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4bstract. In the paper the origin of the so named ‘Duffing’s equation’ is shown. The 
author’s generalization of the equation, her published papers dealing with Duffing’s 
equation and some of the solution methods are presented. Three characteristic 
approximate solution procedures based on the exact solution of the strong cubic 
Duffing’s equation are shown. Using the Jacobi elliptic functions the elliptic-Krylov-
Bogolubov (EKB), the homotopy perturbation and the elliptic-Galerkin (EG) methods 
are described. The methods are compared. The advantages and the disadvantages of 
the methods are discussed. 
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1. INTRODUCTION 

 
In 1918, in the Edition Vieweg, No.41/42 the publication entitled “Erzwungene 

Schwingungen bei veranderlicher Eigenfrequenz und ihre technische Bedeuting” by 
Georg Duffing (Fig.1), Ingenieur, appears. The first sentence in the Preface of the book 
[1] is: “Die Anregung zu der vorliegenden Studie wurde mir zunachst durch 
Beobachtungen an Maschinen gegeben”. This statement proves the appropriation of 
Georg Duffing to experimental-applied dynamics. He was a serious experimentalist who 
studied mechanical devices to discover geometric properties of dynamical systems [2]. 
The theory of oscillations was his explicit goal. In Jahrbuch der Mathematik (1916-
1918), (see [1]), a reviewer G.H. wrote that the aim of the paper [2] was to clarify the 
resonant oscillations which are evident in the pendulum (Fig.2) whose motion is given 
with a differential equation 

 tkyyyy
dt

yd ωβγ sin)()sin(sin 0
2

0
2

2

2
=−+−+  (3) 
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where y is the pendulum displacement, t is time, β2 and γ2 are positive constants, y0 is the 
initial deflection, k and ω are the amplitude and the frequency of the excitation force. 
Duffing simplified the equation into 

 tkyyya
dt

yd ωγβ sin322
2

2
=−−+  (2) 

and calculated the first term Hsinωt of the periodic solution in the first approximation [3]. 
He obtained a cubic algebraic equation for H which has three solutions: two stable and an 
unstable one. 

                    
Fig.1. Georg Duffing, 1861-1944.  Fig.2. Duffing’s oscillator 

 
Duffing gives the problem to mathematicians to give the initial conditions for the 
unstable motion. Besides, Duffing considered the simplified versions of the Eq. (2) for 
describing the motion of the symmetrical pendulum 

 03
2

2
=−+ yy

dt
yd γα  (3) 

and the unsymmetrical pendulum 

 .02
2

2
=−+ yy

dt
yd βα  (4) 

For the case of small non-linearities (γ<<α and β<<α), Duffing gave the approximate 
solutions in the form of Weierstrass ℘(t) elliptic function [4]. The main disadvantage of 
the solutions was their complexity and unsuitability for practical use. 

During the last years the Eq. (2) is modified and some generalizations are introduced. 
Usually, the differential equations with polynomial type of non-linearity are called 
‘Duffing’s equation’. The most often investigated type of the Duffing’s equation is with 
the cubic non-linearity 

 tkyy
dt
dy

dt
yd ωγαδ sin2 3
2

2
=±±+  (5) 

where δ is the damping coefficient.  
About 2000 papers are published dealing with qualitative and quantitative analysis of 

Eq. (5). Two approaches are assumed: one, based on assumption that the non-linearity is 
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small (α>0, γ<<α) and the other, the non-linearity is strong (γ≈α). Various analytical 
approximate solving procedures are developed. For the small non-linearity the most 
widely applied methods are: the method of multiple scales [5], the Bogolubov-
Mitropolski [6], the Krylov-Bogolubov method [7], the straightforward expansion [8], 
Linstedt-Poincare method [9], etc. The author of this review modified the suggested 
methods for solving a second order differential equation with slow time variable 
parameters [10], a system of two coupled differential equations with constant coefficients 
[11]-[15] and slow time variable functions [16]-[21]. For all of these methods it is 
common that they represent the perturbation to the linear one and the difference between 
the approximate solution of the non-linear system and the linear one is of small order.  

For the case of strong cubic non-linearity, the analytical approximate solution of (5) 
is based on the exact solution of the differential equation 

 03
2

2
=±± yy

dt
yd γα  (6) 

The author of this paper developed the approximate analytical solving methods [22] for 

 ),(3
2

2

dt
dyyfyy

dt
yd

=±± γα  (7) 

where f is an additional linear or non-linear function which need not be small, and also 
for the system of coupled Duffing’s equations [23]-[31]. The strong non-linear 
differential equations with slow time variable parameters are also considered [32]. The 
chaotic motion in the strong coupled system with constant and changeable parameters is 
investigated in [33]-[36]. The special cases of differential equations are those with pure 
non-linear term (see [37]-[40]). In the paper [40] the general form of the pure non-linear 
differential equation of Duffing’s type is introduced. 
 In spite of the fact that a numerous methods are developed for analytic solving of the 
strong non-linear differential equations, the asymptotic approaches still need to be 
considered. Namely, all of the suggested asymptotic solving procedures have beside their 
advantages also some disadvantages. All the methods can be grouped as: residual 
methods, perturbation techniques and homotopic methods. In this paper the elliptic-
Galerkin method which is the conceptually simplest analytic approximate procedure, the 
perturbation elliptic-Krylov-Bogolubov method, and the homotopy perturbation method 
which is adopted for solving of the Duffing’s equation, will be shown. 

2. DIFFERENTIAL EQUATION WITH STRONG CUBIC NON-LINEARITY 

 The Eq. (6) with initial conditions 

 00 )0(,)0( yyyy && ==  (8) 

has an exact analytic solution in the form 

 ),,( 2ktYepy θω +=  (9) 
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where ep denotes a convenient Jacobi elliptic function [41], ω(Y) is the frequency, k2(Y) 
is the modulus of the elliptic function and Y and θ, i.e., the amplitude and phase angle are 
arbitrary constants dependent on the initial conditions (8). 

Dependently on the sign of the coefficients α and γ the following type of equations 
are evident: 1) the hard one: α>0 and γ>0, 2) the hard-soft one: α >0 and γ<0, 3) soft-
hard one: α<0 and γ>0. 
 For the case of strong cubic non-linearity of hardening type, the differential equation 

 03=++ yyy γα&&  (10) 

has an exact analytical solution in the form of the Jacobi elliptic function 

 ),( 2ktYcny θω +=  (11) 

where cn is the Jacobi elliptic function [48], ω and k are the frequency and modulus of 
the function 

 
)(2

, 2

2
222

Y
YkY
γα

γγαω
+

=+=  (12) 

and Y and θ are arbitrary constants dependent on the initial conditions (8). Substituting 
(11) and its time derivative into (8), we obtain the amplitude Y and the phase angle θ 
according to the relations 

 0
22

2
0

4
0

2
0

24 =⎥⎦
⎤

⎢⎣
⎡ ++−+ yyyYY &

γααγ  (13) 

and 

 
ω

θθ
0

022 ),(),(
y
ykdnksc
&

−=  (14) 

For the special initial conditions 
 0)0(,)0( 0 == yyy &  (15) 
the amplitude and phase angle are 
 0,0 == θyY  (16) 
and for 
 0)0(,0)0( yyy && ==  (17) 
it yields 

 )(,21 2

2/1

2

2
0 kKyY =

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
++−= θ

α
γ

γ
α

γ
α &

 (18) 

where K(k2) is the complete elliptic integral of the first kind [41]. Assuming the series 
expansion of the square root the approximate amplitude is Y≈ 0y& . 
Using the aforementioned procedure Yuste and Bejarano [42] give the solutions for the 
hard-soft and soft-hard systems. 
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Table 1 Solutions for the hard-soft and soft-hard systems. 

Type Solution Frequency Modulus 

α>0,γ<0 ),( 20 ktYsny θω +=  
0

2

2
2 >−=

Yγαω  2

2
2

2ω
γYk =  

α<0,γ>0 ),( 20 ktYcny θω +=  022 >−= αγω Y  
2

2
2

2ω
γYk =  

Remarks: 
1. It is obvious that the solution for the hard oscillator exists for all values of parameters 
α and γ, but for other oscillators (hard-soft and soft-hard) the motion is oscillatory only 
for some special relations between the parameters α and γ and initial amplitude Y. 
2. The arbitrary amplitude Y and phase θ are calculated according to the initial conditions 
(8), (15) or (17). 
3. For the pure cubic equation, when α=0, the modulus of the Jacobi elliptic function is 
constant (k2=1/2) and the frequency is γω Y= . The closed form solution is 

 )2/1,( θγ += YtYcny  (19) 

For the initial conditions (8), the amplitude of vibration is 

⎥
⎦

⎤
⎢
⎣

⎡
+= 2

0
4
0

2 yyY &
γ

 

3. THE ELLIPTIC HOMOTOPY PERTURBATION METHOD 

Let us rewrite the differential equation (7) in the form 

 ),(3 yygyyy &&& −=++ γα  (20) 

and apply the initial conditions (15). For g=0 the differential equation has the exact 
solution (11) with (16). According to this result, we assume the initial approximate 
solution of (20) in the form 

 10
2
11000 ),()( cnyktcnyYtY ==≡ ω  (21) 

where ω1 and 2
1k  transform into ω and k2 when g=0. Due to definition of homotopy 

X:Ωx[0,1]→R, that the two continuous functions from one topological space can be 
"continuously deformed" into the other, and introducing the embedding artificial 
parameter p with the values in the interval [0,1], as it was suggested by He [43], a 
homotopy transformation of the differential equation (20) yields 
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 0)],([)]())[(1( 33
000

3 =++++++−++− XXgXXXpYYYXXXp &&&&&&& γαγαγα   (22) 

with initial conditions 

 0),0(,),0( 0 == pXypX &  (23) 

Namely, for p=0 the Eq. (22) simplifies into 

 03 =++ XXX γα&&  (24) 

with the exact solution 

 ),()()0,( 20 ktYcntytX θω +==  (25) 

When p=1 the equation has the same form as the original equation 

 ),(3 XXgXXX &&& −=++ γα  (26) 

and the solution is 

 ).()1,( tytX =  (27) 

 It can be concluded that for the change of p from zero to unity the solution is 
continually changing from (25) to (27). 
 For X(t,p), which is the solution of (22) in the whole domain p∈[0,1] and is smooth 
enough to have kth order partial derivatives respect to p at p=0, the Maclaurin series is as 
follows 

 ∑
∞

=

⎟
⎠
⎞

⎜
⎝
⎛+=

1
0 !

)()(),(
k

kk p
k

tytYptX  (28) 

Substituting (28) into (22) and separating the terms with the same order of the parameter 
p a system of linear differential equations is obtained. For p1 the first-order deformation 
equation is 

 )],([3 00
3

0001
2

011 YYgYYYyYyy &&&&& +++−=++ γαγα  (29) 

with initial conditions 

 0)0(,0)0( 11 == yy &  (30) 

Introducing (21) into (29), yields 

 
)],,(

)221([3

111010

3
1

3
010

2
1

2
1

2
11

2
101

2
1

2
11 0

dnsnycnyg

cnycnycnkkcnyycnyyy

ω

γαωγα

−+

+++−−−=++&&
 (31) 

where ),( 111 ktsnsn ω≡  and ),( 111 ktdndn ω≡  are Jacobi elliptic functions [48].  
 For 

 βγβα >−== ,),(,0 2yyyg &  (32) 
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the Eq. (31) is specified as 

 )])221([3 2
1

2
0

3
1

3
0

2
1

2
1

2
11

2
101

2
1

2
1 0 cnycnycnkkcnyycnyy βγωγ +++−−−=+&&  (33) 

Solution of (33) is assumed as a sum of a constant and a linear term of elliptic function 
cn1 

 1211 cnKKy +=  (34) 

Substituting (34) into (33) and separating the terms with the same order of elliptic 
function cn1 the following system of algebraic equations is obtained 

 

.0)(23

,03

,0)21()(

2
1

2
101

3
01

2
0

2
00

2
0

2
1

2
101

=+−+

=+

=−+

ωγβ

βγ

ω

kyKyKy

KKy

kyK

 (35) 

Due to initial conditions (30) the relation K0 and K1 is 

 010 =+ KK  (36) 

Solving equations (35) and (36) it follows: 

 
γ
β

βγ
βγγω

3
,

2
1,

3
3 10

2
1

0

02
0

2
1 −=−==

+
+

= KKk
y
yy  (37) 

Using the relations (21) and (34) with (37) and according to (27) and (28) the solution in 
the first approximation is 

 )
2
1,

3
3()

3
(

3
)(

0

0
00 βγ

βγγ
γ
β

γ
β

+
+

++−=
y
ytycnyty  (38) 

Analyzing (37) it is obvious that the coefficient β has no influence on modulus of Jacobi 
function. Frequency and argument of Jacobi function and also the accuracy of the 
approximate solution (38) depend on coefficient ratio β/γ. For smaller ratio (β/γ)<<1 the 
difference between exact solution and approximate solution is negligible. For higher 
values of the ratio β/γ the difference is significant and the solution in the first 
approximation is not acceptable. 

4. ELLIPTIC-KRYLOV-BOGOLUBOV (EKB) METHOD 

 Let us modify the differential equation (7) by introducing the small parameter ε<<1 

 ),(3
2

2

dt
dyyfyy

dt
yd εγα =++  (39) 



56 LIVIJA  CVETIĆANIN 

 

Due to idea of Krylov and Bogolubov [44], Eq. (39) can be transformed into a system of 
two coupled first order differential equations. Namely, the solution of (39) is assumed in 
the form of the solution (19) for ε=0, i.e., 

 YcnktcntYty ≡= )),(()()( 2ψ  (40) 

where the amplitude and the phase are time dependent 

 ∫ +=
t

tdsst
0

)()()( θωψ  (41) 

and, also, the frequency and the modulus of Jacobi elliptic function (12) 

 
))]([(2

)]([)(,)]([)( 2

2
22

tY
tYtktYt

γα
γγαω
+

=+=  (42) 

The first time derivative of (40) is 

 
ψ

ω
∂
∂

=
)(cnY

dt
dy  (43) 

with the constraint 

 0)(
)(
)()( 2

2 =
∂

∂
∂
∂

+
∂
∂

+
dt
dY

Y
k

k
cnYcn

dt
dYcn

dt
dY

ψ
θ  (44) 

Substituting (40), (43) and the time derivative of (43) into (39), we obtain 

 ))(,()(])(
)(

)()()[( 2

22

2

2

ψ
ωε

ψ
θω

ψ
ω

ψ
ωω

∂
∂

=
∂
∂

+
∂

∂
∂∂

∂
+

∂
∂

∂
∂

+
cnYYcnfcn

dt
dY

Y
k

k
cnYcn

Y
Y

dt
dY  (45) 

After some transformation of (44) and (45), the two coupled first order differential 
equations follow 

 

),)()](,([

))(()())([(

,)],([

)])(()())([(

2
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2

22
2

Y
kYcncncnYYcnf

Y
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Y
kcncnYcn

Y
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dt
dY

cncnYYcnf
Y
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kcncnYcn

Y
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dt
dY
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∂
∂

+−=

∂
∂
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∂

∂
+

∂
∂

+

=
∂

∂
+−

∂
∂

+
∂
∂

+

ψ

ψψψψψ

ψψ

ψψψψψ

ωε

ωωωωθ

ωε

ωωωω

 (46) 

where 
)(

)(,)(,)(
2

2

2

2

k
cncncncncncn k

∂∂
∂

≡
∂
∂

≡
∂
∂

≡
ψψψ ψψψψ . 

The aim is to solve the system of differential equations. 
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 For the pure cubic Duffing’s equation, where α=0 and the modulus of the Jacobi 
elliptic function is constant (see (19)), the system (46) simplifies to 

 
,)],([]))([(

,)],([]))([(

2

2

cncnYYcnfcncncn
Y

Y
dt
dY

cncnYYcnfcncncn
Y

Y
dt
dY

ψψψψ

ψψψψψ

ωεωωωθ

ωεωωω

−=−
∂
∂

+

=−
∂
∂

+
 (47) 

where )221(, 222 cnkkcncnsndncn +−−=−= ψψψ . Using the value for the 

modulus (k2=1/2) and the frequency ( γω Y= ) of the Jacobi elliptic function, and also 
the relations between the elliptic functions, we have 

 
.],([

,],([

2

22

sndnsndnYYcnf
dt
dYY

cnsndnYYcnf
dt
dY

γεγ

γεθγ

−−=

−−=
 (48) 

At this point the averaging procedure is introduced. The averaging is over the period of 
the elliptic function 4K(k2), where K(k2) is the complete elliptic integral of the first kind. 
The averaged first order differential equations (48) are 

 ∫ −−=
K

ddnsndnsnYYcnf
Kdt

dY
4

0

),(
4
1 ψω

ω
ε  (49) 

 ∫ −−=
K

dcndnsnYYcnf
KYdt

d
4

0

),(
4
1 ψω

ω
εθ  (50) 

where for the modulus k2=1/2 the elliptic integral is 85407.1)2/1( == KK  and 
cn=cn(ψ,1/2), sn=sn(ψ,1/2), dn=dn(ψ,1/2).  
a) For the special case when the small non-linear function depends only on the 
deflection, i.e., )(yff ≡ , the first order differential equations (49) and (50) simplify to 

 ∫==
K

dcnYcnf
KYdt

d
dt
dY

4

0

)(
4
1,0 ψ

ω
εθ  (51) 

i.e., Y=const. and θ=εθ(Y), 
where 

 ∫=
K

dcnYcnf
KY

4

0

)(
4

1 ψ
ω

θ  (52) 

Then, the EKB approximate solution is 

 ]2/1,)[( 0θεθω ++= tYcny  (53) 
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where from the initial conditions of the oscillations Y and θ0 are obtained. 
b) For )/( dtdyff ≡ , the Eqs. (49) and (50) have the form 

 ∫ −−=
K

ddnsndnsnYf
Kdt

dY
4

0

)(
4
1 ψω

ω
ε  (54) 

 0=
dt
dθ

 (55) 

The EKB solution yields 

 ]2/1,))([()( 0
0

θγ += ∫
t

dttYcntYy  (56) 

where Y(t) is the solution of (54). 
Examples 
1) For the differential equation with strong non-linear cubic term and the weak linear part 

 03 =++ yyy εγ&&  (57) 

the phase angle is due to (52) 

 
ωω

ψ
ω

θ 4569.0)12(1
4

1
4

0

2 =−== ∫ K
Edcn

K

K

 (58) 

and the approximate solution of (57) is according to (53) and (58) 

 ]2/1,)4569.0[( 0θω
εω ++= tYcny  (59) 

where E=E(1/2)=1.35064 is the complete elliptic integral of the second kind for modulus 
k2=1/2 and γω Y= . 
The exact solution of (57) is according to (11), (12) and (15) 

 )](2/,[ 22
0

2 YYYtYcny γεγθγε +++=  (60) 

For ε<<1 using the series expansion of the functions in (60) the approximate solution is 
obtained 

 ]2/1,)
2

([ 0θω
εω ++= tYcny  (61) 

Comparing (59) and (61) it is evident that the difference is negligible. 
2) For the differential equation with small linear damping term 

 023 =++ yyy &&& ζγ  (62) 
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the amplitude of vibration is according to (54) 

 Q
K

Yddnsn
K

Y
dt
dY

K

4
)2(

4
)2(

4

0

22 ζεψζε
−=−= ∫  (63) 

i.e., 

 tQ
K

YY )
4

)2(exp(0
ζε

−=  (64) 

where ∫=
K

ddnsnQ
4

0

22 ψ . Using (56) and (64) the solution of (62) follows 

 ]2/1,))
4

)2(exp(1(
)2(

4[)
4

)2(exp( 000 θζε
ζε

γζε
+−−−=

K
Qt

Q
KYcnQ

K
tYy   

After some simplification the approximate solution is 

 ]2/1,[)
4

)2(exp( 000 θγζε
+−= tYcnQ

K
tYy  (65) 

The amplitude of vibration decreases exponentially. The period of vibration increases, 
but very slow. It allows the assumption of the constant frequency of vibration. 
Remark: 
The EKB method is usual known as that with time variable amplitude and phase, as it is 
assumed that the perturbed amplitude and phase of the solution differs for a small value 
to trial solution. 

5. ELLIPTIC-GALERKIN (EG) METHOD 

 Let us consider the differential equation 

 032 =+++ Yyyy γβα&&  (66) 

The approximate solution will be obtained by applying the Galerkin method which 
represents one of the weighted residual methods. In the previous papers, usually, the trial 
solution of (66) is assumed as a linear combination of the circular functions and the 
arbitrary weight function also belongs to that group. Our intention is to extend the 
method by applying of the Jacobi elliptic function. 
We introduce a trail solution to (66) as a linear combination of independent cn Jacobi 
elliptic functions 

 2
21

22
2

2
1 ),(),( cnKcnKktcnKktcnKy +=+= ωω  (67) 

where K1 and K2 are constants, ω and k are the frequency and modulus of the cn elliptic 
function which have to be calculated. 
Substituting (67) into (66), the residual function is obtained 
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+++++

++++≡

γβ

αωωωψ

 (68) 

where (.)’=d(.)/dψ, (.)”=d2(.)/dψ2 and ψ=ωt. If (67) is the closed form solution of Eq. 
(66), the residual function r(ψ) is zero. The goal is to construct y(ψ) so that the integral 
of the residual will be zero for some choices of weight functions w(ψ). As the weight 
function is arbitrary one, let us choose it as the derivatives of the constant K1 and K2, 
respectively, of the assumed solution (67), i.e., (∂y/∂K1) and (∂y/∂K2). Multiplying (68) 
with the weight function and integrating over the interval [0,4K(k)], where K is the total 
elliptic integral of the first kind and 4K is the period of cn function, one obtains 

 ∫∫ ==
)(4
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2
)(4

0

0)(,0)(
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dcnrcndr ψψψψ  (69) 

i.e. 
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 (70) 

Eqs. (66) and (69), i.e. (70), are equivalent, because w(ψ) is any arbitrary function. To 
apply the method, all we need to do is to solve the two algebraic equations for the 
coefficients ),( 21 KKωω = and ),( 21

22 KKkk =  

 6
2
24

2
1224

2
2

22 3)2(])1[( CKCKKCCkCk γγβαω +++=+−  (71) 
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4
22

2

CKCKKKCKK

CkCkCkK

γγβαβ

ω
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 (72) 

where (see [48]): k’2=1-k2, C0=4K(k), )'(4 2
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+   for   m=1,2,3. 

Eliminating ω from (71) and (72) we obtain the algebraic equation 
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which is not easy to be solved. Analyzing the relation (71) and (73) it is seen that the 
both strong non-linear terms have a significant influence on the modulus and the 
frequency of the Jacobi elliptic function. Only, for the case when α=β=0 the modulus of 
the Jacobi elliptic function is independent on the initial amplitude, but the frequency 
depends, as it is previously stated in Eq. (19). 
Remark: The accuracy of the solution depends on our ability to find the most convenient 
combination of functions. 

6. CONCLUSION 

In the paper three procedures for solving of the so called Duffing’s equation are shown: 
the elliptic-Galerkin (EG) method, the elliptic-Krylov-Bogolubov (EKB) method and the 
homotopy perturbation method. For all of the methods is common that the solutions are 
based on the exact solution of the strong cubic differential equation given with Jacobi 
elliptic function. The mentioned methods have some advantages, but also disadvantages. 
The EG method is one of conceptually simplest analytical approximate procedure which 
leads to algebraic equations; however the results may be with small accuracy as it 
depends on the investigator to chose the most adequate weight function. The elliptic-
Krylov-Bogolubov (EKB) method is of perturbation type. The perturbation method is 
based on the assumption that a small parameter (ε<<1) must exist in the equation. This 
so-called small parameter assumption greatly restricts applications of perturbation 
technique. Many non-linear problems described with Duffing’s equation have no small 
parameter at all. Then, an appropriate choice of a small parameter leads to accurate 
results, but an unsuitable choice to a bad result. The homotopy method does not require a 
small parameter in the equation and eliminates the previous limitations. The main 
disadvantage is the question of convergence of the solution. Farther investigations are 
necessary. 
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