
VORTICITY EVOLUTION IN PERTURBED
POISEUILLE FLOW
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Abstract. We consider numerical simulation of temporal hydrodynamic instability with 
finite amplitude perturbations in plane incompressible Poiseuille flow. Two 
dimensional Navier Stokes equations have been used and reduced to vorticity-stream 
function form. Trigonometric polynomials have been used in homogeneous direction 
and Chebyshev polynomials in inhomogeneous direction. The problem of boundary 
conditions for vorticity has been solved by using the method of influence matrices. The 
Orr-Sommerfeld equation has been solved by Chebyshev polynomials, and linear 
combination of the obtained eigenfunctions has been optimized with regard to the 
corresponding eigenvalue. We present here the results of simulation for the 
perturbations optimized in regard to the least stable eigenvalue for the Reynolds 
number Re =1000. 
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1. INTRODUCTION 

It is well known that classical Hydrodynamic stability theory is not capable of 
describing the initial transient growth mechanism that has been observed by 
experimentators for viscous channel flows. The reason for such behavior has been 
ascribed to the asymptotic behavior of the unstable eigenvalue, since the perturbation is 
formed only by the unstable eigenvalue and the corresponding eigenfunction. So, for 
Poiseuille flow the critical Reynolds number is 5772, and for this value of Reynolds 
number the eigenvalue has the positive imaginary part, and so the flow is asymptotically 
unstable, i.e. for large values of time, when t→∞ 

We have simulated the streamfunction-vorticity form of the 2D Navier-Stokes 
equations, and carried out the perturbation of laminar Poiseuille flow, by forming the 
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optimized linear combination of the all eigenfunctions normalized on the corresponding 
eigenvalue, in this case the least stable eigenvalue. The simulation has been carried out 
for the subcritical Reynolds number Re=1000, defined on channel half height H, middle 
channel maximal fluid velocity Umax and fluid kinematic viscosity-ν 

2. PROBLEM STATEMENT AND GOVERNING EQUATIONS 

We consider the problem for plane Poiseuille flow, where H is channel half height, L- 
is its lenght. Incompressible fluid flows through the channel from left to right, whereby 
the pressure at the inlet is pi and at the outlet cross section is po. Momentum equation by 
means of which we describe this isothermal incompressible flow can be written in 
nondimensional form [1] 

 ( ) 1 1 ,VSt V V F Eu p V
t Fr Re

∂
+ ∇ = − ∇ + ∆

∂

r
r r r r
�  (1) 

where is ∇-Hamilton’s differential operator. In the above expression ∆-designates 
nondimensional Laplace’s differential operator. The continuity equation reads 

 0.V divV∇ = =
r r

�  (2) 

In the above expressions V
r

is nondimensional velocity vector of 2D flow in Cartesian 
coordinates, F

r
–nondimensional force field, p–nondimensional pressure, t–

nondimensional time, St–Strouhal number, Fr–Froude number, Eu–Euler number, Re–
Reynolds number.  Nondimensional form of the momentum equation has been obtained 
by using the following caracteristic scales for various independent and dependent 
variables:  L0=H – for all lengths, V0 =Umax –maximal velocity at the middle of the 
channel, for all velocities, po–pressure at the outlet of the channel, for pressure, and g–
gravity acceleration for body force. Four dimensionless parameters are thus occuring, 
namely, 

 0 0 0 0 0
2 2

0 0 0 0

, , , ,
L gL p L V

St Fr Eu Re
t V V V

ρ
= = = =

µρ
 (3) 

where are µ - dynamic viscosity, ρ - fluid density. We take that St =1, Eu =1 and Fr =1, 
and we introduce the ν-dimensionless kinematic viscosity, which is the inverse of 
Reynolds number. So we have now 

 ( ) ,V V V F p V
t

∂
+ ∇ = −∇ + ν∆

∂

r
r r r r
�  (4) 

If we take the curl of this equation, and having in mind the definition of vorticity 

 ,V curlVω = ∇× =
r rr

 (5) 

then we obtain the following transport expression for vorticity 
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 ( ) .V F
t

∂ω
+ ∇ ω = ∇× + ν∆ω

∂

r r rr r
�  (6) 

We have taken into account that the curl of arbitrary scalar function gradient, in this 
case pressure function, is by definition equal to zero. The velocity vector can be 
expressed as curl of stream function 

 ,V curl= ∇×ψ = ψ
r r r

 (7) 

and after substitution of this expression (7) into (6), and after projection to z-axe, we 
obtain the following equation for transport of vorticity 

 
2 2

2 2 .y xf f
t y x x y x y x y

∂ ⎛ ⎞∂∂ω ∂ψ ∂ω ∂ψ ∂ω ∂ ω ∂ ω
+ − = − + ν +⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠

 (8) 

If we substitute the expression (7) in (2) the continuity equation is identically 
satisfied, and can not be used for closure the system of equations. For closure the system 
of equations we use the definition of vorticity given by the expression (5) and velocity 
vector given through the streamfunction vector by (7). So the second equation for closure 
the system of equations reads 

 
2 2

2 2 0.
x y

∂ ψ ∂ ψ
ω+ + =

∂ ∂
 (9) 

The system of the equations (8) and (9) with appropriate initial and boundary conditions 
should be solved in space and time. Boundary conditions can be formulated in the 
following manner 

 ( ) ( ) ( ) ( ),1, , , ,1, , T,ux t g x t x t h x t on
y+ +

∂ψ
ψ = = Γ ×

∂
 (10) 

 ( ) ( ) ( ) ( ), 1, , , , 1, , T,lx t g x t x t h x t on
y− −

∂ψ
ψ − = − = Γ ×

∂
 (11) 

 ( ) ( )0, ,0 , ,x y x y onψ = ψ Ω  (12) 

here domain Ω is defined as Ω = { (x,y)∈¡2 |  0≤ x≤2π ∧ −1< y<1 }. We have designated 
the upper domain boundary Γu = {(x,y)∈¡2 | 0≤x≤2π ∧ y=1 } and the lower domain 
boundary Γl = { (x,y)∈¡2 | 0 ≤ x ≤ 2π ∧ y = −1}. The time domain is defined as T={ t∈¡ | 
0≤ t≤Te }, where Te is the end of the simulation. We have anticipated the periodic 
boundary conditions in streamwise direction (x-axe), which are in accordance with the 
periodic perturbations obtained by the solution of Orr-Sommerfeld equation of 
hydrodynamic stability. 
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3. NUMERICAL PROCEDURE FOR THE SOLUTION OF PROBLEM 

For the problem stated in the previous section, for the basis function in x-direction we 
have taken trigonometric polynomials, and for y-direction we have taken Chebyshev 
polynomials. The domain in x-direction is equally discretised ∆x = 2π/N, and domain in 
y-direction is discretised by Gauss-Lobatto-Chebyshev points defined as yj = cos(πj/N) 
for 0≤j≤N, where is N-number of discretization points in x- and y-direction. For 
streamwise direction we have used Fourier-Galerkin method, and for stream normal 
direction Chebyshev-collocation method. The truncated Fourier series for streamfunction 
and vorticity read 

 ( ) ( )
2

2

ˆ, , , ,
k N

I k x
N k

k N
x y t y t e

=

=−

ω = ω∑  (13) 

 ( ) ( )
2

2

ˆ, , , ,
k N

I k x
N k

k N
x y t y t e

=

=−

ψ = ψ∑  (14) 

In the above expressions 1I = − is imaginary unit, k-wave number, ( )ˆ ,k jy tω and 

( )ˆ ,k jy tψ are Fourier coefficients for vorticity and streamfunction respectively. In order 

to have 2π-periodicity in the flow domain, we have chosen that wave number must be 
from the set of integers, k∈¢. In order to implement Fourier-Galerkin method to the 
system of equation (8) and (9), we firstly approximate nonlinear convective terms on left 
hand side, in the following manner 
 

 ( ) ( )
/ 2

1
/ 2

, , ,
N

I k x

k NN k

N x y t y t e
y x y x=−

⎡ ⎤∂ψ ∂ω ∂ψ⎛ ⎞ ∂ω= = ⎢ ⎥⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠ ⎢ ⎥⎣ ⎦
∑  (15) 

 ( ) ( )
/ 2

2
/ 2

, , ,
N

I k x

k NN k

N x y t y t e
x y x y=−

⎡ ⎤∂ω∂ψ ∂ψ⎛ ⎞ ∂ω= = ⎢ ⎥⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠ ⎢ ⎥⎣ ⎦
∑  (16) 

Substituting the (13), (14), (15) and (16) in the (8) and (9), we obtain the following 
residual equations 

 
( ) ( ) ( )

( ) ( )

/ 2 / 2 / 2

/ 2 / 2 / 2

2 2/ 2 / 2

2 2
/ 2 / 2

ˆ , , ,

ˆ ˆ, , 0,

N N N
I k x I k x I k x

k
k N k N k Nk k

N N
I k x I k x

k k
k N k N

y t e y t e y t e
t y x x y

y t e y t e
x y

=− =− =−

=− =−

⎡ ⎤ ⎡ ⎤∂ ∂ψ ∂ψ∂ω ∂ωω + − −⎢ ⎥ ⎢ ⎥∂ ∂ ∂ ∂ ∂⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

⎛ ⎞∂ ∂− −ν + ω ≠⎜ ⎟
∂ ∂⎝ ⎠

∑ ∑ ∑

∑ ∑F

 (17) 

 ( ) ( )
2 2/ 2 / 2

2 2
/ 2 / 2

ˆ ˆ, , 0.
N N

I k x I k x
k k

k N k N
y t e y t e

x y=− =−

⎛ ⎞∂ ∂
ω + + ψ ≠⎜ ⎟

∂ ∂⎝ ⎠
∑ ∑  (18) 
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We have introduced the following expression for the curl of body force, 

 ( )
/ 2

/ 2

ˆ , ,
N

y I k xx
k

k N

f f
x y t e

x y =−

∂ ∂
= − =

∂ ∂ ∑F F  (19) 

If we apply Galerkin method to the equations (17) and (18), i.e. we take for the 
weight functions the same as basis functions , we obtain 

 

( )
�

( )

�
( ) ( )

( )

/ 2 / 2

/ 2 / 2

/ 2 / 2

/ 2 / 2

2 2 / 2

2 2
/ 2

ˆ , , , ,

ˆ, , , ,

ˆ , , 0, 0,1, , / 2.

N N
I k x I l x I k x I l x

k
k N k N k

N N
I k x I l x I k x I l x

k
k N k Nk

N
I k x I l x

k
k N

y t e e y t e e
t y x

y t e e y t e e
x y

y t e e l N
x y

=− =−

=− =−

=−

⎡ ⎤∂ ∂ψ ∂ωω + −⎢ ⎥∂ ∂ ∂⎢ ⎥⎣ ⎦

⎡ ⎤∂ψ ∂ω− − −⎢ ⎥∂ ∂⎢ ⎥⎣ ⎦

⎛ ⎞∂ ∂−ν + ω = =⎜ ⎟
∂ ∂⎝ ⎠

∑ ∑

∑ ∑

∑ K

F  (20) 

 ( ) ( )
2/ 2 / 2

2
2

/ 2 / 2

ˆ ˆ, , , , , , 0 ,

0,1, , / 2.

N N
I k x I l x I k x I l x

k k
k N k N

x y t e e k x y t e e
y

l N
=− =−

⎛ ⎞∂
ω + − + ψ =⎜ ⎟

∂⎝ ⎠
=

∑ ∑

K

 (21) 

where we have denoted with ,  the inner product. Recalling that ˆ ˆk k
∗

−ω = ω , i.e. Fourier 
coefficient of inverse wave number is complex conjugate of the corresponding wave 
number, it is not necessary to take l= −N/2,...,N/2, but l=0,1,...,N/2. Having in mind the 
orthogonality relation 

 
2

0

2 , ,
,

0, ,
I k x I l x I k x I l x l k

e e e e dx
l k

π
− π =⎧

= = ⎨ ≠⎩
∫  (22) 

the system of equations (20) and (21) takes the following form 

 
( ) �

( )
�

( ) ( ) ( )
2

2
2

ˆ , ˆ ˆ, , , ,

0,1, , / 2.

k
k k

k k

y t
y t y t y t k y t

t y x x y y

l k N

⎡ ⎤ ⎡ ⎤∂ω ⎛ ⎞∂ψ ∂ψ∂ω ∂ω ∂+ − = + ν − ω⎢ ⎥ ⎢ ⎥ ⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂⎢ ⎥ ⎢ ⎥ ⎝ ⎠⎣ ⎦ ⎣ ⎦
= = K

F
 (23) 

 ( ) ( )
2

2
2

ˆ ˆ, , 0, 0,1, , / 2.k ky t k y t l k N
y

⎛ ⎞∂
ω + − + ψ = = =⎜ ⎟

∂⎝ ⎠
K  (24) 

Applying now the Chebyshev-collocation method in inhomogenuous direction (y-
axe) to the above system of equations, we obtain the following system 
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( ) �
( )

�
( ) ( )

( ) ( )22
,

0

ˆ , ˆ ,

ˆ , , 0,1, , / 2, 1, , 1,

kN j
j j kN j

kN kN

N

j l kN j
l

y t
y y y t

t y x x y

k d y t k N j N
=

∂ω ⎡ ⎤ ⎡ ⎤∂ψ ∂ψ∂ω ∂ω+ − = +⎢ ⎥ ⎢ ⎥∂ ∂ ∂ ∂ ∂⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

⎛ ⎞
+ν − + ω = = −⎜ ⎟

⎝ ⎠
∑ K K

F
 (25) 

 ( ) ( ) ( )22
,

0

ˆ ˆ, , 0,

0,1, , / 2, 1, , 1.

N

kN j j l kN j
l

y t k d y t

k N j N
=

⎛ ⎞
ω + − + ψ =⎜ ⎟

⎝ ⎠
= = −

∑
K K

 (26) 

Here the subscript index N denotes the number of discretization points in y-direction, 
and it is worth reminding that we have taken Ny=Nx=N. Differentiation with regard to y-
variable has been substituted with Chebyshev differentiation expressions [2] given by 

 ( ) ( ) ( ) ( ) ( )
2

2 2
,2

0

ˆ
ˆ ˆ , 0, , ,

N
kN

j kN j j l kN l
l

y y d y j N
y =

∂ ω
= ω = ω =

∂ ∑ K  (27) 

 ( ) ( ) ( ) ( ) ( )
2

2 2
,2

0

ˆ
ˆ ˆ , 0, , .

N
kN

j kN j j l kN l
l

y y d y j N
y =

∂ ψ
= ψ = ψ =

∂ ∑ K  (28) 

The next step to be carried out is the temporal discretization of the governig 
equations. For this purpose we have used the following two-step generalized method 
defined in the following way 

 

( ) ( ) ( ) ( ) ( )

�
( )

�
( ) ( )

�
( )

�
( )

�
( ) ( )

�

1 1

1 1

1 2 1 2

1

1 2 1 2

ˆ ˆ ˆ1 2 1
2

1

1

n n n
kN j kN j kN j

n n n

j j j

kN kN kN

n n

j j

kN kN

y y y
t

y y y
y x y x y x

y y
x y x y x y

+ −

+ −

+

+ ε ω − εω − − ε ω
+

∆
⎡ ⎤⎛ ⎞ ⎛ ⎞ ⎛ ⎞∂ψ ∂ψ ∂ψ∂ω ∂ω ∂ω⎢ ⎥+ γ + γ + − γ − γ −⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂⎢ ⎥⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎣ ⎦

⎛ ⎞ ⎛ ⎞ ⎛ ⎞∂ψ ∂ψ ∂ψ∂ω ∂ω ∂ω− γ + γ + − γ − γ⎜ ⎟ ⎜ ⎟ ⎜⎜ ⎟ ⎜ ⎟ ⎜∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠ ⎝
( )

1n

j

kN

y
−⎡ ⎤

⎢ ⎥ +⎟⎟⎢ ⎥⎠⎣ ⎦

 (29) 

 

( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

2 1 1
1 2 1 2

2 1 1
, 1 2 1 2

0

1 1
1 2 1 2

ˆ ˆ ˆ1

ˆ ˆ ˆ1

ˆ ˆ ˆ1 ,

0, , / 2, 1, 1, 1, , .

n n n
kN j kN j kN j

N
n n n

j l kN l kN l kN l
l

n n n
kN j kN j kN j

k y y y

d y y y

y y y

k N j N n M

+ −

+ −

=

+ −

⎡ ⎤+ν θ ω + θ ω + −θ −θ ω −⎣ ⎦

⎡ ⎤−ν θ ω + θ ω + −θ −θ ω =⎣ ⎦

= θ + θ + −θ − θ

= = − =

∑

K K K

F F F

  

for the spatially discretised momentum equation (25) and  
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( )21 2 1 1
,

0

ˆ ˆ ˆ 0,  

0, , / 2, 1, , 1, 1, , .

N
n n n
j j j l l

l
k d

k N j N n M

+ + +

=

ω − ψ + ψ =

= = − =

∑
K K K

 (30) 

for the spatially discretised the definition of vorticity equation (26). Here is denoted 
t=n∆t, where ∆t-time step, n-the number of time step.   

The same procedure must be carried out to boundary and initial conditions. 

 ( ) ( ) ( )
/ 2

, / 2 ,
/ 2

ˆ, ,
N

I k x
N k

k N
g x t g t e g x t+ + +

=−

= ≈∑  (31) 

 ( ) ( ) ( )
/ 2

, / 2 ,
/ 2

ˆ, ,
N

I k x
N k

k N
g x t g t e g x t− − −

=−

= ≈∑  (32) 

 ( ) ( ) ( )
/ 2

, / 2 ,
/ 2

ˆ, ,
N

I k x
N k

k N
h x t h t e h x t+ + +

=−

= ≈∑  (33) 

 ( ) ( ) ( )
/ 2

, / 2 ,
/ 2

ˆ, ,
N

I k x
N k

k N
h x t h t e h x t+ + +

=−

= ≈∑  (34) 

 ( ) ( ) ( )
/ 2

0, / 2 0, 0
/ 2

ˆ, ,
N

I k x
N k

k N
x y y e x y

=−

ψ = ψ ≈ ψ∑  (35) 

Having in mind the expression (14) for streamfunction, boundary conditions (10) and 
(11), as well as their trigonometric polynomial approximation given by (31)-(35), after 
implementing Galerkin method and applying the orthogonality relation (22), we obtain 
the following boundary conditions in space of Fourier coefficients 

 ( ) ( ),ˆ ˆ1, , 0, , / 2.k kt g t k N+ψ = = K  (36) 

 ( ) ( ),ˆ ˆ1, , 0, , / 2,k kt g t k N−ψ − = = K  (37) 

 ( ) ( ),

ˆ ˆ1, , 0, , / 2,k
kt h t k N

y +

∂ψ
= =

∂
K  (38) 

 ( ) ( ),

ˆ ˆ1, , 0, , / 2.k
kt h t k N

y −

∂ψ
− = =

∂
K  (39) 

After time discretization and application of Chebyshev collocation method for boundary 
conditions, the above boundary conditions read as follow 

 1 1
,0 ,ˆ ˆ , 1, 0, , / 2,n n

k kg y k N+ +
+ψ = = = K  (40) 

 1 1
, ,ˆ ˆ , 1, 0, , / 2,n n

k N kg y k N+ +
−ψ = = − = K  (41) 

 ( )1 1 1
0, , ,

0

ˆˆ , 1, 0, , / 2,
N

n n
l k l k

l
d h y k N+ +

+
=

ψ = = =∑ K  (42) 
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 ( )1 1 1
, , ,

0

ˆˆ , 1, 0, , / 2.
N

n n
N l k l k

l
d h y k N+ +

−
=

ψ = = − =∑ K  (43) 

This system of equations (29) and (30) together with boundary conditions (40) to (43) 
should be solved numerically. The system is represented by 2(N+1)×2(N+1) three time 
levels matrix equation. The nonlinear advective terms have been computed by 
pseudospectral technique [3], so that full Navier-Stokes equation in vorticity-stream-
function formulation can be simulated for the case of 2D viscous channel flow. The 
problem of two boundary conditions for stream function and none for vorticity has been 
successfully resolved by applying the influence matrix method [4]. 

4. TEMPORAL HYDRODYNAMIC STABILTY 

In order to simulate the process of instability of viscous fluid flow between two 
parallel horizontal plates, we solved Orr-Sommerfeld equation of hydrodynamic linear 
stability for the given velocity profile, in this case for plane Poiseuille flow, and formed 
the streamfunction perturbation as the linear combination of the eigenfunctions obtained 
as the solution of this equation. It is well known fact that there is no analytical solution of 
this equation. The first numerical solution of this equation is given in the paper [5], and 
the critical Reynolds number of this type of flow has been found to be 5772. In order to 
show how we perturbed the Poiseuille flow, we start from the equation (8) in which we 
substitute 

 , , F f′ ′ ′= Ω + = Ψ + = +ω ω ψ ψ F  (44) 

where we  have taken in account the expression (19), so that we have 

 
( ) ( ) ( ) ( ) ( )

( ) ( )
2 2

2 2

t y x x y

F f
x y

∂ ∂ ∂ ∂ ∂′ ′ ′ ′ ′Ω + + Ψ + Ω+ − Ψ + Ω+ =
∂ ∂ ∂ ∂ ∂

⎛ ⎞∂ ∂′ ′ ′= + + Ω+ + Ω+⎜ ⎟
∂ ∂⎝ ⎠

ω ψ ω ψ ω

ν ω ω
 (45) 

The capital letters designates the basic flow values, and the prime denotes 
perturbations of the corresponding physical values. If we subtract (8) from (45) the above 
equation is reduced to following form 

 
2 2

2 2

t y x y x y x x y x y

f
x y x y

′ ′ ′∂ ∂ ∂′ ′ ′ ′∂ ∂Ψ ∂ ∂Ω ∂ ∂Ω ∂Ψ ∂+ + + − + −
∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂

⎛ ⎞′∂ ′ ′ ′∂ ∂ ∂′− = + +⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠

ψ ψ ψω ω ω ω

ψ ω ω ων
 (46) 

Neglecting the nonlinear terms of perturbed values as small values of higher order than 
we have 

 
2 2

2 2f
t y x y x x y x y x y

⎛ ⎞′ ′∂ ∂′ ′ ′ ′ ′∂ ∂Ψ ∂ ∂Ω ∂Ω ∂Ψ ∂ ∂ ∂′+ + − − = + +⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠

ψ ψω ω ω ω ων  (47) 



 Vorticity evolution in perturbed Poiseuille flow   79 

 

In plane channel flow, better to say, in Poiseuille flow we have U=∂Ψ/∂y =1−y2 , 
V=−∂Ψ/∂x=0, dU dyΩ = − , and also 0x∂Ω ∂ = , so finally we have 

 
2 2

2 2f
t y x x y x y

ψω ω ω ων
⎛ ⎞′ ∂Ω∂′ ′ ′ ′∂ ∂Ψ ∂ ∂ ∂′+ − = + +⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠

 (48) 

We anticipate that 0f ′ = , and ′ ′= −∆ω ψ , so that we have now 

 
2

2
2

d UU
t x x d y

ψψ ψ ν ψ
′∂∂ ∂′ ′ ′∆ + ∆ − = ∆

∂ ∂ ∂
 (49) 

with boundary conditions 

 ( )1 0y′ψ = ± =          ( )1 0y
y
′∂ψ = ± =

∂
 (50) 

We have used modal approach for solving this problem, anticipating the that the 
perturbations are 2π periodic in x-direction, and are represented in the following way 

 ( ) ( ) ( ) ( ) ( ) ( )
1 1

1 1
2 2

i x c ti x c tˆ ˆx, y,t y e y e
∗ ∗− α −∗α −∗ ⎛ ⎞′ψ = ψ +ψ = ψ +ψ⎜ ⎟

⎝ ⎠
 (51) 

Here ψ1 is the normal mode form of stream function perturbation, and the values 
denoted by ∗ designate their  complex-conjugate value. Thus the sum of normal mode 
and its complex-conjugate gives the real valued function ψ′. Since the complex-
conjugate value 1

∗ψ can be easily obtained from the complex-valued function 1ψ itself, it 
is only necessarily to substitute 1ψ in the (49), so that it reads 

 ( ) ( ) ( ) ( ) ( ) ( )
2

2
2

i x ct i x ct i x ctd Uˆ ˆ ˆU y e y e y e ,
t x xd y

− − −⎛ ⎞∂ ∂ ∂+ ∆ − = ∆⎜ ⎟∂ ∂ ∂⎝ ⎠
α α αψ ψ ν ψ  (52) 

which after some differentiation and rearrangements gives 

 ( )
2 2 42

2 4 2
2 2 2 42
ˆ ˆ ˆd d dd Uˆ ˆ ˆU c .

idy dy dy dy
⎛ ⎞ ⎛ ⎞

− − − = − +⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

ψ ψ ψνα ψ ψ α ψ α
α

 (53) 

This equation known as Orr-Sommerfeld equation, together with appropriate boundary 
conditions 
 

 ( ) ( ) ( ) ( )ˆ ˆˆ ˆ1 0, 1 0, 1 0, 1 0,d d
dy dy
ψ ψψ ψ= − = = − =  (54) 

should be solved numerically. Numerical procedures are given for examples in [5], [6], 
[7] and [8]. This equation can be reduced to operator form 
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 ( )( ) ( )
2

2 2 4 2 2 4
2 2d Uˆ ˆ ˆ ˆ ˆ ˆU c

idy
− − − = − +D D Dνψ α ψ ψ α ψ α ψ ψ

α
 (55) 

where is ∆ = d/dy differential operator, which can be solved as generalized eigenvalue 
problem, where c’s are eigenvalues and ψ̂ ’s are eigenfunctions. 

We can fix now two parameters α and ν, and compute the eigenvalue c, what 
correspods to the case of temporal hydrodynamic stability. If we choose to fix c and ν, 
and to compute α, that would be the case of spatial hydrodynamic stability. In the first 
case we have α∈¡ and c∈£, and in the second case c∈¡ and α ∈£. Here c is the velocity 
of traveling wave, and α is its wave number. In general case c=cRe+ i cIm and α=αRe+ i 
αIm , but since we have only one equation and two unknowns, we have to make some 
assumptions concerning these unknowns. In our calculations we have anticipated α=1.  

The  results obtained for Re=1000 (ν=1/1000) are presented in fig.1 and are obtained 
for the N=128 Gauss-Lobatto-Chebyshev point in y-directions. For creating the 
perturbation that can exhibit the transieth growth mechanism, we have used the 
optimized linear combination of all eigenvectors which is  normalized with regard to the 
least stable eigenvalue. This optimized perturbation was superposed to the initial 
unperturbed velocity profile, and the flow was driven by the force term determined from 
the perturbed Navier Stokes equation.  This transient growth  is possible due to non-
normality of Orr-Sommerfeld operator, but the all eigenvalues and eigenvectors have to 
be used for creating linear combination, not only the least stable eigenvalue and 
correspoding eigenvector, see [9],[10],[11]. The results of simulation Fig.1and Fig.2 are 
given in the next section for the dimensionless time t=nπ, n=1,...,10. 

5. THE RESULTS OF TRANSIENT FLOW SIMULATION  

The initial condition for our simulation is the solution of the problem for laminar 
Poiseuille 2D-flow is 

 ( ) ( )2, ,0 1 , , ,0 0, .U x y y V x y on= − = Ω  (56) 

Our goal is to simulate the transition process from laminar to perturbed state for the 
value of Reynolds number Re=1000 which is beneath the critical value Rec=5772, to 
simulate the transient growth of kinetic energy and enstrophy. We have carried out this 
simulation  by imposing the  perturbations obtained by solution of Orr-Sommerfeld 
equation on laminar velocity profile. The simulations are driven by forcing term which is 
determined by the perturbed Navier-Stokes equation, 

 
( ) ( ) ( )

( ) ( ) ( ) ( )
2 2

2 2

pertF
t y x

.
x y x y

∂ ∂ ∂′ ′ ′= Ω + + Ψ + Ω+ −
∂ ∂ ∂

⎡ ⎤∂ ∂ ∂ ∂′ ′ ′ ′− Ψ + Ω+ − Ω+ + Ω+⎢ ⎥∂ ∂ ∂ ∂⎣ ⎦

ω ψ ω

ψ ω ν ω ω
 (57) 

Here Ω and Ψ are the values determined from (56) at initial time, and later they are 
results obtained from our numerical procedure and our MATLAB code, and the ψ′ and 
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ω′ are obtained as solution of Orr-Sommerfeld equation, and as optimized linear 
combination of all eigenvectors,  

 ( ) ( ) ( ) ( ) ( )( )
1 1

n n
N N

i x c ic ti x c t
n n n nn

n n

ˆ ˆx, y,t y e y e
′ ′

α − +α −

= =

′ψ = β ψ = β ψ∑ ∑ Re Im  (58) 

and, 

 ( )x, y,t .′ ′= −∆ω ψ  (59) 

Here ˆkψ ’s are eigenvectors and cn’s are eigenvalues of generalized eigenvalue 
problem of Orr-Sommerfeld equation for the case of plane Poiseuille flow, and βn are 
coefficient which should be determined by appropriate optimization procedure. The 
procedure we used in this paper is according to [7, p.121,fig.4.7] and is based on method 
first developed in [11]. 

Here β is perturbation spectar obtained by using the matrix Ψ, whose columns are 
eigenvectors ( )ˆn yψ , in the following way 

 ( )1 0y, .− ′= Ψβ ψ  (60) 

Functional to be minimized is  

 ( ) ( )f A .∗∗ ∗ ∗ ∗′ ′= Ψ Ψ = Ψ Ψψ ψ = β β β β = β β  (61) 

In other words, the functional is the dot product of perturbation vector of stream 
function and its complex conjugate. If we put the condition that the i-th mode is of unit 
magnitude, then the variational problem can be reduced to the following function 

 ( )1if A .∗= + −λβ β β e  (62) 

Here we have designated with ei – the unit vector, i.e. the column vector whose the 
only the i-th element is different from null. Let find the derivative with respect to β, e.i. 
let find the first variation of the above function f and equal it with zero, so that we have 

 ( )1i i
d f d A A .d d

∗⎡ ⎤= + − = + =⎣ ⎦ 0λ λβ β β β
β β

e e  (63) 

And after rearrangements 

 iA ,= −λβ e  (64) 

so that after multiplication both side with inverse matrice A−1from the left we have 

 1
iA .−= −λβ e  (65) 

The optimized spectar can be normalized by appropriate calculation of coefficient λ, so 
that the value βi=1 can be obtained. Having this in mind we have 
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 (66) 

and the value of λ is determined by this expression 

 1 1
1i

ii ii

.
a a− −

− −= =
βλ  (67) 

Fig.1 shows the vorticity fields for six different times, for dimensionless time t=nπ, 
n=1,...,6. Since the least stable eigenvalue for Re=1000 equals c=0.3462–i0.0421, we can 
see that the velocity of traveling wave perturbation optimized with regard to this mode 
has 34.62% of the fluid velocity in the middle of the channel. In the time t=π we can see 
the vorticity distribution similar to that given in reference [6, p.121, fig.4.7], and as we 
can see the middle of the channel is almost unperturbed. In the next time for t=2π we can 
see that vorticity has advected and diffused in the direction of the middle of channel, and 
that the maximal amplitudes has been decreased, what is in our opinion the consequence 
of the relaxation from the initial perturbation to the exact solution to Navier-Stokes given 
by (56). This can be seen on colorbars in the first two figures, where on the first one we 
have maximal magnitude 6.2 and on the second one 5.5 in dimensionless vorticity units. 
In the next instant of time for t=3π, it can be observed the merging of perviously 
separated vortexes with the same sign, which are deformed due to wall normal velocity 
perturbation, which is not shown here due to space limitation. 

In t=4π, two circled vortexes have been formed with the centers located at y=0.2 
positive one and y=−0.2 the negative one. The positive one with counter-clockwise 
rotation (red color) and negative vortex with clockwise rotation (blue color), in the 
middle of the channel, where this vortex pair is being deformed by the velocity gradient 
of the flud flow. The vortex pairs on upper and lower wall are in the form of romboid 
since the velocity of perturbation is greater than the velocity of surronding fluid near the 
walls, because the velocity of perturbation is cRe=0.3462 and velocity of the fluid is given 
by (56). This velocity difference decreases with going away from the walls according 
with this expression till the normal coordinate reaches the value where these two 
velocities are equal, better to say, till to the value of critical fluid layer y≈0.8, since U=1-
0.64=0.36. So we can notice that the velocity of perturbation traveling wave (phase 
velocity) is much higher in the wall region than the streamwise fluid velocity, but 
opposite is valid for the middle of the channel, where fluid velocity U (−0.8<y<0.8) is 
greater than phase velocity. 
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Fig.1. vorticity distribution ω(x,y,t) in 2D channel viscous fluid flow for t=π,…,6π for 

streamfunction perturbation optimized to least stable eigenmode. 

 
In the next instant of time for t=5π it can be noticed that these vortex have been 

deformed in streamwise direction, by the mean velocity gradient., and this process is 
continued in the next instant of time t=6π. 
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Fig.2: vorticity distribution ω(x,y,t) in 2D channel viscous fluid flow for t=7π,…,10π for 

streamfunction perturbation optimized to least stable eigenmode. 

In the next vorticity fields for t=7,...,10π, the process of vortex distorsion is 
continued, and advected in downstream direction. The maximal and minimal values of 
vorticity are on the upper and lower wall respectively , and their values decrease with 
increase of time. Vortex pair on lower plate consist of two vortexes, the negative one 
which atains the value ωmin=−4.8 and positive one with the value ωmax=1 at instant of 
time t=10π. The opposite is true on the upper wall;  the negative vortex attains the value 
ωmin=−1 and vortex with counter-clockwise rotation (red color) reaches the value 
ωmax=4.8. These vortex pairs moves in downstream direction with phase velocity 
cRe=0.3462, which can be seen on the figures above, since the displacement of the center 
of the vortex between two instant of time can be determined in the following way: s=cRe 
∆t=0.3462⋅3.1416=1.0876, and this is what we can see on this fig.2 between four 
different instant of time. 
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6. CONCLUSION  

 
The most important results can be seen on the colorbars for ten different instant of 

times. It can be noticed that the maximal vorticity displayed on colorbars attains its 
maximal value at time t=4π (ωmax=6.85) and t=5π (ωmax=6.75), and afterwards the 
intensity of vorticity monotonically decreases, so that for t=10π we have the value ωmax 
=4.94. In this way we have two time periods, the first one when the maximal values of 
vorticity increases with time until it reaches t=4π, and second one when the extreme 
values of vortex intensity decline and the kinetic energy and enstrophy are monotonicaly 
decreasing functions of time. 
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EVOLUCIJA VRTLOŽNOSTI U POREMEĆENOM 
POASEJEVOM STRUJANJU 

 Miloš M. Jovanović 

Apstrakt: U radu se razmatra direktna numerička simulacija vrtložnosti viskoznog nestišljivog 
fluida za slučaj Poasejevog strujanja (strujanja između horizontalnih paralelnih ploča pod 
dejstvom gradienta pritiska u horizontalnom pravcu), kod koga je polju strujne funkcije fluida 
pridodato poremećajno polje konačne amplitude. Ovo poremećajno polje je dobijeno 
optimizacijom linearne kombinacije svih sopstvenih vektora dobijenih kao rešenje Orr-
Sommerfeld-ove jednačine za granične uslove koji odgovaraju opisanom primeru. 

Navije-Stoksova jednačina u obliku strujna funkcija–vrtložnost je numerički simulirana 
korišćenjem pseudospekttralnog metoda. Za aproksimaciju u pravcu x-ose korišćen je Furije-
Galerkinov metod, dok u nehomogenom pravucu, u pravcu y-ose korišćen je Čebišeljev kolokacioni 
metod. Za diskretizaciju po vremenu korišćen je poluimplicitni metod Adams-Bašvorta koji je 
drugog reda tačnosti. U radu su prikazana poremećajna polja vrtložnosti za deset različitih 
trenutaka vremena, u periodu tzv. prelaznog rasta energije do trenutka kada ona počinje da opada, 
odnosno do početka procesa relaminarizacije. 

Ključne reči: Direktna numerička simualacija, poremećajno Poasejevo strujanje, podkritična 
nesabilnost strujanja. optimizovani poremećaji, pseudospektralni metod.  
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