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Abstract: A procedure to obtain a closed form of the shifting operators along a known
geodesic line on a surface as a solution of a system of linear algebraic equations is
proposed. Its correctness is numerically demonstrated in the case of a helicoid surface
and a spherical one. The future use of these operators in finite element approximations
of tensor fields in non-Euclidean spaces is announced.
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1. INTRODUCTION
It is well known that the system of differential equations for determining the
components of a vector v parallelly propagated along a curve u” =u“ (s) on a surface
reads’
Dv*  dv” o pdu’

=— +T% vVV— =0 , 1
Ds ds P77 ds @)

where u“ are so-called surface coordinates, I"y are the Christoffel symbols of the
second kind determined for this surface, and s is the arc length of this curve. The
fundamental system of solutions Kj* of this homogeneous system of differential
equations represents the operators of parallel transport (the shifting operators) with
respect to the surface along this curve, establishing the relation

vi(P) =K (R, P) V'(R) )

between the components of the vector v before and after its parallel transport from the
point P, to the point P . However, the existence of this fundamental system, i.e. the
existence of shifting operators along the given curve, does not necessarily mean it is easy

! Einstein's summation convention for diagonally repeated indices is used; Greek indices have the range {1,2},
while Latin indices will have the range {1,2,3}.
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to find them. Namely, “the explicit form of the function ... [ K" ] is not known ([5], p.
260) and even in the case of the geodesic lines on a spherical surface (its great circles)
the shifting operators are obtained in [6] by using a heuristic procedure (and not by
solving the corresponding homogeneous system of differential equations).

2. ALGEBRAIC APPROACH IN THE DETERMINATION OF SHIFTING OPERATORS

Nevertheless, it turned out quite unexpectedly that one can obtain a closed form of
these operators along a known geodesic line on a surface as a solution of a system of
linear algebraic equations using the fact that the tangent vector of a geodesic is a parallel
vector field along this line, i.e. the fact that

du”
—KZ(P,P 3
s (R, P) & 3)

P

o

du”
ds

and the insufficiencies of these two conditions for the determination of the four
coefficients Ky is surpassed by introducing an additional vector also parallelly
propagated along the geodesic line
w=nxt 4

or in the component form

W, = gy n'te (®)
Namely, this vector — permanently orthogonal to the tangent vector t of a geodesic line
on this surface — is always in the tangent plane of the surface; n is the normal to the
surface and hence (s. [1], p. 214)

j 5k
Pepzizy (6, :\/aeaﬁ ,e”=e”[\a, a=

) (6)

1
n=_¢ a,,

where z are the rectangular Cartesian coordinates, z, =oz'/6u® and & = €y ; for the
tangent vector twe have

t' =2 du”/ds ; @)

the surface components of the vector w (lying in the surface tangent plane) are

w,=2'w ®)

in the case of the orthogonal coordinates u” we have w” = a”ﬁwﬂ and finally 9)
i i i i i du” 1 i iv du”

w' =a”zyw =a”zpe, 't =a”zp6,60n,z; e Ea"l’]z'ﬁgijkﬁ"'(e“vgmn 2,2, o

Due to the parallel transport of the vector w along the geodesic line we have
W/ K (P, P) = wg (10)
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and the coefficients K can now be determined from (3) and (10)

du'| du? du'| dut
1 Ao 1| e
KR PY = | Ol OS] KR PY = O8], dsl,
wp oW w, W a1
du?| du? du'|  du? '
1= — kil
kiR, P) = ds ], Os] | KEEP)-—ds], ds],
det W2 W2 det wl 2
P o 0 P
where
e
det=|ds|, ds|, (12)
w, W

These expressions are implemented in the corresponding software tool in order to
compare some numerical results with the formerly checked ones for the shifting
operators on the spherical surface and exceptional coincidence is obtained!

However — bearing in mind that the relations (9) are not the promising ones
concerning the determination of the explicit expressions for the shifting operators and
that the surface components of the vector w are present in (11) — we can proceed
directly, considering w as a vector in the tangent plane of the surface orthogonal to the
tangent vector of a geodesic line on this surface; namely

a,, du’ \/7du ) (13)
\/7 ds \/_ds '

hence for the coefficients K’ we obtain the expressions

\/aT’dul du aj, du?| du?
1 _ 1 22
KHR.P)= Va \/g ds | \/> ds ds §

aj, du du1 a, du1 du?
K.Zl(POIP):_\/; N2 N%22 uu

ds ds ds

g j: " (asl,) @9
2 B a; du? du du| du? °
KZ(R,P)= 3, oy 05|, 5, Var B, &5,
2 _ \/>du Ll azz du dU2
KZ(RP)= o, \/; ds |, \/> ds ds .

and in every single case one can try to find the explicit expressions for the components of
the operators of parallel transport along the known geodesic line on the surface under
consideration.
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3. EXAMPLES

3.1. Operators of parallel transport along geodesics on a spherical surface

In order to obtain the effective expressions for these operators, we shall use the finite
equation of the geodesic line (the great circle) on a spherical surface (with the radius
r =0) in the form (s. for example [4], p. 167)

tg 9= Acosp+Bsing (15)

where {¢, 3} are the geographical coordinates (u' =9, u? = 9) and the constants A and
B can be obtained from the condition of passing through the points P, (¢,,$,) and

P(@Pi‘gp)

tg 8, = Acosg, + Bsing, (16)
tg 8, = Acosg, + Bsing;
hence it follows
sin g, tan 8, —tan 9, sin g,
A=Ay 05 8y %) =—— -
sin ((/JP —® )
tan 4 tan 3 )
an 9, cos¢, —cos g, tan 4,
B=B(0,. 0% 9 %) =—— .
sin (¢ —9,)
Knowing that the components of the fundamental metric tensor in the system {go, 8} are
a,=a, =r’cos’ ¢ , a,=a, =a,=2a, =0, a,=a,=r (18)
we have
ds® = a,,du”du’ = r*(cos’ 9dg® +d.§°) (19)
and, bearing in mind the relation (15), we obtain
do_, !
ds  reos 8\/1+ cos® 9( Asinp—Bcosg)’
20
dg_1 cos 3( Asing—Bcosg) (20)
ds r\/1+ cos? 9( Asinp - Bcos )’
Using (17), we have for example
d_(” _ sin ((pP _wo)
dslo reos 80\/sin2 (¢ — @, )+c0s* & [ cos (@, — @, ) tan 4, —tan 9, }2
(21)
dg cos 9, [ cos(p, — @, )tan &, —tan 9 |
ds|,

o r\/sin2 (¢ —,)+c0s” & [ cos (g, —, ) tan 4, —tan g, T
and similarly
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d_(/’ _ Sin((pP _(po)
9l reosg, \/sin2 (90 —0,)+c0s* 3, [ cos(9p — g, ) tan g, — tan 190}2

22
dg cos 9, [ cos(pp — @, )tan 9, —tan 9, | @2
dslp

P r\/sin2 (95 — @, )+c0s” % [ cos(p, — @, ) tan g, —tan 190}2

Finally — substituting (21) and (22) in (14) — we obtain the following explicit
expressions, in the geographical coordinates {¢),9}, for the operators of parallel
transport with respect to a spherical surface along the geodesic line connecting
R, (%, ) and P(g;. %)

1{003190 .

K(P,,P) = sin® (¢, — @, )
i (R.P) 5 |coss, (2o —,)

—cos” 9, cos(p, —, ) tan 9, —tan 9, |[ cos(p, — ¢, )tan 9, —tan g, ]}

K (P,,P) = —ésin(gop ~9,){[cos(¢p — ¢, )tan g, —tan 8, |+

4 Cos 9

c0s d, [cos(gp —¢,)tan g, —tan 5, |}

KZ2(P,,P) = ésin((pp —goo){cos 9, c0s 9, cos(p, — ¢, )tan I, —tan 4, |+
+c0s” 9, cos(¢, — ¢, )tan 9, —tan 9, ]}
1.
KSR P)= Slsin(os —0,)-

—c0s 9, 05 9, cos(pp — @, ) tan 9, — tan 9, [ cos(gp — ¢, ) tan 9, —tan % | (23)

where

S =,/sin’ (@, — @, )+cos® 9, | cos(p, — ¢, )tan 9, —tan 3, ?
o] o] o] (0]

x \/sinz (95 — @, )+c0s* 9, [ cos(p, — @, ) tan 9, —tan SOT

These expressions, in comparison with the ones in Appendix, have considerably simpler
form. Concerning the correctness of (23), as well of the expressions (11) and (14), the
accordance of the four groups of results (quoted in Table 1.) for an arbitrarily selected
pair of points on the spherical surface represents a numerical confirmation of the
usefulness of the previously obtained expressions for shifting operators.

3.2. Operators of parallel transport along geodesics on a helicoid surface
In the case of the helicoid surface
7' = pcose
7> = psing (b =const) (25)

3

" =bgp
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the components of the fundamental metric tensor in the system {p,go} (U=p,u’=9p)
are

a=a=1,a=a=a=a=0,a=a=p+b (26)
and we have

ds® =a,,du“du’ =dp® +(p* +b*)de* . (27)
On the other side, the equation of the geodesic line on this surface can be found in the
form (s. for example [3], p. 45)
Ddp

\/(p2+b2)(p2+b2—D2)

and, bearing in mind (27), we obtain

dp _, p?+b*>-D?
Loy |
ds p°+b . (29)

dop _ D
ds P’ +b?

(28)

¢:Cij

I+

Rewriting (28) in the form
Ddr

30
r2+b2)(r2+b2—D2) 0

el

we find C =g, (from the condition that ¢ =¢, when p=p,), while the constant D
should be determined from the condition that

Pp
o=, | Ddr . (31)

2 \/(rz +b?)(r* +b*-D?)

Due to the monotony of the subintegral function in (31), it is relatively simple to obtain a
sufficiently exact value of the constant D as a numerical solution of this equation. With
such approximative value for D, the evaluation of the components of the operators of
parallel transport along the geodesic line connecting the points P (p,,¢,) and
P(p.,@,) on a helicoid surface can be performed according to (14), using the
expressions (26) and (29).

In this case, in order to examine the correctness of the whole proposed procedure, the
numerical comparison is made between two approaches: the above described one using
shifting operators and the one without these operators. In the first case the contravariant
components of a vector v shifted on this surface from P, to P is calculated according to
the formula

v (P)=K5 (R,.P)V/(R) (32)
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(where v! =v”, v> =v*) and the Cartesian components of this vector at the point P are
determined in the usual way

oz’

o vZ(P) + —
op

V'(P) = > v (P) (33)

P

P

(but now Vi =v =v?, v2=v' =v¥, ¥ =v’ =v?). In the second case, the Cartesian
components of the vector v are obtained directly (without introducing the notion of the
operator of parallel transport with respect to a surface) from the condition that a vector
shifted along a geodesic line must close a constant angle with this curve at each of its
points (s. p. 143 in [2]). The results for an arbitrarily selected pair of points on the
helicoid surface (with b=h/2z and h=5) are quoted in Table 2. and the accordance is
evident.

4, CONCLUDING REMARKS AND FUTURE ACTIVITIES

The relatively simple and numerically efficient way to obtain the values of
components of the operators of parallel transport along a known geodesic line passing
through two arbitrarily selected points on a surface is described. Although this procedure
— based on a solution of a system of linear algebraic equations — can be used to obtain the
explicit analytical expressions for the shifting operators in some cases, the main benefit
is a possibility of its use in the future numerical testing of an approach in finite element
approximations of tensor fields in non-Euclidean spaces proposed in [7]. Namely, instead
of the usual approximation of components of tensor fields, the approximation of the
whole field (as a kernel) is performed and the operators of parallel transport play the
fundamental role in such approach.
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Table 1. Geographical components of the shifting operators along the geodesic
line connecting the points Po and P on a spherical surface

P(p,9)="P (7°,77° 1p 1(p
o(90:%) = R ( ) (K3 (R, P} = Klz(PO P) KZZ(PO P)
P((pprlgp): P(1301780) Kl (PO’P) KZ (Polp)
heuristic approach 107630424872861 0.490918399454177
—2.296023426624826E —2 0.994777456654368
algebraic approach 107630424872861 0.490918399454179
—2.296023426624818E —2 0.994777456654367
algebraic approach 107630424872861 0.490918399454177
—2.296023426624829E — 2  0.994777456654367
algebraic approach 107630424872861 0.490918399454182
—2.296023426624850E — 2 0.994777456654367

Table 2. Cartesian components of a given vector after parallel transport from the
point Po to the point P along the geodesic line on a helicoid surface

approach approach
P (P ) P (e, 9)
I l without with
P (1,85%) P (4,135°)
shifters shifters

0.990432849244363

—2.184434556431047E-2
—0.136255626322580

0.990432849244364

—2.184434556431003E~2
-0.136255626322580

O ODREDPIVANJU OPERATORA PARALELNOG POMERANJA
DUZ GEODEZIJSKIH LINIJA NA POVRSIMA

Zoran Draskovi¢

Apstrakt: Predlozen je postupak za dobijanje zatvorenog oblika operatora paralelnog pomeranja
duz poznate geodezijske linije na nekoj povrsi kao resSenja sistema linearnih algebarskih jednacina.
Njegova korektnost numericki je pokazana na primeru sferne i helikoidalne povrsi. Nagovestena je



buduca upotreba tih operatora u aproksimacijama konachim elementima tenzorskih polja u
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neeuklidskim prostorima.

Kljuéne reci: povrs, geodezijska linija, paralelno pomeranje, operatori paralelnog pomeranja

Appendix: Operators of parallel transport along geodesics on a spherical surface

The explicit expressions — obtained in [6] by using a heuristic procedure — for the
operators of parallel transport with respect to a spherical surface along the geodesic line
(the great circle) connecting P, (¢,,$) and P(gp,,9,) read (geographical coordinates

(heuristic approach)

are in question!)

where

Ki'(R,,P) =

cos 9., =

c0s Y,

{sin @ sin(p —ye,) +c0S Pp COS(Pp /g, ) COS I, 1%
cos Y,
x [Sin (ﬁo Sin((oo “Yeu ) +COos @o COS((DO “Yeu ) cos 19Eu ] +

+ COS(¢7P Ve ) COS((DO - l//Eu)Sinz lglEu}

1 PR _
K3 (R, P) = LIsin e Sin(gp — /e, )+ COS 3 €OS(9p —1/e, ) €05 ] x
P

><{Sin ‘90 [Siﬂ (Bo COS((DO “Yeu ) —Cos (50 Sin((po Ve ) cos I9Eu ] +
+c08 4, sin 9z, COS @, }—

—COS((p — /g, )SiN G, [5in 9, Sin(, e, )sin G, +C0s 9, 05 Iz, 1}

K;?(P,,P) = cos 30{{sin Io[Sin @p COS(@p — g, ) —COS @p SIN(Pp — g, ) COSIe, ]+

+€0s 9, sin 9z, COS P }x
x [Sin (ﬁo Sin(¢o - ‘//Eu) +Cos @0 COS(% Ve ) Cos ‘9Eu ] -
—COS(0, /e, )SiN ey [SIN 9y SiN(gp — /g, )SiN e, +COS Ty €05 95, 1}

Kﬁz (Pm P) ={Siﬂ 19F’[Sin @P COS((”P A= ) —Cos (ZP Sin(¢P _WEU)COS ‘gEu]+

+C08 9, Sin Je, COS Pp 1
><{Sin ’90 [Sin (770 COS((OO _V/Eu) _COS(ZO Sin((po —U/EU)COS LgEu]+
+c0s 9, sin 9z, COS P, }+
+[sin 3, sin(@p — g, )sin I, +€0s Y, oSG, 1%
x[sin &, sin(p, —wg,)sin I, +€0s Y, cos Y, ]

cos@, =c0s Y, cos(p, —yg,) , COSQ, =C0SY; COS(@p — Wy, )
_sing, cos g, sin g, —sin 3 sin g, s,
~ cos @, Cos 4, sin Y, —sin g, cos g, cos Y,
COS @, 0S4, Sin ¢, €0S Y, —Sin @, C0S %, COS @, COS I,

tg

l//Eu

(sing, cos 9, sin &, —sin 4, sin g, cos Y, ) +
+(sin 9, cos g, cos &, —Cos @, Cos Y, sin 9, )* +
+(cos @, cos 9, sin g, cos 9, —sin ¢, €os 9, cos g, €os I, )
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and y, and 9, are the Euler angles: the precession w, is the angle of inclination of
the line which represents the intersection of the plane OP,P and the coordinate plane
0z'z°, while the nutation &, is the angle between the normals to the planes Oz'z* and
OP,P (the angle of proper rotation is ¢, =0).
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