and D. Tripathi, Mathematica simulation of peristaltic pumping with
double-diffusive convection in nanofluids: a bio-nano-engineering model,Proc. IMechE
Part N: J. Nanoengineering and Nanosystems 225, (2012) 99–114.

[22] M. Hassani, M. Mohammad Tabar, H. Nemati, G. Domairry, F. Noori, An analytical
solution for boundary layer flow of a nanofluid past a stretching sheet, Int. J. Thermal
Sciences 50 (2011) 2256-2263.
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Homotopska simulacija osnosimetrične mešovite konvekcije u
graničnom sloju nanofluida koji teče preko vertikalnog

cilindra

Semianalička-numerička tehnika poznata kao metoda homotopske analize (HAM )
je primenjena na izvodjenje rešenja za laminarno osnosimetričnu mešovitu
konvekciju graničnog sloja nanofluida koji teče preko vertikalnog cilindra.
Rešenja slicnosti su primenjena na transformaciju paraboličnih parcijalnih
diferencijalnih jednačina konzervacije u sistem nelinearnih spregnutih običnih
diferencijalnih jednačina, izložen odgovarajućim graničnim uslovima. Za
proveru dobijenih rezultata ucinjeno je uporedjenje sa čisto numeričkim rezul-
tatima Grosana i Popa (2011) s postignutom odličnom korelacijom. Grafički
je ilustrovan učinak zapreminske koncentracije nano čestica, parametra za-
krivljenosti i mjeovite konvekcije ili parametra uzgona na distribuciju bezdi-
menzionalne brzine i temperature, trenja na zidu i zidne gradijente tem-
perature. Utvrdjeno je da HAM pokazuje izvrsnu sposobnost simulacije di-
namičkih problema nanofluida. Primena studije uključuje materijale u pro-
cesnoj tehnici kao i toplotno pobolǰsanje energetskih sistema.
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