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Abstract. In this paper, linear vibrating systems, in which the inertia and stiffness 
matrices are symmetric positive definite and the damping matrix is symmetric positive 
semi-definite, are studied. Such a system may possess undamped modes, in which case 
the system is said to have residual motion. Several formulae for the number of 
independent undamped modes, associated with purely imaginary eigenvalues of the 
system, are derived. The main results formulated for symmetric systems are then 
generalized to asymmetric and symmetrizable systems. Several examples are used to 
illustrate the validity and application of the present results.   
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1. INTRODUCTION 

Some of the simplest and most fundamental vibrating systems can be described by a 
differential equation of the form  

                                           0=++ CqqBqA &&& , nq ℜ∈                                            (1) 
where A, B, and C are nn×  constant real symmetric matrices, q  is the n-dimensional 
vector of generalized coordinates and dots denote derivatives with respect to t (the time). 
The inertia matrix A and stiffness matrix C are positive definite (> 0), and the damping 
matrix B may be positive definite or positive semi-definite (≥  0). In the case 0>B  
dissipation is complete, and the case 0≥B  corresponds to incomplete dissipation. In the 
latter case the system is called partially dissipative (damped). 

It is convenient, although not necessary, to rewrite equation (1) in the form  
                                      0=++ KxxDx &&& ,                                                            (2) 

using the congruent transformation qAx 2/1= , where 2/1A  denotes the unique positive 

definite square root of the matrix A, and 2/12/1 −−= BAAD , and 2/12/1 −−= CAAK . 
All solutions )(tx  of the equation (2) (or )(tq  of (1)) can be characterized 

algebraically using properties of the quadratic matrix polynomial 
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                                                 KDIL ++= λλλ 2)( ,                                            (3)  
where I is the identity matrix. The eigenvalues of the system are zeros of the 
characteristic polynomial 

                                                   ))(det()( λλ L=∆                                                 (4) 
Since (4) is a polynomial of degree 2n with respect to λ , there are 2n eigenvalues, 
counting multiplicities. If λ   is an eigenvalue, the nonzero vectors X in the nullspace of 

)(λL  are the eigenvectors associated with λ , i. e., 
                                                       0)( =XL λ                                                      (5) 

In general, eigenvalues and corresponding eigenvectors may be real or may appear in 
complex conjugate pairs. 

If the dissipation is complete, it is well-known that the system (2) (or (1)) is 
asymptotically stable ( 0)( →tx  as ∞→t  for all solutions ))(tx , see [1]. On the other 
hand, the partially damped system (2) may or may not be asymptotically stable, although 
it is obviously stable in the Lyapunov sense (any solution of equation (2) remains 
bounded). Consequently, all eigenvalues of this system lie in the closed left-half of the 
complex plane ( 0Re ≤λ ). Notice that if the system is asymptotically stable, 
then 0Re <λ . 

Recently some attention has been paid to the question whether or not a damped 
system has pure imaginary eigenvalues, i. e., in the terminology of the mechanical 
vibrations, whether or not undamped modes are possible in such system (see [2] and 
quoted references). From the above discussion it is clear that nonexistence of undamped 
motions (also called “residual motions”) is equivalent to the asymptotic stability of the 
system, and consequently, any test for asymptotic stability gives the answer of the 
question. A survey of the stability criteria for linear second order systems is given in [3]. 
Also, it should be mentioned that the paper [2] rediscovered an old criterion for 
asymptotic stability of the system [4], as was recently stressed in [5].  

In this paper we are interested in the determination of the number of pure imaginary 
eigenvalues of the system without computing the zeros of the characteristic polynomial 
(4). The main result given in section 3 (Theorem 2) recently derived in our paper [6]. 
This result is based on the well-known condition of asymptotic stability [7], which 
coincides with the rank condition of controllability of a linear system (see [8]), and a 
transformation converting the system (2) into two uncoupled subsystems; one of them is 
r-dimensional undamped subsystem, where r is the number of conjugate pairs of purely 
imaginary eigenvalues of the system including multiplicity, the second is (n-r)-
dimensional damped asymptotically stable subsystem. When the matrix K  has all 
distinct eigenvalues, and r its eigenvectors lie in the nullspace of the damping matrix, the 
decomposability of the system in modal coordinates was observed in [4]. In sections 4 
and 5, when one of two matrices D and K is transformed on diagonal form, two useful 
results are stated. Finally, in section 6 the results of section 3 are generalized to 
asymmetric and symmetrizable systems.   
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2. THE DECOMPOSABILITY OF THE SYSTEM 

Theorem 1. Let rii ωω ±± ,...,1  be eigenvalues of )(λL . Then there exists an 
orthogonal matrix Q  such that 

                                                == DDQQT ˆ
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

−rn

r

D̂0
00

,                                    (6) 

and 

                                               == KKQQT ˆ
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛Ω

−rn

r

K̂0
0

,                                    (7) 

where r0  is the zero square matrix of order r, and ),...,( 22
1 rr diag ωω=Ω . 

To prove Theorem 1 we need the following lemmas. 
Lemma 1. Let 1,),,( −=ℜ∈ iXi ωω , be an eigenpair of )(λL . Then ),( 2 Xω  and 

),0( X are eigenpairs of the matrices K and D, respectively. 
Proof. From  
                                    0)()( 2 =++−= XKDiIXiL ωωω ,                                   (8) 
we obtain 
                                     0,)(, 2 >=<+>−< DXXiXIKX ωω ,                            (9) 

where >< .,.  denotes the inner product, and >−< XIKX )(, 2ω , and >< DXX ,  are 
real quantities, since K and D are real symmetric matrices. Then >< DXX , =0, which 
implies 0=DX , since 0≥D . This together with 0)( =XiL ω  gives XKX 2ω= . 

It is clear that the eigenvector X  in Lemma 1 can be taken to be unit ( )1, >=< XX  
and real.  

Lemma 2. a) If ),( )1(
1 Xiω  and ),( )2(

2 Xiω are eigenpairs of )(λL  with 2
2

2
1 ωω ≠ , 

then 0, )2()1( >=< XX . 
b) If the eigenvalue ωi  of )(λL has multiplicity k, it possesses k eigenvectors which 

are mutually orthogonal.  
Proof. a) The result follows from Lemma 1 and the additional fact that eigenvectors 

associated with distinct eigenvalues of a symmetric matrix are orthogonal.  
b) Since the system (2) is stable, the multiple eigenvalue ωi  must be semi-simple, 

which means that the eigenvalue has k linearly independent eigenvectors. Since a linear 
combination of these k vectors is also an eigenvector of )(λL associated with ωi , the 
Gram-Schmidt process (see [9]) can be used to obtain k mutually orthogonal 
eigenvectors.  

It is follows from Lemma 1 and 2 that the number of independent undamped modes is 
equal to the number of conjugate pairs of purely imaginary eigenvalues (natural 
frequencies), including multiplicity.    

Proof of Theorem 1. By lemmas 1 and 2, there exists an orthonormal set of r vectors 
)()1( ,..., rXX , such that  
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                               0)( =jDX , )(2)( j
j

j XKX ω= , j=1,…,r                                    (10) 

Now, consider an orthogonal matrix Q  having the vectors )()1( ,..., rXX  as its first r 
columns, 

                                    ),...,( )()1( nXXQ =                                                           (11) 

The matrices D  and K  are then orthogonally congruent to matrices D̂  and K̂ , 
respectively, described by 

                               ),(ˆ )()( ><== jiT DXXDQQD                                          (12) 
and 

                               ),(ˆ )()( ><== jiT KXXKQQK ,                                            (13) 

where i,j = 1,…,n. Using (10) and ij
ji XX δ>=< )()( , , where ijδ  is the Kronecker delta 

and i,j = 1,…,n, we compute  
                                  0, )()( >=< ji DXX                                                              (14) 

and 
                                ijj

ji KXX δω 2)()( , >=< ,                                                        (15)  

where i = 1,…,n and j = 1,…,r. The relations (14) and (15) show that D̂  and K̂  have the 
partitioned forms (6) and (7).   

3. THE MAIN RESULTS 

Introduce the 2nn×  matrix 
                                 ( )DKKDD n 1... −=Φ                                            (16) 
which plays key role in a test for asymptotic stability of the system [7].                                                     
Theorem 2. The system (2) has Φ−= ranknr  conjugate pairs of purely imaginary 

eigenvalues, including multiplicity. 
Corollary 1. If mrankD = , then mnr −≤≤0 . 
This follows immediately from nrankrankD ≤Φ≤ .      
Proof of Theorem 2. Suppose that 0)( =±∆ jiω , ℜ∈jω , j = 1,…,r and that remaining 

zeros of )(λ∆  take places on the open left-half of the complex plane. Then from 
Theorem 1 it follows that there exists an orthogonal coordinate transformation  

                                            ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

z
y

Qx , ry ℜ∈ , rnz −ℜ∈ ,                                   (17) 

which transforms equation (2) to the form   

                                 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
0
0ˆˆ

z
y

K
z
y

D
z
y

&

&

&&

&&
                                                  (18) 

where D̂  and K̂  have the partitioned forms (6) and (7). Under the above assumptions it 
is clear that the (n-r) dimensional subsystem of (18)  

                               0ˆˆ =++ −− zKzDz rnrn &&& , rnz −ℜ∈                                               (19) 
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is asymptotically stable and, according to well-known result [7], we have  
                   ( ) rnDKDKDrank rn

rn
rnrnrnrn −=−

−−
−−−−

ˆˆ...ˆˆˆ 1                             (20) 
On the other hand, the matrix Φ  coincides with the matrix 

                            ( )PDKDKDQ n ˆˆ...ˆˆˆ 1− ,                                                 (21)  

where ),...,( TT QQdiagP = . Then  

                  =Φrank ( )rn
n

rnrnrnrn DKDKDrank −
−
−−−−

ˆˆ...ˆˆˆ 1 ,                           (22) 

since Q  and P  are nonsingular, and )ˆ,0(ˆ
rnr DdiagD −= , and ,0(ˆˆ

r
j diagDK =  

)ˆˆ
rn

j
rn DK −− . Now, according to the Cayley-Hamilton theorem (see [9]), every matrix 

rn
j

rn DK −−
ˆˆ  with integer j ≥  n-r can be represented by a linear combination of the matrices 

rnD −
ˆ , rnrn DK −−

ˆˆ , …, rn
rn
rn DK −

−−
−

ˆˆ 1 , and, consequently  

            ( )rn
n

rnrn DKDrank −
−
−−

ˆˆ....ˆ 1 = ( )rn
rn
rnrn DKDrank −

−−
−−

ˆˆ...ˆ 1           (23) 
The result then follows from (20), (22) and (23).      

Remark 1. The matrix (16) can be expressed in terms of the original matrices as  
                                 ),...,(~ 2/12/12/1 −−− Φ=Φ AAdiagA ,                                       (24) 

where  
                                   ( )BCABCAB n 111 )(...)(~ −−−=Φ                            (25) 

Consequently, Φ=Φ
~rankrank , since A is nonsingular.  

In the case of “classical damping” in which D  and K  commute the following result 
as a consequence of Theorem 2 can be obtained.  

Theorem 3. If KDDK = , then the system has rankDnr −=  conjugate pairs of 
purely imaginary eigenvalues. 

Proof. Since D  and K   commute there exists an orthogonal matrix such that both 
D  and K  are orthogonally congruent to diagonal matrices [9]. Then, evidently, 

=Φrank rankD , and Theorem 3 follows from Theorem 2.   
In the next, two examples are given to illustrate the application of the above results. 
Example 1. Consider the two-degree-of-freedom system shown in Fig. 1, where 

0>ic  and 0>β  stand for the spring constants and coefficient of viscous damping, 
respectively, and 1q  and 2q  are the displacements from equilibrium positions of masses 

1m  and 2m . 
 
 
 
 

 
Fig. 1 The system of example 

The inertia, damping and stiffness matrices of this system are as follows 

                  ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

2

1

0
0

m
m

A , ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

−
=

11
11

βB , ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

2

1

0
0
c

c
C                                    (26) 

                          q1                                                           q2 

         c1                                                                β                            c2 

                                          m1                                                 m2                         
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It is clear that 1=rankB , and consequently, the system is partially damped. The matrix 
(25) takes the form 

                                Φ~ =
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜

⎝

⎛

−−

−−

2

2

2

2

1

1

1

1

11

11

m
c

m
c

m
c

m
c

β                                             (27) 

Thus, by Theorem 2, we have  

                            
⎩
⎨
⎧

=
≠

=Φ−=
1221

1221

,1
,0~2

mcmc
mcmc

rankr                                                (28) 

In the case 1221 mcmc = ,  the system can oscillate such that relative motion between 
the masses is absent, so that the damper dissipates no energy. If 1221 mcmc ≠ , the system 
does not have pure imaginary eigenvalues, and all motions lead up to dissipation of 
energy.  

Example 2. Consider the three-degree-of-freedom system (2) with 

                         
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

−

−
=

101
000
101

D , and
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

−
−−

−
=

210
121

012
K ,                               (29) 

previously studied in [10]. 
     It can be easily verified that 1=rankD , and that KDDK = . Thus, by Theorem 3, 
system of this example has two conjugate pairs of purely imaginary eigenvalues. 

4. THE CASE WHEN K IS DIAGONAL (PRINCIPAL COORDINATES) 

It is well known that there exists an orthogonal matrix Q  such that 

                               ),...,( 22
1 1 knkn

T IIdiagKQQ ωω=Ω= ,                                       (30) 

where jω  and 
jnI  denote the distinct natural frequencies of the undamped system 

( 0=D  in (2)) with multiplicity 1≥jn  and the identity matrices of order jn , 
nnn k =++ ...1 . Multiple natural frequencies are typical in vibrating systems with 

symmetry or as a result of optimization.     
On transforming to principal (modal) coordinates defined by xQp T=  and using 

(30), (2) reduces to 
                                               0=Ω++ ppRp &&& ,                                                  (31) 

where the matrix DQQR T=  is known as the modal damping matrix. Form a consistent 
partition of R  with Ω : 
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⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

=

kkkk

k

k

RRR

RRR
RRR

R

.
....

.

.

21

22221

11211

                                              (32) 

We need the following statement. 
 Lemma 3. The system (31) is asymptotically stable if and only if  jjj rankRn = , j = 

1, …,k.  
Proof. See [11].                                   

Theorem 4. The system (31) has ∑
=

−=
k

j
jjrankRnr

1
 conjugate pairs of purely 

imaginary eigenvalues, including multiplicity. If ijω  is an eigenvalue of the system, then 
its multiplicity is equal to jjj rankRn − . 

Proof. It follows from Theorem 1 and Lemma 3.  
Since rankRmrankRjj =≤ , the next result recently formulated in [5] follows directly 

from Theorem 4.  
Corollary 2. If rankRn jj

>)(max , then system (31) has residual motion.        

Next, we apply Theorem 4 to the example 1. For this example, the matrices R  and 
Ω   take the forms  

           ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

−
−

=
21

12

21 /1
1/
mm

mm
mm

R β , ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=Ω

22

11

/0
0/
mc

mc
                         (33) 

Thus, by Theorem 4, r = 0 if 1221 mcmc ≠ , i. e., the system does not have residual motion 
(the system is asymptotically stable), and r = 1 if 1221 mcmc = . 

5. THE CASE WHEN D IS DIAGONAL 

Since 0≥= TDD  and mrankD = , there exists an orthogonal matrix Q  such that  

                                           ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
==

00
011S

DQQS T                                               (34) 

where )0,...,0,,...,( 111 mssdiagS = , 0>js  for all j = 1,…,m. By the coordinate 
transformation  

                              ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

v
u

Qx , mu ℜ∈ , mnv −ℜ∈                                                    (35) 

the system (2) reduces to the form 

                      ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
0
0

00
0

2221

121111

v
u

PP
PP

v
uS

v
u

&

&

&&

&&
                                       (36) 

where  
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                                    ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
==

2221

1211

PP
PP

KQQP T                                                    (37) 

is the transformed stiffness matrix written in the consistent partitioned form with (34). 
Introduce the (n-m)xm(n-m) matrix 
                             ( )21

1
22212221 ... PPPPPF mn −−=                                              (38) 

Lemma 4. rankFmrank +=Φ . 
Proof. Substituting (34) and (37) into (16), after some rank persevering 

manipulations, we obtain    

                   ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=Φ − 0...0

00...000

21
1

2221
2

22212221

11

PPPPPPP
S

rankrank n                  (39) 

Since every matrix 2122PP j  with mnj −≥ , according to the Cayley-Hamilton theorem, 

can be represented by a linear combination of the matrices 21P , 2122PP , …, 21
1

22 PP mn −−  the 
lemma is proved.  

Theorem 5. The system (36) has rankFmnr −−=  conjugate pairs of purely 
imaginary eigenvalues, including multiplicity.   

Proof. It directly follows from Theorem 2 and Lemma 4.  
Let us give an example illustrating Theorem 5. 
Example 3. (taken from [2]). Consider the tree-degree-of-freedom system (2) with 

                                 
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
=

000
020
000

D , and
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

−
−−

−
=

330
352

023
K                            (40) 

The damping matrix is positive semi-definite with m = 1=rankD , whereas the 
stiffness matrix is positive definite. By the orthogonal matrix 

                                            
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
=

100
001
010

Q                                                         (41) 

we obtain 

            
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
==

000
000
002

DQQS T  and
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

−
−

−−
==

303
032
325

KQQP T                       (42) 

The matrix F takes the form 

                                      ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−−
−−

=
93
62

F                                                               (43) 

Thus, by Theorem 5, we have 1)13( =−−= rankFr . This fact can be corroborated by 
computing the eigenvalues of the system; the eigenvalues are 

                       i7321.1± , i3473.04203.0 ±− , i5283.25797.0 ±− .  
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6. SOME GENERALIZATIONS TO ASYMMETRIC SYSTEMS 

In this section, it is shown that theorems 2 and 3 can be generalized for a class of 
asymmetric systems (i. e., the symmetry restriction are not met by inertia, damping and 
stiffness matrices) commonly known as symmetrizable systems. Asymmetric coefficient 
matrices appear in problems involving follower forces, gyroscopy, aero-/hydro-elasticity 
and control effects, etc.   

Assuming that the inertia matrix A is nonsingular, the equations of motion can be 
written as  

                                        011 =++ −− CqAqBAq &&&                                                  (44) 
The symmetrizable systems are defined in [12] as systems that have symmetrizable 

matrices BA 1−  and CA 1− , i. e., such that factorizations 21
1 SSBA =−  and 31

1 SSCA =−  are 
permissible, where 1S  is symmetric and positive definite, while 2S  and 3S  need only be 

symmetric. Additionally, it is supposed that BA 1−  has nonnegative real eigenvalues and 
CA 1−  has positive real eigenvalues. Then, 2S  and  3S  are positive semi-definite and 

positive definite, respectively, and the system described by (44) is stable [12]. 
Consequently, all eigenvalues of this system lie in the closed left-half of the complex 
plane. 

Using the transformation xSq 2/1
1= , Eq. (44) is reduced to  

                                           0=++ KxxDx &&& ,                                                       (45) 
where 2/1

12
2/1

1 SSSDD T ==  and 2/1
13

2/1
1 SSSKK T == . Since 0≥= TDD  and 

0>= TKK , the results developed in the section 3 can be applied to Eq. (45). From the 
factorizations of  BA 1−  and CA 1− , we have 

                                              2/112/1
1 BSASD −−=                                                   (46) 

and 
                                              2/112/1

1 CSASK −−=                                                   (47) 
Substituting (46) and (47) into (16) results in  

                                    ),...,( 2/1
1

2/1
1

2/1
1 SSdiagS Φ=Φ − ,                                          (48) 

where  
                     ( )BACABCAABA n 111111 )(... −−−−−−=Φ                              (49) 

It is clear that Φ=Φ rankrank . Thus, the following proposition is proved.  
Theorem 6. The symmetrizable system described by Eq. (44), where BA 1−  and 
CA 1−  have non-negative and positive eigenvalues, respectively, has Φ−= ranknr  

conjugate pairs of purely imaginary eigenvalues. 
Remark 2. It is clear that Φrank  is the same as rank of the matrix (25), because 

Φ=Φ A~ . 
Also, the following result can be easily established. 
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Theorem 7. Suppose that BA 1−  and CA 1−  have non-negative and positive 
eigenvalues, respectively. If  BA 1−  and CA 1−  commute in multiplication, then the 
system ( 44) has )( 1BAranknr −−=  conjugate pairs of purely imaginary eigenvalues. 

Example 4. Consider the asymmetric system described by 

                                           0
41
44

21
42

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+ qqq &&&                                         (50) 

Here note that 

                 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

−
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
=−

5556.117778.5
7778.58889.2

3115.02769.0
2769.02461.1

21
421BA ,                (51) 

and 

                 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

−
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
=−

5599.195573.7
5573.78897.4

3115.02769.0
2769.02461.1

41
441CA ,                (52)        

so that the coefficient matrices have a common positive definite factor. On the other 
hand, the eigenvalues of BA 1−  in this example are 0 and 4, and those of  CA 1−  are 2 and 
6. Hence, BA 1−  and CA 1−  have nonnegative and positive real eigenvalues, respectively. 
Thus, the Theorem can be applied. The matrix (49) takes the form  

                                       ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=Φ

12621
241242

                                                   (53) 

and, consequently, 12 =Φ−= rankr . This is in agreement with the eigenvalue 
calculation for the system, which yields 22,1 i±=λ  and 224,3 i±−=λ .  

Finally, observe that BA 1−  and CA 1−  commute for this example, 1)( 1 =− BArank , 
and, according to the Theorem 7 , 1=r .     
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O REZIDUALNOM KRETANJU PRIGUŠENO OSCILUJUĆIH SISTEMA 

Ranislav M. Bulatović 

U radu se razmatraju linearni oscilujući sistemi čije su matrice inercije i krutosti simetrične i 
pozitivno definitne a matrica prigušenja pozitivno semidefinitna. Izvedeno je nekoliko formula za 
određivanje broja nezavisnih neprigušenih modova koji odgovaraju imaginarnim sopstvenim 
vrijednostima razmatranih sistema. Ovi rezultati su uopšteni na klasu simetrizabilnih asimetričnih 
sistema. Ispravnost i pogodnost dobijenih rezultata je ilustrovana na nekoliko primjera..       

Ključne riječi: linearni system, prigušenje, rezidualno kretanje  
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