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Abstract: A procedure to obtain a closed form of the shifting operators along a known 
geodesic line on a surface as a solution of a system of linear algebraic equations is 
proposed. Its correctness is numerically demonstrated in the case of a helicoid surface 
and a spherical one. The future use of these operators in finite element approximations 
of tensor fields in non-Euclidean spaces is announced. 
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1. INTRODUCTION 
It is well known that the system of differential equations for determining the 

components of a vector v parallelly propagated along a curve ( )u u sα α=  on a surface 
reads1 

     0   ,Dv dv duv
Ds ds ds

α α γ
α β
βγ= + Γ =  (1) 

where uα are so-called surface coordinates, α
βγΓ  are the Christoffel symbols of the 

second kind determined for this surface, and s is the arc length of this curve. The 
fundamental system of solutions .K α

β  of this homogeneous system of differential 
equations represents the operators of parallel transport (the shifting operators) with 
respect to the surface along this curve, establishing the relation 

 .( ) ( , )  ( )o ov P K P P v Pα α β
β=  (2) 

between the components of the vector v before and after its parallel transport from the 
point oP  to the point P . However, the existence of this fundamental system, i.e. the 
existence of shifting operators along the given curve, does not necessarily mean it is easy 

                                                           
1 Einstein's summation convention for diagonally repeated indices is used; Greek indices have the range {1,2}, 
while Latin indices will have the range {1,2,3}. 
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to find them. Namely, “the explicit form of the function … [ .K α
β ] is not known” ([5], p. 

260) and even in the case of the geodesic lines on a spherical surface (its great circles) 
the shifting operators are obtained in [6] by using a heuristic procedure (and not by 
solving the corresponding homogeneous system of differential equations). 

2. ALGEBRAIC APPROACH IN THE DETERMINATION OF SHIFTING OPERATORS 

Nevertheless, it turned out quite unexpectedly that one can obtain a closed form of 
these operators along a known geodesic line on a surface as a solution of a system of 
linear algebraic equations using the fact that the tangent vector of a geodesic is a parallel 
vector field along this line, i.e. the fact that 

 . ( , )  
o

o
P

du duK P P
ds ds

α β
α
β=  (3) 

and the insufficiencies of these two conditions for the determination of the four 
coefficients .K α

β  is surpassed by introducing an additional vector also parallelly 
propagated along the geodesic line 
 = ×w n t  (4) 
or in the component form 

   .j k
i ijkw n tε=  (5) 

Namely, this vector – permanently orthogonal to the tangent vector t  of a geodesic line 
on this surface – is always in the tangent plane of the surface; n  is the normal to the 
surface and hence (s. [1], p. 214) 

 1

2
   (  ,  /  ,   )j k

i ijkn z z ae e a a aαβ αβ αβ
α β αβ αβ αβε ε ε ε= = = ≡  (6) 

where iz  are the rectangular Cartesian coordinates, i iz z uα
α ≡ ∂ ∂  and ijk ijkeε = ; for the 

tangent vector t we have 

   ;i it z du dsα
α=  (7) 

the surface components of the vector w  (lying in the surface tangent plane) are 

   ;i
iw z wα α=  (8) 

in the case of the orthogonal coordinates uα  we have w a wα αβ
β=  and finally (9) 

1

2
.i i j k i j k i j m n k

i ijk ijk ijk mn
du duw a z w a z n t a z n z a z z z z
ds ds

γ γ
α αβ αβ αβ αβ µν

β β β γ β µ ν γε ε δ ε δ ε ε= = = =l l
l l  

Due to the parallel transport of the vector w  along the geodesic line we have 

 . ( , )o o Pw K P P wβ α α
β =  (10) 
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and the coefficients .K α
β  can now be determined from (3) and (10) 

 

1 2 1 1

.1 .1
1 2

1 2 1 1

2 2 1 2

.2 .2
1 2

2 2 1 2

    1 1( , )       ( , )
det det

                   

    1 1( , )       ( , )
det det

                   

o o

o o

P P P Po o

P o o P

P P P Po o

P o o P

du du du du
ds ds ds dsK P P K P P

w w w w

du du du du
ds ds ds dsK P P K P P

w w w w

⎫
⎪

= = ⎪
⎪
⎪
⎬

= =

   ,
⎪
⎪
⎪
⎪
⎭

 (11) 

where 

 

1 2

1 2

  
det    .

          
o oP P

o o

du du
ds ds

w w

=  (12) 

These expressions are implemented in the corresponding software tool in order to 
compare some numerical results with the formerly checked ones for the shifting 
operators on the spherical surface and exceptional coincidence is obtained! 

However – bearing in mind that the relations (9) are not the promising ones 
concerning the determination of the explicit expressions for the shifting operators and 
that the surface components of the vector w  are present in (11) – we can proceed 
directly, considering w  as a vector in the tangent plane of the surface orthogonal to the 
tangent vector of a geodesic line on this surface; namely 

 
2 1

22 111 2

11 22

  ,       ;
a adu duw w

ds dsa a
= − =  (13) 

hence for the coefficients .K α
β  we obtain the expressions 

 

1 1 2 2
11 22.1

1

22 11

2 1 1 2
22 22.1

2

11 11

2 1 1 2
11 11.2

1

22 22

( , )   

 ( , )

( , )   

  

o o

o o

o o

o P

o o o P
P P PP

P o

o o P o
P P P P

o P

o o o P
P P P P

a adu du du duK P P a
ds ds ds dsa a

a adu du du duK P P a
ds ds ds dsa a

a adu du du duK P P a
ds ds ds dsa a

⎛ ⎞
⎜ ⎟= +
⎜ ⎟
⎝ ⎠
⎛ ⎞
⎜ ⎟= − −
⎜ ⎟
⎝ ⎠
⎛ ⎞
⎜ ⎟= −
⎜ ⎟
⎝ ⎠

( )

1 1 2 2
11 22.2

2

22 11

   

( , )   

o

o o

o P

P o

o o P o
P P P P

a a

a adu du du duK P P a
ds ds ds dsa a

αβ

⎫
⎪
⎪
⎪
⎪
⎪
⎪
⎪ ≡⎬
⎪
⎪
⎪
⎪
⎪⎛ ⎞

⎜ ⎟⎪= +
⎜ ⎟⎪⎝ ⎠⎭

 (14) 

and in every single case one can try to find the explicit expressions for the components of 
the operators of parallel transport along the known geodesic line on the surface under 
consideration. 
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3. EXAMPLES 

3.1. Operators of parallel transport along geodesics on a spherical surface 

In order to obtain the effective expressions for these operators, we shall use the finite 
equation of the geodesic line (the great circle) on a spherical surface (with the radius 

0r ≠ ) in the form (s. for example [4], p. 167) 
 tg cos sin    ,A Bϑ ϕ ϕ= +  (15) 

where { },ϕ ϑ  are the geographical coordinates ( 1 2 ,  u uϕ ϑ≡ ≡ ) and the constants A and 
B can be obtained from the condition of passing through the points ( , )o o oP ϕ ϑ  and 

( , )P PP ϕ ϑ  

 
tg cos sin

  ;
tg cos sin

o o o

P P P

A B
A B

ϑ ϕ ϕ
ϑ ϕ ϕ

= + ⎫
⎬= + ⎭

 (16) 

hence it follows 

 
( )

( )

sin tan tan sin
( , , , )

sin
  .

tan cos cos tan
( , , , )

sin

P o P o
o P o P

P o

P o P o
o P o P

P o

A A

B B

ϕ ϑ ϑ ϕ
ϕ ϕ ϑ ϑ

ϕ ϕ
ϑ ϕ ϕ ϑ

ϕ ϕ ϑ ϑ
ϕ ϕ

− ⎫= = ⎪− ⎪
⎬− ⎪= =
⎪− ⎭

 (17) 

Knowing that the components of the fundamental metric tensor in the system { },ϕ ϑ  are 

 2 2 2
11 12 21 22cos   ,   0  ,   a a r a a a a a a rϕϕ ϕϑ ϑϕ ϑϑϑ= = = = = = = =  (18) 

we have 
 ( )2 2 2 2 2cosds a du du r d dα β

αβ ϑ ϕ ϑ= = +  (19) 

and, bearing in mind the relation (15), we obtain 

 
( )

( )
( )

22

22

1

cos 1 cos sin cos
  .

cos sin cos

1 cos sin cos

d
ds r A B

A Bd
ds r A B

ϕ

ϑ ϑ ϕ ϕ

ϑ ϕ ϕϑ

ϑ ϕ ϕ

⎫= ± ⎪
+ − ⎪⎪

⎬− ⎪= ⎪+ − ⎪⎭

m

 (20) 

Using (17), we have for example 

 

( )
( ) ( )

( )

( ) ( )

22 2

22 2

sin

cos sin cos cos tan tan

cos cos tan tan

sin cos cos tan tan

P o

o
o P o o P o o P

o P o o P

o
P o o P o o P

d
ds r

d
ds r

ϕ ϕϕ

ϑ ϕ ϕ ϑ ϕ ϕ ϑ ϑ

ϑ ϕ ϕ ϑ ϑϑ

ϕ ϕ ϑ ϕ ϕ ϑ ϑ

⎫−
= ⎪

⎪⎡ ⎤− + − −⎣ ⎦ ⎪
⎬

⎡ ⎤− − ⎪⎣ ⎦= − ⎪
⎡ ⎤− + − − ⎪⎣ ⎦ ⎭

 (21) 

and similarly 
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( )
( ) ( )

( )

( ) ( )

22 2

22 2

sin

cos sin cos cos tan tan
   .

cos cos tan tan

sin cos cos tan tan

P o

P
P P o P P o P o

P P o P o

P
P o P P o P o

d
ds r

d
ds r

ϕ ϕϕ

ϑ ϕ ϕ ϑ ϕ ϕ ϑ ϑ

ϑ ϕ ϕ ϑ ϑϑ

ϕ ϕ ϑ ϕ ϕ ϑ ϑ

⎫−
= ⎪

⎪⎡ ⎤− + − −⎣ ⎦ ⎪
⎬

⎡ ⎤− − ⎪⎣ ⎦= ⎪
⎡ ⎤− + − − ⎪⎣ ⎦ ⎭

 (22) 

Finally – substituting (21) and (22) in (14) – we obtain the following explicit 
expressions, in the geographical coordinates { },ϕ ϑ , for the operators of parallel 
transport with respect to a spherical surface along the geodesic line connecting 

( , )o o oP ϕ ϑ  and ( , )P PP ϕ ϑ  

 

( )

( ) ( )

( ) ( ){

.1 2
1

2

.1
2

cos1( , )   sin
cos

                   cos cos tan tan cos tan tan

1( , ) sin cos tan tan

                                         

o
o P o

P

o P o P o P o o P

o P o P o P o

K P P
S

K P P
S

ϑ
ϕ ϕ

ϑ

ϑ ϕ ϕ ϑ ϑ ϕ ϕ ϑ ϑ

ϕ ϕ ϕ ϕ ϑ ϑ

⎧
= − −⎨

⎩
⎫

⎡ ⎤ ⎡ ⎤− − − − − ⎬⎣ ⎦ ⎣ ⎦
⎭

⎡ ⎤= − − − − +⎣ ⎦

( ) }

( ) ( ){.2
1

2

cos
                               + cos tan tan

cos
1( , )   sin cos cos cos tan tan

                                                                      cos c

o
P o o P

P

o P o P o P o P o

o

K P P
S

ϑ
ϕ ϕ ϑ ϑ

ϑ

ϕ ϕ ϑ ϑ ϕ ϕ ϑ ϑ

ϑ

⎡ ⎤− −⎣ ⎦

⎡ ⎤= − − − +⎣ ⎦

+ ( ) }
( ){

( ) ( ) }

.2 2
2

os tan tan

1( , )   sin

             cos cos cos tan tan cos tan tan

P o o P

o P o

P o P o P o P o o P

K P P
S

ϕ ϕ ϑ ϑ

ϕ ϕ

ϑ ϑ ϕ ϕ ϑ ϑ ϕ ϕ ϑ ϑ

⎫
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎬
⎪
⎪
⎪
⎪
⎪⎡ ⎤− −⎣ ⎦ ⎪
⎪

= − − ⎪
⎪
⎪⎡ ⎤ ⎡ ⎤− − − − −⎣ ⎦ ⎣ ⎦ ⎭

 (23) 

where 

 
( ) ( )

( ) ( )

22 2

22 2

sin cos cos tan tan  

   sin cos cos tan tan       .

P o o P o o P

P o P P o P o

S ϕ ϕ ϑ ϕ ϕ ϑ ϑ

ϕ ϕ ϑ ϕ ϕ ϑ ϑ

⎡ ⎤≡ − + − − ×⎣ ⎦

⎡ ⎤× − + − −⎣ ⎦

 (24) 

These expressions, in comparison with the ones in Appendix, have considerably simpler 
form. Concerning the correctness of (23), as well of the expressions (11) and (14), the 
accordance of the four groups of results (quoted in Table 1.) for an arbitrarily selected 
pair of points on the spherical surface represents a numerical confirmation of the 
usefulness of the previously obtained expressions for shifting operators. 

3.2. Operators of parallel transport along geodesics on a helicoid surface 

In the case of the helicoid surface 

 

1

2

3

cos

sin    ( )

z

z b const

z b

ρ ϕ

ρ ϕ

ϕ

⎫=
⎪

= =⎬
⎪= ⎭

 (25) 
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the components of the fundamental metric tensor in the system { },ρ ϕ  ( 1 2 ,  u uρ ϕ≡ ≡ ) 
are 
 2 2

11 12 21 22

1  ,  0  ,  a a a a a a a a b
ρρ ρϕ ϕρ ϕϕ

ρ= = = = = = = = +  (26) 
and we have 
 ( )2 2 2 2 2   .ds a du du d b dα β

αβ ρ ρ ϕ= = + +  (27) 

On the other side, the equation of the geodesic line on this surface can be found in the 
form (s. for example [3], p. 45) 

 
( )( )2 2 2 2 2

 D dC
b b D

ρϕ
ρ ρ

= ±
+ + −

∫  (28) 

and, bearing in mind (27), we obtain 

 

2 2 2

2 2

2 2

  .

d b D
ds b
d D
ds b

ρ ρ
ρ

ϕ
ρ

⎫+ −
= ± ⎪

⎪+
⎬
⎪= ± ⎪+ ⎭

 (29) 

Rewriting (28) in the form 

 
( )( )

 

2 2 2 2 2
  ,

o

D drC
r b r b D

ρ

ρ

ϕ = ±
+ + −

∫  (30) 

we find oC ϕ= (from the condition that oϕ ϕ=  when oρ ρ= ), while the constant D 
should be determined from the condition that 

 
( ) ( )

 

2 2 2 2 2
  .

P

o

P o
D dr

r b r b D

ρ

ρ

ϕ ϕ= ±
+ + −

∫  (31) 

Due to the monotony of the subintegral function in (31), it is relatively simple to obtain a 
sufficiently exact value of the constant D as a numerical solution of this equation. With 
such approximative value for D, the evaluation of the components of the operators of 
parallel transport along the geodesic line connecting the points ( , )o o oP ρ ϕ  and 

( , )P PP ρ ϕ  on a helicoid surface can be performed according to (14), using the 
expressions (26) and (29). 

In this case, in order to examine the correctness of the whole proposed procedure, the 
numerical comparison is made between two approaches: the above described one using 
shifting operators and the one without these operators. In the first case the contravariant 
components of a vector v shifted on this surface from oP  to P  is calculated according to 
the formula 

 .( ) ( , ) ( )o ov P K P P v Pα α β
β=  (32) 
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(where 1 2,  v v v vρ ϕ≡ ≡ ) and the Cartesian components of this vector at the point P  are 
determined in the usual way 

 ( ) ( )  ( )
i i

i

P P

z zv P v P v Pρ ϕ

ρ ϕ
∂ ∂

= +
∂ ∂

 (33) 

(but now 
1 2 31 2 3,  ,  x z y z z zv v v v v v v v v≡ ≡ ≡ ≡ ≡ ≡ ). In the second case, the Cartesian 

components of the vector v are obtained directly (without introducing the notion of the 
operator of parallel transport with respect to a surface) from the condition that a vector 
shifted along a geodesic line must close a constant angle with this curve at each of its 
points (s. p. 143 in [2]). The results for an arbitrarily selected pair of points on the 
helicoid surface (with 2b h π=  and 5h = ) are quoted in Table 2. and the accordance is 
evident. 

4. CONCLUDING REMARKS AND FUTURE ACTIVITIES 

The relatively simple and numerically efficient way to obtain the values of 
components of the operators of parallel transport along a known geodesic line passing 
through two arbitrarily selected points on a surface is described. Although this procedure 
– based on a solution of a system of linear algebraic equations – can be used to obtain the 
explicit analytical expressions for the shifting operators in some cases, the main benefit 
is a possibility of its use in the future numerical testing of an approach in finite element 
approximations of tensor fields in non-Euclidean spaces proposed in [7]. Namely, instead 
of the usual approximation of components of tensor fields, the approximation of the 
whole field (as a kernel) is performed and the operators of parallel transport play the 
fundamental role in such approach. 
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Table 1. Geographical components of the shifting operators along the geodesic 
           line connecting the points Po and P on a spherical surface 

( , ) (7 ,77 )

( , ) (13 ,78 )

o o
o o o o

o o
P P

P P

P P

ϕ ϑ

ϕ ϑ

=

=
 { }

.1 .1
. 1 2

.2 .2
1 2

( , ) ( , )
( , )

( , ) ( , )
o o

o
o o

K P P K P P
K P P

K P P K P P
α
β

⎧ ⎫⎪ ⎪= ⎨ ⎬
⎪ ⎪⎩ ⎭

 

heuristic approach 1.07630424872861 0.490918399454177
2.296023426624826E 2 0.994777456654368

⎧ ⎫
⎨ ⎬− −⎩ ⎭

 

algebraic approach 1.07630424872861 0.490918399454179
2.296023426624818E 2 0.994777456654367

⎧ ⎫
⎨ ⎬− −⎩ ⎭

 

algebraic approach 1.07630424872861 0.490918399454177
2.296023426624829E 2 0.994777456654367

⎧ ⎫
⎨ ⎬− −⎩ ⎭

 

algebraic approach 1.07630424872861 0.490918399454182
2.296023426624850E 2 0.994777456654367

⎧ ⎫
⎨ ⎬− −⎩ ⎭

 

 

Table 2. Cartesian components of a given vector after parallel transport from the 
              point Po to the point P along the geodesic line on a helicoid surface 

( , )
||

(1,85 )

o o o

o
o

P

P

ρ ϕ
 

( , )
||

(4,135 )

P P

o

P

P

ρ ϕ
 

approach 

without 

shifters 

approach 

with 

shifters 

1
0

o
o

o

v

v

ρ

ϕ

⎧ ⎫ ⎧ ⎫⎪ ⎪= =⎨ ⎬ ⎨ ⎬
⎩ ⎭⎪ ⎪⎩ ⎭

v  

1

2

3

z
P

z
P P

z
P

v

v

v

⎧ ⎫
⎪ ⎪⎪ ⎪= =⎨ ⎬
⎪ ⎪
⎪ ⎪⎩ ⎭

v  
2.184434556431047E 2

0.990432849244363
0.136255626322580

⎧ ⎫− −
⎪ ⎪
⎨ ⎬
⎪ ⎪−⎩ ⎭

2.184434556431003E 2
0.990432849244364
0.136255626322580

⎧ ⎫− −
⎪ ⎪
⎨ ⎬
⎪ ⎪−⎩ ⎭

 

 

O ODREĐIVANJU OPERATORA PARALELNOG POMERANJA 
DUŽ GEODEZIJSKIH LINIJA NA POVRŠIMA 

Zoran Drašković 

Apstrakt: Predložen je postupak za dobijanje zatvorenog oblika operatora paralelnog pomeranja 
duž poznate geodezijske linije na nekoj površi kao rešenja sistema linearnih algebarskih jednačina. 
Njegova korektnost numerički je pokazana na primeru sferne i helikoidalne površi. Nagoveštena je 
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buduća upotreba tih operatora u aproksimacijama konačnim elementima tenzorskih polja u 
neeuklidskim prostorima. 

Ključne reči: površ, geodezijska linija, paralelno pomeranje, operatori paralelnog pomeranja 
 

Appendix: Operators of parallel transport along geodesics on a spherical surface   
(heuristic approach) 

The explicit expressions – obtained in [6] by using a heuristic procedure – for the 
operators of parallel transport with respect to a spherical surface along the geodesic line 
(the great circle) connecting ( , )o o oP ϕ ϑ  and ( , )P PP ϕ ϑ  read (geographical coordinates 
are in question!) 

 

.1
1

2

.1
2

cos( , ) [sin sin( ) cos cos( )cos ]
cos

[sin sin( ) cos cos( )cos ]
cos( )cos( )sin

1( , )
cos

{

}

{

o
o P P Eu P P Eu Eu

P

o o o oEu Eu Eu

oP Eu Eu Eu

o
P

K P P

K P P

ϑ ϕ ϕ ψ ϕ ϕ ψ ϑ
ϑ

ϕ ϕ ψ ϕ ϕ ψ ϑ
ϕ ψ ϕ ψ ϑ

ϑ

= − + − ×

× − + − +

+ − −

=

                 

                           

[sin sin( ) cos cos( )cos ]

sin [sin cos( ) cos sin( )cos ]
cos sin cos

cos( )sin [sin sin(

{
}

P P Eu P P Eu Eu

o o o o oEu Eu Eu

o oEu

o oP Eu Eu

ϕ ϕ ψ ϕ ϕ ψ ϑ

ϑ ϕ ϕ ψ ϕ ϕ ψ ϑ
ϑ ϑ ϕ

ϕ ψ ϑ ϑ ϕ

− + − ×

× − − − +

+ −

− −

            

                                       

         
.2
1

)sin cos cos ]

( , ) cos sin [sin cos( ) cos sin( )cos ]
cos sin cos

[sin sin( ) cos cos( )c

{
}

}
{

oEu Eu Eu

o o P P P Eu P P Eu Eu

P Eu P

o o o oEu Eu

K P P

ψ ϑ ϑ ϑ

ϑ ϑ ϕ ϕ ψ ϕ ϕ ψ ϑ
ϑ ϑ ϕ

ϕ ϕ ψ ϕ ϕ ψ

− +

= − − − +

+ ×
× − + −
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and Euψ  and Euϑ  are the Euler angles: the precession Euψ  is the angle of inclination of 
the line which represents the intersection of the plane oOP P  and the coordinate plane 

1 2Oz z , while the nutation Euϑ  is the angle between the normals to the planes 1 2Oz z  and 

oOP P  (the angle of proper rotation is 0Euϕ = ). 
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