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Abstract. This paper deals with the problem of delay dependent stability for 
both ordinary and large-scale time-delay systems. Some necessary and 
sufficient conditions for delay-dependent asymptotic stability of continuous 
and discrete linear time-delay systems are derived. These results have been 
extended to the large-scale time-delay systems covering the cases of two and 
multiple existing subsystems. The delay-dependent criteria are derived by 
Lyapunov's direct method and are exclusively based on the solvents of 
particular matrix equation and Lyapunov equation for non-delay systems. 
Obtained stability conditions do not possess conservatism. Numerical 
examples have been worked out to show the applicability of results derived. 
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1. INTRODUCTION 

The problem of investigation of time-delay systems has been exploited over many 
years. Time-delay is very often encountered in various technical systems, such as 
electric, pneumatic and hydraulic networks, chemical processes, long transmission lines, 
etc. The existence of pure time lag, regardless if it is present in the control or/and the 
state, may cause undesirable system transient response, or even instability.  

During the last three decades, the problem of stability analysis of time-delay systems 
has received considerable attention and many papers dealing with this problem have 
appeared. In the literature, various stability analysis techniques have been utilized to 
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derive stability criteria for asymptotic stability of the time-delay systems by many 
researchers.  

The developed stability criteria are classified often into two categories according to 
their dependence on the size of the delay: delay-dependent and delay-independent 
stability criteria. It has been shown that delay-dependent stability conditions that take 
into account the size of delays, are generally less conservative than delay-independent 
ones which do not include any information on the size of delays.  

Further, the delay-dependent stability conditions can be classified into two classes: 
frequency-domain (which are suitable for systems with a small number of heterogeneous 
delays) and time-domain approaches (for systems with a many heterogeneous delays).  

In the first approach, we can include the two or several variable polynomials [1], [2] 
or the small gain theorem based approach.  

In the second approach, we have the comparison principle based techniques for 
functional differential equations [3], [4] and respectively the Lyapunov stability approach 
with the Krasovskii and Razumikhin based methods [5], [6]. The stability problem is thus 
reduced to one of finding solutions to Lyapunov [7] or Riccati equations  [8], solving 
linear matrix inequalities (LMIs) [9], [10], [11] [12] or analyzing eigenvalue distribution 
of appropriate finite-dimensional matrices [13] or matrix pencils [14]. For further 
remarks on the methods see also the guided tours proposed by [15], [16], [17], [18], [19], 
[20].  

It is well-known [21] that the choice of an appropriate Lyapunov–Krasovskii 
functional is crucial for deriving stability conditions. The general form of this functional 
leads to a complicated system of partial differential equations [22]. Special forms of 
Lyapunov–Krasovskii functionals lead to simpler delay-independent (Boyd et al., 1994; 
Verriest & Niculescu, 1998; Kolmanovskii & Richard, 1999) [9], [23], [21] and (less 
conservative) delay-dependent conditions [24], [25], [21], [26], [27], [28]. Note that the 
latter simpler conditions are appropriate in the case of unknown delay, either unbounded 
(delay-independent conditions) or bounded by a known upper bound (delay-dependent 
conditions).  

In the delay-dependent stability case, special attention has been focused on the first 
delay interval guaranteeing the stability property, under some appropriate assumptions on 
the system free of delay. Thus, algorithms for computing optimal (or suboptimal) bounds 
on the delay size are proposed in [14] (frequency-based approach), in [29] (integral 
quadratic constraints interpretations), in [10], [11], [7] (Lyapunov-Razumikhin function 
approach) or in [12] (discretization schemes for some Lyapunov- Krasovskii 
functionals). For computing general delay intervals, see, for instance, the frequency 
based approaches proposed in [30]. 

In the past few years, there have been various approaches to reduce the conservatism 
of delay-dependent conditions by using new bounding for cross terms or choosing new 
Lyapunov–Krasovskii functional and model transformation. The delay-dependent 
stability criterion of [31], [26] is based on a so-called Park’s inequality for bounding 
cross terms. However, major drawback in using the bounding of [31] and [26] is that 
some matrix variables should be limited to a certain structure to obtain controller 
synthesis conditions in terms of LMIs. This limitation introduces some conservatism. In 
[32] a new inequality, which is more general than the Park’s inequality, was introduced 
for bounding cross terms and controller synthesis conditions were presented in terms of 
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nonlinear matrix inequalities in order to reduce the conservatism. It has been shown that 
the bounding technique in [32] is less conservative than earlier ones. An iterative 
algorithm was developed to solve the nonlinear matrix inequalities [32]. 

Further, in order to reduce the conservatism of these stability conditions, various 
model transformations have been proposed. However, the model transformation may 
introduce additional dynamics. In [33] the sources for the conservatism of the delay-
dependent methods under four model transformations, which transform a system with 
discrete delays into one with distributed delays are analyzed. It has been demonstrated 
that descriptor transformation, that has been proposed in [34], leads to a system which is 
equivalent to the original one, does not depend on additional assumptions for stability of 
the transformed system and requires bounding of fewer cross-terms. In order to reduce 
the conservatism [35], [36] proposed some new methods to avoid using model 
transformation and bounding technique for cross terms. 

In [37] both the descriptor system approach and the bounding technique using by [32] 
are utilized and the delay-dependent stability results are performed. The derived stability 
criteria have been demonstrated to be less conservative than existing ones in the 
literature.  

Delay-dependent stability conditions in terms of linear matrix inequalities (LMIs) 
have been obtained for retarded and neutral type systems. These conditions are based on 
four main model transformations of the original system and application mentioned 
inequalities. 
The majority of stability conditions in the literature available, of both continual and 
discrete time-delay systems, are sufficient conditions. Only a small number of works 
provide both necessary and sufficient conditions [38], [39], [47], [49], [50], [53] which 
are in their nature mainly dependent of time-delay. These conditions do not possess 
conservatism but often require more complex numerical computations. In our paper we 
represent some necessary and sufficient stability conditions. 

Less attention has been drawn to the corresponding results for discrete-time delay 
systems [40], [41], [42], [43], [44], [45], [54]. This is mainly due to the fact that such 
systems can be transformed into augmented high dimensional systems (equivalent 
systems) without delay  [22], [46]. This augmentation of the systems is, however, 
inappropriate for systems with unknown delays or systems with time varying delays. 
Moreover, for systems with large known delay amounts, this augmentation leads to large-
dimensional systems. Therefore, in these cases the stability analysis of discrete time-
delay systems can not be to reduce on stability of discrete systems without delay. 

In our paper we present delay-dependent stability criteria for particular classes of 
time-delay systems: continuous and discrete time-delay systems and continuous and 
discrete time-delay large-scale systems. Thereat, these stability criteria are express in 
form necessary and sufficient conditions. 

2. STABILITY OF TIME-DELAY SYSTEMS 

Throughout this paper we use the following notation. R and C denote real (complex) 
vector space or the set of real (complex) numbers, T+ denotes the set of all non-negative 
integers, *λ  means conjugate of Cλ∈  and F ∗ conjugate transpose of matrix n nF C ×∈ .  
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Re(s) is the real part of s C∈ . The superscript T denotes transposition. For real matrix 
F  the notation 0F >  means that the matrix F  is positive definite. ( )i Fλ  is the 

eigenvalue of matrix  F . Spectrum of matrix F  is denoted with ( )Fσ  and spectral 

radius with ( )Fρ .  

2.1. Continuous time-delay systems 

Considers class of continuous time-delay systems described by 

 ( ) ( ) ( ) ( ) ( )0 1 , , 0t A t A t t t t= + − τ = ϕ − τ ≤ <x x x x&  (1) 

Theorem 1. [38] Let the system be described by (1). If for any given matrix * 0Q Q= >  

there exist matrix * 0P P= > , such that  

 ( )( ) ( )( )0 00 0
T

P A T A T P Q+ + + = −  (2) 

where ( )T t is continuous and differentiable matrix function which satisfies 

 ( ) ( )( ) ( ) ( )0 10 , 0 ,

0 ,

A T T t t T A
T t

t

⎧ + ≤ ≤ τ τ =⎪= ⎨
> τ⎪⎩

&  (3) 

then the system (1) is asymptotically stable.   
 In paper [38] it is emphasized that the key to the success in the construction of a 
Lyapunov function corresponding to the system (1) is the existence of at least one 
solution ( )T t  of (3) with boundary condition ( ) 1T Aτ = . In other words, it is required 
that the nonlinear algebraic matrix equation 

 ( )( ) ( )0 0
10A Te T A+ τ =  (4) 

has at least one solution for ( )0T . It is asserted, there, that asymptotic stability of the 
system (Theorem 1) can be determined based on the knowledge of only one or any 
solution of the particular nonlinear matrix equation. However, [47] gives counterexample 
which denies this maintenance. 

2.1.1 Main results 

If we introduce a new matrix,  

 ( )1 0R A T+�  (5) 

then condition (2) reads  

 *PR R P Q+ = −  (6) 
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which presents a well-known Lyapunov’s equation for the system without time-delay. 
This condition will be fulfilled if and only if R is a stable matrix:  

 ( )Re 0Riλ <  (7) 

Let TΩ  and RΩ  denote sets of all solutions of eq. (4) per T(0) and (6) per R, 
respectively.  

Equation (4)  can be written in a different form as follows, 

 0 1 0RR A e A− τ− − =  (8) 

and there follows 

 ( )0 1det 0RR A e A− τ− − =  (9) 

Substituting a matrix variable R by scalar variable s in (7), the characteristic equation of 
the system (1) is obtained as 

 ( ) ( )0 1det 0sf s sI A e A− τ= − − =  (10) 

Let us denote 

 ( ){ }| 0s f sΣ =  (11) 

a set of all characteristic roots of the system (1). The necessity for the correctness of 
desired results, forced us to propose new formulations of Theorem 1. 
Theorem 2. [47] Suppose that there exist(s) the solution(s) ( )0 TT ∈Ω  of (4). Then, the 

system (1) is asymptotically stable if and only if for any matrix * 0Q Q= >  there exists 

matrix *
0 0 0P P= >  such that (2) holds for all solutions ( )0 TT ∈Ω  of (4). 

Conclusion 1.  Statement Theorem 2 require that condition (2) is fulfilled for all 
solutions  ( )0 TT ∈Ω  of (4).  In other words, it is requested that condition (7) holds for 
all solution R of (8), especially for maxR R= , where the matrix m RR ∈Ω  is maximal 
solvent of (8) that contains eigenvalue with a maximal real part 

: Re max Rem m s
s

∈Σ
λ ∈Σ λ = . Therefore, from (7) follows condition ( )Re 0i mRλ < .  

On the basis of Conclusion 1, it is possible to reformulate Theorem 2 in the following 
way.  
Theorem 3. [47] Suppose that there exists maximal solvent mR  of (8). Then, the system 

(1) is asymptotically stable if and only if for any matrix * 0Q Q= >  there exists matrix 
*

0 0 0P P= >  such that (6) holds for the solution mR R=  of (8). 

2.2 Continuous large scale time-delay systems 

Consider a linear continuous large scale time-delay autonomous systems composed of 
N  interconnected subsystems. Each subsystem is described as: 
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  ( ) ( ) ( )
1

N

i i i ij j ij
j

t A t A t
=

= + − τ∑x x x& , 1 i N≤ ≤  (12) 

with an associated function of initial state ( ) ( )i iθ = ϕ θx , , 0 , 1
im i N⎡ ⎤θ∈ −τ ≤ ≤⎣ ⎦ . 

( ) in
i t R∈x  is state vector, i in n

iA R ×∈  denote the system matrix, i jn n
ijA ×∈R  represents 

the interconnection matrix between the i -th and the j -th subsystems, and ijτ  is constant 
delay. 

For the sake of brevity, we first observe system (12) made up of two subsystems 
( 2N = ). For this system, we derive new necessary and sufficient delay-dependent 
conditions for stability, by Lyapunov's direct method. The derived results are then 
extended to the linear continuous large scale time-delay systems with multiple 
subsystems. 

2.2.1. Main results 

Theorem 4. [49] Given the following system of matrix equations (SME) 

  
 

1 11 1 21
1 1 11 2 21 0R RR A e A e S A− τ − τ− − − =  (13) 

  
 

1 12 1 22
1 2 2 2 12 2 22 0R RR S S A e A e S A− τ − τ− − − =  (14) 

where 1A , 2A , 12A , 21A  and 22A  are matrices of system (12) for 2N = , in  subsystem 
orders and ijτ  time-delays of the system. If there exists solution of SME (13)-(14) upon 

unknown matrices 
 

1 1
1

n nR R ×∈  and 1 2
2

n nS C ×∈ , then the eigenvalues of matrix 
 1R  belong 

to a set of roots of the characteristic equation of system (12)  for 2N = . 
Proof. By introducing the time-delay operator se−τ , the system (12)  can be expressed in 
the form 

  
( ) ( ) ( ) ( )

( ) ( ) ( )

11 12

21 22

1 11 12

21 2 22

1 2

,
s s

s s

TT T

e
A A e A e

t t A s t
A e A A e

t t t

−τ −τ

−τ −τ

⎡ ⎤+
= =⎢ ⎥

+⎣ ⎦

⎡ ⎤= ⎣ ⎦

x x x

x x x

&
 (15) 

Let us form the following matrix 

  ( ) ( )
11 12

1

1 2 21 22

2

1 11 12

21 2 22

( )
s s

n
ij n n s s

n
e

sI A A e A e
F s F s sI A s

A e sI A A s

−τ −τ

+ −τ −τ

⎡ ⎤− − −
⎡ ⎤= = − = ⎢ ⎥⎣ ⎦ − − −⎢ ⎥⎣ ⎦

 (16) 

Its determinant is 
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( ) ( ) ( ) ( ) ( )

( ) ( )
( ) ( )
( ) ( )

11 2 21 12 2 22

21 22

11 2 12 2

21 22

det det

, ,
det

F s S F s F s S F s
F s

F s F s

G s S G s S
G s G s

⎡ + + ⎤
= ⎢ ⎥

⎣ ⎦
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

 (17) 

  ( ) 11 21
11 2 1 1 11 2 21, s s

nG s S sI A A e S A e−τ −τ= − − −   (18) 

  ( ) 12 22
12 2 2 2 2 12 2 22, s sG s S sS S A A e S A e−τ −τ= − − −  (19) 

The characteristic polynomial of system (12) for 2N = , defined by 

  ( ) ( )( ) ( )2det =det ,ˆ N ef s sI A s G s S= −   (20) 

is independent of the choice of matrix 2S , because the determinant of matrix ( )2,G s S  is 
invariant with respect to elementary row operation of type 3. Let us designate a set of 
roots of the characteristic equation of system (12) by ( ){ }| s 0ˆ s f∑ = = . Substituting 

scalar variable s  by matrix X  in ( )2,G s S  we obtain  

  ( ) ( ) ( )
( ) ( )

11 2 12 2
2

21 22

, ,
,

G X S G X S
G X S

G X G X
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

 (21) 

If there exist transformational matrix 2S  and matrix 
 

1 1
1

n nR ×∈C such 
that ( )

 11 1 2, 0G R S = and ( )
 12 1 2, 0G R S =  is satisfied, i.e. if (13)-(14) hold, then 

  ( ) ( ) ( )
   1 11 1 2 22 1=det , det 0f R G R S G R⋅ =   (22) 

So, the characteristic polynomial (20) of system (12)  is annihilating polynomial [48] for 
the square matrix

 1R , defined by (13)-(14). In other words, ( )
 1Rσ ⊂ ∑ .  

Theorem 5. [49] Given the following SME 

  
 

2 12 2 22
2 2 1 12 22 0R RR A e S A e A− τ − τ− − − =  (23) 

  
 

2 11 2 21
2 1 1 1 1 11 21 0R RR S S A e S A e A− τ − τ− − − =   (24) 

where 1A , 2A , 12A , 21A  and 22A  are matrices of system (12) for 2N = , in  subsystem 
orders and ijτ time-delays of the system. If there exists solution of SME (23)-(24) upon 

unknown matrices 
 

2 2
2

n nR ×∈C  and 2 1
1

n nS ×∈C , then the eigenvalues of matrix 
 2R  belong 

to a set of roots of the characteristic equation of system (12)  for 2N = . 
Proof. Proof is similarly with the proof of Theorem 4. 
Definition 1. The matrix 

 1R  (
 2R ) is referred to as solvent of SME  (13)-(14)  ((23)-(24)

). 
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Definition 2. Each root mλ  of the characteristic equation (20) of the system (12) which 
satisfies the following condition: Re max Re ,m s sλ = ∈Σ  will be referred to as maximal 
eigenvalue of system (12). 
Definition 3. Each solvent 1mR  ( 2mR ) of SME (13)-(14) ((23)-(24)), whose spectrum 
contains maximal eigenvalue mλ  of system (12), is referred to as maximal solvent of 
SME (13)-(14)  ((23)-(24)). 
Theorem 6. [49] Suppose that there exists maximal solvent of SME (23)-(24) and let 

1mR  denote one of them. Then, system (12), for 2N = , is asymptotically stable if and 

only if for any matrix * 0Q Q= >  there exists matrix * 0P P= >  such that 

  *
1 1m mP P R QR + = −  (25) 

Proof. Sufficient condition. Define the following vector continuous functions 

 

( )

( ) ( ) ( ) ( )
2 2

1 2
1 1 0

, , 0 ,

,

i

ji

ti i m

t t i i ji i
i j

t

S t T t d
τ

= =

⎡ ⎤= + θ θ∈ −τ⎣ ⎦
⎛ ⎞

= + η − η η⎜ ⎟⎜ ⎟
⎝ ⎠

∑ ∑ ∫

x x

z x x x x
 (26) 

where ( ) i in n
jiT t ×∈C , 1, 2j =  are varying continuous matrix functions and 

11 nS I= , 
1 2

2
n nS ×∈C . 

The proof of the theorem follows immediately by defining Lyapunov functional for 
system (12) as 

  ( ) ( ) ( ) *
1 2 1 2 1 2, , , , 0*

t t t t t tV P P P= = >x x z x x z x x  (27) 

Derivative of (27), along the solutions of system (12) is  

  ( ) ( ) ( ) ( ) ( )1 2 1 2 1 2 1 2 1 2, , , , ,* *
t t t t t t t t t tV P P= +x x z x x z x x z x x z x x& & &   (28) 

  

( ) ( ) ( )

( )( ) ( ) ( ) ( )

2 2

1 2
1 1

2 2
'

1 1 0

, 0

ji

t t i i ji i
i j

j ji i ji ji i ji i ji i
j j

S A T t

S A S T t S T t d

= =

τ

= =

⎧ ⎛ ⎞⎪= +⎨ ⎜ ⎟
⎪ ⎝ ⎠⎩

⎫⎪+ − τ − τ + η − η η ⎬
⎪⎭

∑ ∑

∑ ∑ ∫

z x x x

x x

&

 (29) 

If we define new matrices 

  ( )
2

1
0 , 1, 2i i ji

j
A T iR

=

= + =∑  (30) 

and if one adopts 

  ( ) , , 1, 2i ji ji j jiS T S A i jτ = =   (31) 
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  ( ) ( )'
1 1, , , 1, 2i ji i ji i i iS T R S T S R R S i jη = η = =   (32) 

then 

  ( ) ( ) ( ) ( ) ( ) ( )* *
1 2 1 1 2 1 2 1 2 1 1 1 2, , , , , ,t t t t t t t t t tR V R P PR= = +z x x z x x x x z x x z x x&&   (33) 

It is obvious that if the following equation is satisfied 

  *
1 1 0R P P R Q+ = − < ,  (34) 

then ( )1 2, 0t tV <x x& , ti∀ ≠x 0 .  
In the Lyapunov matrix equation (25), of all possible solvents 1R  only one of 

maximal solvents 1mR  is of importance, because it is containing maximal eigenvalue 

mλ ∈Σ , which has dominant influence on the stability of the system.  
Necessary condition. Let us assume that system (12) for 2N =  is asymptotically stable, 
i.e. s∀ ∈Σ , Re 0s <  hold. Since ( )1mRσ ⊂ Σ  follows ( )1Re 0mRλ <  and the positive 
definite solution of Lyapunov matrix equation (25) exists.  

From (31)-(32) follows 

  ( ) 1

11 ,0 , 1, 2, 1, 2jiR
j ji i ji nS A e S T S I i jτ= = = =   (35) 

Using (30) and (35), for 1i = , we obtain (13). Multiplying (30) (for 2i = ) from the left 
by matrix 2S  and using (32) and (35) we obtain (14). Taking a solvent with eigenvalue 

mλ ∈Σ  (if it exists) as a solution of the system of equations (13)-(14), we arrive at a 
maximal solvent 1mR . 
Theorem 7. [49] Suppose that there exists maximal solvent of SME (23)-(24) and let 

2mR  denote one of them. Then, system (12), for 2N = , is asymptotically stable if and 

only if for any matrix * 0Q Q= >  there exists matrix * 0P P= >  such that 

  *
2 2m mR P P R Q+ = −  (36) 

Proof. Proof is almost identical to that exposed for Theorem 6. 
Theorem 8. [49] Given the following system of matrix equations  

  
1

0, , , 1k ji k i

k

N
R n n

k i i i j ji i k n
j

R S S A e S A S S I i N− τ ×

=

− − = ∈ = ≤ ≤∑ C   (37) 

for a given k , 1 k N≤ ≤ , where iA  and jiA , 1 i N≤ ≤ , 1 j N≤ ≤  are matrices of system  
(12) and jiτ  is time-delay in the system. If there is a solvent of (37) upon unknown 

matrices k kn n
kR ×∈C  and iS , 1 i N≤ ≤ , i k≠ , then the eigenvalues of matrix kR  belong 

to a set of roots of the characteristic equation of system (12). 

Proof. Proof of this theorem is a generalization of proof of Theorem 4 or Theorem 5.  
Theorem 9 [49] Suppose that there exists maximal solvent of (37) for given k , 
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1 k N≤ ≤  and let kmR  denote one of them. Then, linear discrete large scale time-delay 

system (12) is asymptotically stable if and only if for any matrix * 0Q Q= >  there exists 

matrix * 0P P= >  such that 

  *
km kmR P P R Q+ = −  (38) 

Proof. Proof is based on generalization of proof for Theorem 6 or Theorem 7. It is 
sufficient to take arbitrary N instead of 2N = . 
Example 1. Consider following continuous large scale time-delay system with delay 
interconnections 

 
( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )
1 1 1 12 2 12 2 2 2 21 1 21 23 3 23

3 3 3 31 1 31 32 2 32

,x t A x t A x t x t A x t A x t A x t

x t A x t A x t A x t

= + − τ = + − τ + − τ

= + − τ + − τ

& &

&
 (39) 

1 12 2,

-6 2 0 3 -2 0 -1.87 4.91 10.30
0 -7 0 0 0 3 , -2.23 -16.51 -24.11
0 0 -10.9 -2 1 2 1.87 -3.91 -10.30

A A A= =

⎡ ⎤ ⎡ ⎤⎡ ⎤
⎢ ⎥ ⎢ ⎥⎢ ⎥= ⎢ ⎥ ⎢ ⎥⎢ ⎥
⎢ ⎥ ⎢ ⎥⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

 

 21 23

-1 0 -2 -1 -1
3 0 5 , 3 2
1 0 2 1 1

A A= =

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

 

3 31 32

-18.5 -17.5 4 -2 1 1 2 -1
, ,

-13.5 -18.5 2 0 1 3 2 0
A A A= = =

⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦ ⎣ ⎦

, 

Applying Theorem 8 to a given system, for 1k = , the following SME is obtained 

  
1 31 1 321 21 1 12

1 23

1 1 2 21 3 31 1 2 2 2 12 3 32

1 3 3 3 2 23

0, 0

0

  R

    R

R RR R

R

A e S A e S A R S S A e A e S A

S S A e S A

− τ − τ− τ − τ

− τ

− − − = − − − =

− − =
  

If for pure time-delays we adopt the following values: 12 5τ = , 21 2τ = , 23 4τ = , 

31 5τ =  and 32 3τ = , by applying the nonlinear least squares algorithms, we obtain a great 
number of solutions upon 1R . Among those solutions is a maximal solution: 

1

-0.0484 -0.0996 0.0934
0.2789 -0.3123 0.2104
1.1798 -1.1970 -0.3798

mR
⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

=  

The eigenvalues of matrix 1mR  amount to: 1 0.2517λ = − , 

2,3 = 0.2444  0.3726jλ − ± .  

Therefore, for a maximal eigenvalue mλ one of the values from the set { }2 3,λ λ  can be 
adopted. Based on Theorem 9, it follows that the large scale time-delay system is 
asymptotically stable. 
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2.3 Discrete time-delay systems 

A linear, discrete time-delay system can be represented by the difference equation 

  ( ) ( ) ( )0 11k A k A k h+ = + −x x x  (40) 

with an associated function of initial state 

  ( ) ( ) { }, , 1, ... , 0h hθ = θ θ∈ − − +x ψ  (41) 

The equation (40) is referred to as homogenous or the unforced state equation. Vector 
( ) nk R∈x  is a state vector and 0 1, n nA A R ×∈  are constant matrices of appropriate 

dimensions, and pure time-delay is expressed by integers h T +∈h .  
System (40) can be expressed with the following representation without delay [22], 

[46].  

  

( ) ( ) ( ) ( )

( ) ( )
0 0

0 0
01 0

1 , ( 1)ˆ

1 ,

T T T N
a

N N
a a a a

In

In
A A

k k h k h k R N n h

k A k A R ×

⎡ ⎤= − − + ∈ = +⎣ ⎦
⎡ ⎤
⎢ ⎥+ = = ∈⎢ ⎥
⎢ ⎥⎣ ⎦

x x x x

x x

L

M M O M

L

L

L

 (42) 

The system defined by (42) is called the augmented system, while matrix Aa, the 
matrix of augmented system. Characteristic polynomial of system (40) is given with: 

  ( ) ( ) ( )
( 1)

1
0 1

0
det , ,      ˆ

n h
j h h

j j n
j

f M a a R M I A A
+

+

=

λ = λ = λ ∈ λ = λ − λ −∑  (43) 

Denote with 

  ( ){ } ( )| 0ˆ eqf AΩ = λ λ = = λ  (44) 

the set of all characteristic roots of system (40). The number of these roots amounts to 
( )1n h + . A root mλ  of Ω with maximal module: 

  ( ): maxm m aAλ ∈Ω λ = λ  (45) 

let us call maximal eigenvalue.  

2.3.1. Main results 

If scalar variable λ in the characteristic polynomial is replaced by matrix 
n nX C ×∈  the following monic matrix polynomial is obtained 

  ( ) 1
0 1

h hM X X X A A+= − −  (46) 

For the needs stability of system (40) only the maximal solvents of (46) are usable, 
whose spectrums contain maximal eigenvalue mλ . A special case of maximal solvent is 
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the so called dominant solvent [51], [52] which can be computed in a simple way by 
Bernoulii or Traub algorithm. 
Definition 4. Every solvent mR  of (46) whose spectrum ( )mRσ  contains maximal 
eigenvalue mλ  of Ω is a maximal solvent. 
Definition 5. [51], [52] Matrix A dominates matrix B if all the eigenvalues of A are 
greater, in modulus, then those of B. In particular, if the solvent 1R  of (46) dominates the 
solvents 2 , , lR RK  we say it is a dominant solvent.  
Theorem 10. [50]  Suppose that there exists maximal solvent of (46) and let mR  denote 
one of them. Then, linear discrete time-delay system (40) is asymptotically stable if and 
only if for any matrix * 0Q Q= >  there exists matrix * 0P P= >  such that  

  *
m mR PR P Q− = −   (47) 

Proof. Sufficient condition. Define the following vector discrete functions 

  ( ) { } ( ) ( ) ( ) ( )
1

, , 1, ... , 0 ,
h

k k
j

k h h k T j k j
=

= + θ θ∈ − − + = + −∑x x z x x x  (48) 

where, ( ) n nT k C ×∈  is, in general, some time varying discrete matrix function. The 
conclusion of the theorem follows immediately by defining Lyapunov functional for the 
system (40)  as 

  ( ) ( ) ( )* *, 0k k kV P P P= = >x z x z x   (49) 

It is obvious that ( )k =z x 0  if and only if k =x 0 , so it follows that ( ) 0kV >x  for 
0k∀ ≠x . 

 The forward difference of (49), along the solutions of system (40)  is  

  ( ) ( ) ( ) ( ) ( ) ( ) ( )* * *
k k k k k kV P k P P∆ = ∆ + ∆ + ∆ ∆x z x z z x z x z x z x   (50) 

A difference of ( )k∆z x can be determined in the following manner 

  

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )( ) ( )

( ) ( )( ) ( )

0 1
1

1

,

1 2 1 1

1 1

h

k n
j

h

j

k T j k j k A I k A k h

T j k j T k T h k h T T k

T h T h k h

=

=

∆ = ∆ + ∆ − ∆ = − + −

∆ − = − − + − − +

+ − − − +

∑

∑

z x x x x x x

x x x x

x

L  (51) 

Define a new matrix R by  

  ( )0 1R A T+�  (52) 

If 

  ( ) ( )1T h A T h∆ = −   (53) 
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then ( )k∆z x has a form 

  ( ) ( ) ( ) ( ) ( )
1

h

k n
j

R I k T j k j
=

∆ = − + ∆ ⋅ −⎡ ⎤⎣ ⎦∑z x x x  (54) 

If one adopts 

  ( ) ( ) ( ) , 1, 2, ... ,nT j R I T j j h∆ = − =  (55) 

then (50) becomes 

  ( ) ( ) ( ) ( )* *
k k kV R PR P∆ = −x z x z x   (56) 

It is obvious that if the following equation is satisfied  

  * *, 0R PR P Q Q Q− = − = >    (57) 

then ( ) 0,k kV∆ < ≠x x 0 . 
In the Lyapunov matrix equation (57), of all possible solvents R of (46), only one of 

maximal solvents mR  is of importance, because it is containing maximal eigenvalue 

mλ ∈Ω , which has dominant influence on the stability of the system. So, (47) represent 
stability sufficient condition for system given by (40). 
Necessary condition. If the system (40) is asymptotically stable then all roots iλ ∈Ω  are 
located within unit circle. Since ( )mRσ ⊂ Ω , follows ( ) 1mRρ < , so the positive definite 
solution of Lyapunov matrix equation (47) exists.  

Matrix ( )1T  can be determined in the following way. From (55), follows 

  ( ) ( )1 1hT h R T+ =   (58) 

and using (52)-(53) one can get (46).  
Corollary 1. [50] Suppose that there exists maximal solvent of (46) and let mR  denote 
one of them. Then, system (40) is asymptotically stable if and only if ( ) 1mRρ < . 
Proof. Follows directly from Theorem 10. 
Corollary 2. [50] Suppose that there exists dominant solvent 1R  of (46). Then, system 
(40) is asymptotically stable if and only if ( )1 1Rρ < . 
 Proof. Follows directly from Corollary 1, since dominant solution is, at the same time, 
maximal solvent. 
Example 2. Let us consider linear discrete systems with delayed state (40) with 

 0 1

7 /10 1 / 2 1 / 75 1 / 3
,

1 / 2 17 / 10 1 / 3 49 / 75
A A

−⎡ ⎤ ⎡ ⎤
= =⎢ ⎥ ⎢ ⎥− −⎣ ⎦ ⎣ ⎦

 (59) 

A. For 1h =  there are two solvents of matrix polynomial equation (46) 
( 2

0 1 0R RA A− − = ): 
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1 2

19 / 30 1 / 6 1 /15 1 / 3
,

1 / 6 29 / 30 1 / 3 11 / 15
R R

− −⎡ ⎤ ⎡ ⎤
= =⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦

, 

Since ( ) { }1 4 5, 4 5Rλ = , ( ) { }2 2 5, 2 5Rλ = , dominant solvent is 1R . For getting the 

dominant solvent Bernoulli or Traub’s algorithm may be used. After ( )4 3+  iterations 
for Traub’s algorithm [52] and 17 iterations for Bernoulli algorithm [52], dominant 
solvent can be found with accuracy of 410− . Since ( )1 4 5 1Rρ = < , based on Corollary 
2, it follows that the system under consideration is asymptotically stable. 
B. For 20h =  applying Bernoulli or Traub’s algorithm for computation the dominant 
solvent 1R  of matrix polynomial equation  (46)  ( 21 20

0 1 0R R A A− − = ), we obtain 

1

0.6034 0.5868
0.5868 1.7769

R
−⎡ ⎤

= ⎢ ⎥
⎣ ⎦

 

Based on Corollary 2, the system is not asymptotically stable because 
( )1 1.1902 1Rρ = > .  

2.4 Discrete large scale time-delay systems 

Consider a large-scale linear discrete time-delay systems composed of N  
interconnected iS . Each subsystem iS , 1 i N≤ ≤  is described as 

  ( ) ( ) ( )
1

:   1
N

i i i i ij j ij
j

S k A k A k h
=

+ = + −∑x x x  (60) 

with an associated function of initial state 

  ( ) ( ) { }, , 1  ,  ,  0
i ii i m mh hθ = θ θ∈ − − +x ψ K  (61) 

where ( ) in
i k R∈x  is state vector, i in n

iA R ×∈  denotes the system matrix, 
i jn n

ijA R ×∈ represents the interconnection matrix between the i -th and the j -th 

subsystems and the constant delay ijh T +∈ .  
Lemma 1.  System (60) will be asymptotically stable if and only if  

  ( )max 1aAλ <   (62) 

holds, where matrix 

  ( )
1

, , 1 , max
i i

a a
N

N N
a aij i i i m m jiji

aA R N N N n h h hA ×

=

⎡ ⎤ ∈ = = + =⎣ ⎦= ∑  (63) 

is defined in the following way  
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 1                         1                                

1                 1      

0 0 0
0 0 0 0

,

0 0 0 0

0 0
0 0 0

0 0 0

ii

i i i

i

ij

h

i ii

n N N
aii

n

h

ij

a ij

A A
I

A R

I

A

A

↓
↓

↓
↓

+

×

+

⎡ ⎤
⎢ ⎥
⎢ ⎥= ∈⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦

L

L

L L

L L

M M L M L M M

M M

L L

L L

M M M O M

L L

         

i iN NR ×∈

 (64) 

where iA  and ijA , 1 i N≤ ≤ , 1 j N≤ ≤ , are matrices of system (60).  

2.4.1. Main results  

Theorem 11. [53] Given the following system of monic matrix polynomial equations  

  1

1
0, ,m m m jii i i l i

l

N
h h h h n n

i l i i l j ji i l n
j

l S R S A R S A S C S IR + − ×

=

− − = ∈ =∑  (65) 

for a given l , 1 l N≤ ≤ , where iA  and jiA , 1 i N≤ ≤ , 1 j N≤ ≤  are matrices of system 
(60) and jih  is time-delay in the system, max , 1

im jij
h h i N= ≤ ≤ .  

If there is a solution of (65) upon unknown matrices l ln n
lR C ×∈  and iS , 1 i N≤ ≤ , i l≠ , 

then ( ) ( )l aR Aλ ⊂ λ holds, where matrix aA  is defined by (63)-(64). 

Proof. By introducing time-delay operator hz− , system (60) can be expressed in the 
following form 

  

( ) ( ) ( ) ( ) ( ) ( ) ( )

( )
111

1

1 2

1 11 1

1

1 ,

N

N NN

TT T T
N

hh
N

h h
N N NN

e

e

k A z k k k k k

A A z A z
A z

A z A A z

−−

− −

⎡ ⎤+ = = ⎣ ⎦
⎡ ⎤+
⎢ ⎥

= ⎢ ⎥
⎢ ⎥+⎣ ⎦

x x x x x xL

L

M O M

L

 (66) 

Let us form the following matrix. 

  ( ) ( ) ( )
eN ijeF z zI A z F z⎡ ⎤= − = ⎣ ⎦  (67) 

If we add to the arbitrarily chosen l -th block row of this matrix the rest of its block 
rows previously multiplied from the left by the matrices 0jS ≠ , 1 j N≤ ≤ , j l≠  
respectively and after multiplying i -th of the block column, 1 i N≤ ≤ , of the preceding 
matrix by mi

hz  and after integrating the matrix 
ll nS I= , we obtain 
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( )

( ) ( )

( ) ( )

( ) ( )
( ) ( )

( ) ( )

( ) ( )
( ) { }

1

11

1

11 1

1
1 1

1

11 1

1

1

1

det det

det , ,

det , , , ,

mm N

N

i mi mm Ni

mm N

hh
N

N Nn h hh
j j j jN

j j

hh
N NN

N

l lN

N NN

N

z F z z F z

z S F z z S F zz

z F z z F z

G z G z

G z S G z S

G z G z

G z S S S S

=

= =

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥∑
⎢ ⎥⋅
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦
⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

= =

∑ ∑

L

M M M

L

M O M

L

L

M M M

L

M M M

L

L

F z =

 (68) 

The l -th block row of the N N×  block matrix ( ),G z S  is defined by 

 ( ) 1

1
, , 1 ,m m m jii i i

l

Nh h h h
li i i i j ji l n

j
G z S z S z S A z S A i N S I+ −

=

= − − ≤ ≤ =∑   (69) 

The characteristic polynomial of system (60) [46] 

  ( ) ( ) ( )
0 1

det , , 1 , , 0ˆ
i

eN N
j

j i m j
j i

e eg z G z S a z N n h a R j N
= =

= = = + ∈ ≤ ≤∑ ∑  (70) 

does not depend on the choice of transformation matrices 1, , NS SL ) [48].  
Let us denote 

  ( ){ }| 0ˆ z g z∑ = =   (71) 

a set of all characteristic roots of system (60). This set of roots equals the set ( )aAλ . 

Substituting a scalar variable z  by matrix l ln nX C ×∈  in ( ),G z S , a new block matrix is 

obtained ( ),G X S . If there exist the transformation matrices Si, 1 i N≤ ≤ , i l≠  and 

solvent l ln n
lR C ×∈  such that for the l -th block row of ( ),G X S  holds 

( ), 0, 1li lG R S i N= ≤ ≤  i.e. holds (65), then 

  ( ) 0lg R =  (72) 

Therefore, the characteristic polynomial of system (60) is annihilating polynomial for 
the square matrix lR  and ( )lRλ ⊂ ∑  holds. The mentioned assertion holds 

, 1l l N∀ ≤ ≤ . 
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Definition 6. Each solvent lmR  of (65), for the given l , 1 l N≤ ≤ , whose spectrum 
contains maximal eigenvalue mλ  of system (60), is referred to as maximal solvent of (65)
. 
Theorem 12 [53] Suppose that there exist at least one l , 1 l N≤ ≤ , that there exists 
maximal solvent of (65) and let lmR  denote one of them. Then, linear discrete large-scale 

time-delay system (60) is asymptotically stable if and only if for any matrix * 0Q Q= >  

there exists matrix * 0P P= >  such that 

  *
lm lmR P R P Q− = − . (73) 

Proof. Sufficient condition. Define the following vector discrete functions 

    
( ) ( ) ( ) ( )

( ) { }

1
1 1 1

, , ,

, , , 0

ji

i

hN N

k kN i i ji i
i j l

ki i m

S k T l k l

k h

= = =

⎡ ⎤
= + −⎢ ⎥

⎣ ⎦

= + θ θ∈ −

∑ ∑ ∑v x x x x

x x

L

K

  (74) 

where ( ) i in n
jiT k C ×∈ , 1 j N≤ ≤ , 1 i N≤ ≤  are, in general, some time-varying discrete 

matrix functions and 
ll nS I= , in n

iS C ×∈ l , 1 i N≤ ≤ , i l≠ . The conclusion of the 
theorem follows immediately by defining Lyapunov functional for system (60) as 

  ( ) ( ) ( ) *
1, , , , , , , 0*

k kNV P P P= ⋅ ⋅ ⋅ ⋅ = >x x v vL L L  (75) 

It is obvious that ( ), , 0V ⋅ ⋅ >L  for ki∀ ≠x 0 , 1 i N≤ ≤ .  
The forward difference of (75), along the solutions of system (60) is  

 
( ) ( ) ( ) ( ) ( )

( ) ( )
, , , , , , , , , ,

, , , ,

* *

*

V P P

P

⋅ ⋅ = ⋅ ⋅ ⋅ ⋅ + ⋅ ⋅ ⋅ ⋅

+ ⋅ ⋅ ⋅ ⋅

v v v v

v v

L L L L L

L L

D D D

D D
  (76) 

A difference of ( ), ,⋅ ⋅v L  can be determined in the following manner 

 
( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

1 1 1

1

1 1 1

, , 1
i

ji

N N N

i i n ji i ji ji i ji
i j j

hN N

ji i ij j ij
j l j

S A I T k T h k h

T l k l A k h

= = =

−

= = =

⎡⎛ ⎞
⋅ ⋅ = − + + −⎢⎜ ⎟

⎢⎝ ⎠⎣
⎤

+ − + − ⎥
⎦

∑ ∑ ∑

∑∑ ∑

v x x

x x

LD

D

  (77) 

If we define new matrices 

  ( )
1

1
N

i i ji
j

R A T
=

= +∑ , 1 i N≤ ≤   (78) 

then ( ), ,⋅ ⋅v LD  has a form 
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( ) ( ) ( ) ( )( ) ( )

( ) ( )

1 1

1

1 1

, ,

∆

i

ji

N N

i i n i j ji i ji ji i ji
i j

hN

i ji i
j l

S R I k S A S T h k h

S T l k l

= =

−

= =

⎡
⋅ ⋅ = − + − −⎢

⎣
⎤

+ − ⎥
⎦

∑ ∑

∑ ∑

v x x

x

LD

 (79) 

If 

  ( ) ( ) , 1 , 1j ji i ji ji i ji jiS A S T h S T h i N j N− = ≤ ≤ ≤ ≤D   (80) 

  ( ) ( ) , 1
i li i n l n iS R I R I S i N− = − ≤ ≤   (81) 

  ( ) ( ) ( ) , 1 , 1
li ji l n i jiS T l R I S T l i N j N= − ≤ ≤ ≤ ≤D   (82) 

then 

 
( ) ( ) ( )

( ) ( ) ( ) ( )*

, , , , ,

, , , , , ,

l n

*
l l

R I

V R P R P

⋅ ⋅ = − ⋅ ⋅

⋅ ⋅ = ⋅ ⋅ − ⋅ ⋅

v v

v v

l
L L

L L L

D

D
 (83) 

It is obvious that if the following equation is satisfied  

  * *, 0l lR P R P Q Q Q− = − = >  (84) 

then ( ), , 0V ⋅ ⋅ <LD , ki∀ ≠x 0 , 1 i N≤ ≤ . 
In the Lyapunov matrix equation (73), of all possible solvents lR  of (65), only one of 

maximal solvents lmR  is of importance, for it is the only one that contains maximal 
eigenvalue mλ ∈Σ , which has dominant influence on the stability of the system. 
Necessary condition. If system (60) is asymptotically stable, then i∀λ ∈Σ , 1iλ < . 

Since ( )lmRλ ⊂ Σ ,it follows that ( ) 1lmRρ < , therefore the positive definite solution of 
Lyapunov matrix equation (60)  exists.  

If it exists, maximal solvent lmR  can be determined in the following way. From (80) 
and (82) we obtain 

  ( ) , 1 , 1 , 1ji

l

h
j ji l i ji l nS A R S T S I i N j N= = ≤ ≤ ≤ ≤  (85) 

Multiplying i -th equation of the system of matrix equations (78) from the left by matrix 
m i

h
l iR S  and using (81) and (85), we obtain equation (65). Taking solvent with eigenvalue 

mλ ∈Σ  (if it exists) as a solution of the system of equations (65), we arrive at maximal 
solvent lmR . 
Corollary 3. Suppose that for the given l , 1 l N≤ ≤ , there exists matrix lR  being 
solution of (65). If system (60) is asymptotically stable, then matrix lR  is discrete stable. 
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Proof. If system (60) is asymptotically stable, then 1z z∀ ∈∑ < . Since ( )lRλ ⊂ ∑ , 

it follows that ( ) , 1lR∀ λ∈λ λ < , i.e. matrix lR  is discrete stable. 
Example 3. Consider a large-scale linear discrete time-delay systems, consisting of three 
subsystems 

 
( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

1 1 1 1 1 1 12 2 12

2 2 2 2 2 2 21 1 21 23 3 23

3 3 3 3 3 3 31 1 31

:  1 ,

:  1 ,

:  1

S x k A x k B u k A x k h

S x k A x k B u k A x k h A x k h

S x k A x k B u k A x k h

+ = + + −

+ = + + − + −

+ = + + −

 (86) 

 1 2 1 12

0 7 0 0 5
0 8 0 6 0 1 0 1 0 0 1

, 0 1 6 0 1 , ,
0 4 0 9 0 1 0 1 0 0 1

0 6 1 0 8

. .
. . . . .

A A . . B A
. . . . .

. .

−⎡ ⎤
⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎢ ⎥= = − − = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎢ ⎥−⎣ ⎦

 

 2 21 23

0 0 1 0 1 0 2 0 1 0
0 1 0 2 , 0 3 0 1 , 0 2 0 2 ,

0 0 1 0 1 0 2 0 1 0

. . . .
B . . A . . A . .

. . . .

− − − −⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥= = = −⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

 

 3 3 31

1 0 1 0 1 0 0 1 0 2
, ,

0 1 0 8 0 0 1 0 1 0 2
. . . .

A B A
. . . . .

⎡ ⎤ ⎡ ⎤ ⎡ ⎤
= = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦ ⎣ ⎦

 

The overall system is stabilized by employing a local memory-less state feedback control 
for each subsystem 

( ) ( )i i ik K k=u x , [ ]1 2 3

7 45 10 5 1
6 7 , ,

4 4 4 1 4
K K K

− − − −⎡ ⎤ ⎡ ⎤
= − − = =⎢ ⎥ ⎢ ⎥− − −⎣ ⎦ ⎣ ⎦

 

Substituting the inputs into this system, we obtain the equivalent closed loop system 
representations 

( ) ( ) ( )
3

1

ˆ: 1 , 1 3i i i i ij j ij
j

S k A k A k h i
=

+ = + − ≤ ≤∑x x x ,   ˆ
i i i iA A B K= +  

For time-delay in the system, let us adopt: 12 5h = , 21 2h = , 23 4h =  and 31 5h = . 
Applying Theorem 11 to a given closed loop system, for 1l = we obtain  

   

6 5 3
1 1 1 1 2 21 3 31

ˆ 0R R A R S A S A− − − = ,  

  

6 5
1 2 1 2 2 12

ˆ 0R S R S A A− − = ,  

  

5 4
1 3 1 3 3 2 23

ˆ 0R S R S A S A− − =  

Solving this SMPE by minimization methods, we obtain  

 1 2 3

0.6001 0.3381 0.0922 1.3475 0.5264 0.6722 -0.3969
, ,

0.6106 0.3276 0.0032 1.3475 0.4374 1.3716 -1.0963
R S S⎡ ⎤ ⎡ ⎤ ⎡ ⎤

= = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦ ⎣ ⎦

. 
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Eigenvalue with maximal module of matrix 
 1R  equals 0.9382. Since eigenvalue mλ  of 

40 40
aA R ×∈  also has the same value, we conclude that solvent 

 1R  is maximal solvent. 
Applying Theorem 12, we arrive at condition ( )

 1 0.9382 1mRρ = <  wherefrom we 
conclude that the observed closed loop large-scale time-delay system is asymptotically 
stable. 

3. CONCLUSION  

In this paper we have presented necessary and sufficient conditions for the asymptotic 
stability of a particular class of linear continuous and discrete time-delay systems. These 
results have been extended to the large scale continuous and discrete time-delay systems 
covering the cases of two and multiple existing subsystems. The delay dependent criteria 
are derived by Lyapunov's direct method and are exclusively based on the solvents of 
particular matrix equation and Lyapunov equation for non delay systems. Obtained 
stability conditions do not possess conservatism. For discrete time-delay systems the 
dominant solvent of given polynomial matrix equation can be calculated using 
generalized Traub’s or Bernoulli’s algorithm which possess significantly smaller number 
of computation than the standard algorithm.  
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