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Abstract. A review, in subjective choice, of author’s scientific results in area of:
classical mechanics, analytical mechanics of discrete hereditary systems, analytical
mechanics of discrete fractional order system vibrations, elastodynamics, nonlinear
dynamics and hybrid system dynamics is presented. Main original author’s results
were presented through the mathematical methods of mechanics with examples of
applications for solving problems of mechanical real system dynamics abstracted to
the theoretical models of mechanical discrete or continuum systems, as well as hybrid
systems. Paper, also, presents serries of methods and scientific results authored by
professors Mitropolyski, Andjeli¢ and Raskovi¢, as well as author’s of this paper
original scientific research results obtained by methods of her professors. Vector
method based on mass inertia moment vectors and corresponding deviational vector
components for pole and oriented axis, defined in 1991 by K. Hedrih, is presented.
Results in construction of analytical dynamics of hereditary discrete system obtained
in collaboration with O. A. Gorosho are presented. Also, some selections of results
author’s postgraduate students and doctorantes in area of nonlinear dynamics are
presented. A list of scientific projects headed by author of this paper is presented with
a list of doctoral dissertation and magister of sciences thesis which contain scientific
research results obtained under the supervision by author of this paper or their fist
doctoral candidates.
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constraint, rheonomic coordinate, mobility, angular velocity of basic vector rotation,
velocity of basic vector extension, asymptotic approximation of solution, Krilov-
Bogolyubov-Mitropolyski asymptotic averaged method, method of variation of
constants, hereditary system, rheological and relaxational kernels, standard
hereditary element, integro-differential equation, fractional order derivative,
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covariant coordinate, contravariant coordinate, Physical coordinate, discrete
continuum method, space fractional order structure, chains, eigen main plane nets,
eigen main chains, fractional order oscillator, fractional order properties
characteristic number, transfer of signals, multi-frequency, material particles, rigid
body, gyrorotor, deformable body, multi bdy system, transversal, longitudinal, multi-
plate system, multi-belt system, stochastic stability.

1. INTRODUCTION
Main author’s research results, presented in this paper, are:

* Advances in classical mechanics.

Mass moment vectors connected to pole and axis, allowed the author to give a new
perspective onto rotation of bodies around stationary axis and a stationary point, and on
dynamics of rotors and coupled rotors in general. By introducing definitions of mass
moment vectors connected to pole and axis, and by proving their properties, and also by
introducing purely kinematical rotator vectors, which he used to represent short and
elegant expressions for kinetic pressures and kinetic impacts on the rotor shaft bearings,
the author made a contribution to classical mechanics, as well as a contribution to the
methodology of university teaching of rotor kinematics. In a monographic paper
published in 1998, and a monograph published in Serbia in 2001, as well as in a series of
published papers in the period 1992-2010, beginning with a paper at ICTAM in Israel
(1992), and later in a series of papers published in Japan, Germany, China, Ukraing,
Russia and Greece, the author shows definitions and properties, as well as applications of
mass moment vectors connected to pole and axis for analyzing mass moment states and
properties of kinetic parameters of rotor dynamics, dynamics of rigid body coupled
rotation around no intersecting axes and dynamics of coupled rotors. (see References |
[1-20]).

Angular velocity of the basic vectors rotation of a tangent space of the vector
positions of material particles of mechanical system dynamics with geometrical,
stationary and rheonomic constraints are obtained. Extensions of dimensions of tangent
space of the vector positions of material particles of mechanical system dynamics from
three dimensional real spaces to configuration space of independent generalized
curvilinear coordinate systems is identified. Reductions of numbers of coordinates and
extensions of tangent space of vector passions are analyzed (see References Il [21-34]).

* Advances in Analytical Mechanics.

- Analytical Mechanics of Discrete Hereditary Systems.

Foundation and construction of analytical mechanics of discrete hereditary
systems was the work of two authors — Oleg Aleksandrovich Goroshko and Katica R.
(Stevanovi¢) Hedrih. Their original contribution to modern analytical mechanics, the
authors published in their monograph of the same name, which came into existence in the
period of their cooperation between 1996-1999, and was published in 2001. The contents
of this monograph represents the first, in the world published integral theory of analytical
mechanics of discrete hereditary systems. Through a short review of the contents of the
monograph published in Serbia, as well as a series of presented results and/or published
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papers in the period 1995-2009 in Serbia, Ukraine, Russia, China and US, we shall point
out the main contributions of these two authors in this area. (see References I11 [35-54])

- Analytical mechanics of discrete fractional order systems

Through a series of papers published or presented in the period 2005-2009 in
France, Portugal, Turkey, Germany, Ukraine, China and Romania, as well as in
monograph publications and international journals, the author contributed to the
development of analytical mechanics of discrete systems, of fractional order with special
focus of the results on oscillatory systems of fractional order. Prominent among these
contributions are the results relating to homogenous chain systems of fractional order and
homogenous couples chain systems of fractional order. The author introduced new terms,
such as eigen main chains, main coordinates of eigen chain systems of homogenous
coupled chains into hybrid systems of fractional order, as well as main partial oscillators
of fractional order with corresponding main coordinates and corresponding oscillatory
modes of fractional order with creep properties. (see References |11 [35-54])

*Advances in Elastodynamics, Nonlinear Dynamics and Hybrid System
Dynamics

Among the contents of a series of papers published in international journals
(2003-2010) or journals of prestigious scientific institutes in the world (1970-2009), as
well as in monographs published by Kluwer and Springer, contributions of author to
linear and nonlinear dynamics of deformable bodies (rods, plates, moving strips),
systems of coupled deformable bodies, especially stand out and can be classifies as a
single scientific area of Elastodynamics and the newly established area of hybrid system
dynamics. A number of results are on the energy analysis of complex hybrid system
dynamics. Five theorems on characteristic equations of complex systems, obtained by
coupling deformable bodies and discrete systems with finite number of degrees of
freedom, static or dynamic or combined couples have been defined and proven.

A number of original results are about nonlinear properties of systems with
coupled rotation motions. A number of theorems on coupled singularities and homoclinic
orbits in the form of number eight has also been defined and proven. (see References IV.
[35-68], V [69-88])

2. ADVANCES IN CLASSICAL MECHANICS.

2.1* Vector method and applications

Vector method [4], based on mass moment vectors and vector rotators coupled
for pole and oriented axes, is used for obtaining vector expressions for kinetic pressures
on the shaft bearings of a rigid body dynamics with coupled rotations around no
intersecting axes [16-19]. This method is very effective and suitable in applications.
Mass inertia moment vectors and corresponding deviational vector components for pole
and oriented axis are defined by K. Hedrih in 1991 [1]. A complete analysis of obtained
vector expressions for derivatives of linear momentum and angular momentum give us a
series of the kinematical vectors rotators around both directions determined by axes of
the rigid body coupled rotations around no intersecting axes[16-19]. These kinematical
vectors rotators are defined for a system with two degrees of freedom as well as for
rheonomic system with two degrees of mobility and one degree of freedom and coupled
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rotations around two coupled no intersecting axes as well as their angular velocities and
intensity.

As an example of defined dynamics [16-19], we take into consideration a heavy
gyrorotor-disk with one degree of freedom and coupled rotations when one component of
rotation is programmed by constant angular velocity. For this system with nonlinear
dynamics, series of graphical presentation of three parameter transformations in relations
with changes of eccentricity and angle of inclination (skew position) of heavy rigid body
in relation to self rotation axis are presented, as well as in relation with changing
orthogonal distance between no intersecting axes of coupled rotations. Some graphical
visualization of vector rotators properties are presented, too.

Using K. Hedrih’s (See Refs. [1-9]) mass moment vectors and vector rotators,
some characteristics members of the vector expressions of derivatives of linear
momentum and angular momentum for the gyro rotor coupled rotations around two no
intersecting axes obtain physical and dynamical visible properties of the complex system
dynamics [16-18].

Between them there are vector terms that present deviational couple effect
containing vector rotators which directions are same as kinetic pressure components on
corresponding gyro rotor shaft bearings [10-15] and [18-20].

2.1.1. Mass moment vectors for the axis to the pole

The monograph [4], IUTAM extended abstract [1] and monograph paper [5]
contain definitions of three mass moment vectors coupled to a axis passing through a
certain point as a reference pole. Now, we start with necessary definitions of mass
momentum vectors.

Definitions of selected mass moment vectors for the axis and the pole, which are
used in this paper are:

1* Vector ééo) of the body mass linear moment for the axis, oriented by the unit

vector fi , through the point — pole O , in the form:
(0) def o .
S = IH[n,p]dm =[f,pc M | dm=odV . (1)
\Y

where p is the position vector of the elementary body mass particle dm in point N,
between pole O and mass particle position N .
2* Vector J{? of the body mass inertia moment for the axis, oriented by the

unit vector fi, through the point — pole O , in the form:
def

3P = [[[l7.[n. Al @

For special cases, the details can be seen in [1-9]. In the previously cited
references, the spherical and deviational parts of the mass inertia moment vector and the
inertia tensor are analyzed. In monograph [4] knowledge about the change (rate) in time
and, the derivatives of the mass moment vectors of the body mass linear moment, the
body mass inertia moment for the pole and a corresponding axis for different properties
of the body, is shown, on the basis of results from the first author’s References [6-9].
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The relation

30 =3+ [po, & [+ [92 [ 50 |+ [0, 7. o IM @
is the vector form of the theorem for the relation of material body mass inertia moment
vectors, \9(0) and 3%01), for two parallel axes through two corresponding points, pole
O and pole O, (for details detail Refs. [ ] by K. Hedrih). We can see that all the
members in the last expression-relation (3) have the similar structure. These structures
are: [p,, [, 7. M, [ [f. 5, M and [5,,[f, p, M -

In the case when the pole O, is the centre C of the body mass, the vector r.
(the position vector of the mass centre with respect to the poleO,) is equal to zero,
whereas the vector p, turns into p. so that the last expression (3) can be written in the
following form:

I =317 +[pc [ A IM (4)

This expression (4) represents the vector form of the theorem of the rate change
of the mass inertia moment vector for the axis and the pole, when the axis is translated
from the pole at the mass centre C to the arbitrary point, pole O .

The Huygens-Steiner theorems (see Refs. [4] and [5]) for the body mass axial
inertia moments, as well as for the mass deviational moments, emerged from this theorem

(4) on the change of the vector %éo) of the body mass inertia moment at point O for the

axis oriented by the unit vector f passing trough the mass center C , and when the axis
is moved by translate to the other point O .

Mass inertia moment vector 375.10) for the axis to the pole is possible to

decompose in two parts: first ﬁ(ﬁ,§r§°)) collinear with axis and second 5%0) normal to
the axis. So we can write:
3O - ﬁ(ﬁ’%%o)) +BO = 1O + RO (5)

Collinear component n(*, srﬁo)) to the axis corresponds to the axial mass inertia

moment Jéo) of the body. Second component, 5%0) , orthogonal to the axis, we denote
by the ﬁ(ﬁ) and it is possible to obtain by both side double vector products by unit

vector fi with mass moment vector J(°) in the following form:
3O = |7 [3©.n]= 3O(.5)-Alr, 3O )= 3O - 35 (6)
In case when rigid body is balanced with respect to the axis the mass inertia moment
vector \5;%0) is collinear to the axis and there is no deviational part. In this case axis of
rotation is main axis of body inertia. When axis of rotation is not main axis then mass
inertial moment vector for the axis contains deviation part §§O) . That is case of rotation
unbalanced rotor according to axis and bodies skew positioned to the axis of rotation.



298 KATICAR. (STEVANOVIC) HEDRIH

2.1.2. Model of a rigid body coupled multi-rotation around multi-axes
without intersections
Let us consider rigid body coupled multi-rotations around axes without
intersections, first oriented by unit vector i, with fixed position and second and next
oriented by unit vectorsfi;, j=23,..., K, which are rotating around fixed axis as well as
around series of previous axes and with  corresponding angular
velocities @; _a)lnJ ,j=123,..,K. See Figure 1. Axes of rotations are without
intersections. Rigid body is positioned on the moving rotating axis oriented by unit
vector iy . Rigid body rotates around rotating self rotation axis with angular velocity

@y = wy T, and around series of the previous axes in order and in whole around fixed axis
oriented by unit vector f; with angular veIocitye?;l =, . The shortest orthogonal

distances between axes are defined by length 00 (J+1 , J=123,...,K and each of these

is perpendicular to both close axes that each is to the direction of component angular
velocities wj = w;N; and @;,; = @; 4N, . These vectors are fy;y .y =O(jO(j.)

P foiXis)_[5

_ A(j)s M _
To(i)i+0) = o ING) ”(m)]—rol ﬁle @

Fo( 1\ +0)0o( 1Y i
sin oy i) ) o(i)(i+1)0(jXi+1)

and it can be seen on Fig.1.
In the considered rigid body coupled rotations around no intersecting numerous
axes, an elementary mass around point N is denoted as dm, with position vector p, and

with origin in the point Oy on the movable self rotation axis, and with r vector
positions of the same body elementary mass with origin in the point O, , where point O,

is fixed on the axis oriented by unit i, . Both points are on the ends of the corresponding
shortest orthogonal distance between two in the neighborhood axes of body coupled
multi-rotations. Position vector of elementary mass with origin in pole O, and its
velocity are in the following forms:

K-1 K-
fc = (Fo(k)v(k+1)+F0(k+1)y(k+1) Z Zw o), (k+1) * To(k+1) k+1:1 [zﬂﬁ P] (8)

k=1 =1| j=1

For the case of three coupled rotations around three axes without intersections

position vector of elementary mass with origin in pole O, and its velocity are in the

following forms (see Fig.1):
T =Tong + Togg + Togs + 5 AN V =[@y, Ty + oy |+ [@1 + @y, Togs |+ [@1 + @y + 33, ).
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X

Figure 1. Arbitrary position of rigid body multi-coupled rotations around finite
numbers of axes without intersections.

2.1.3. Linear momentum of a rigid body coupled multi-rotations around
axes without intersections

By using basic definition of linear momentum and expression for velocity of
elementary body mass (9), we can write linear momentum in the following vector form:

K-1 k -
ZZ“’ [n To(),(k+2) T To(k+1), k+1}V| Zw @,(1 . (10)
k=1 j=1

where & J‘J‘j[njyp}jm ,j=123,.,K,are correspondmg body mass linear moments of

the rigid body for the axes oriented by direction of component angular velocities of
coupled multi-rotations through the movable pole Oy on self rotating axis. First terms in
the form of the first sum in expression (10) presents translation part of linear
momentum. This part is equal to zero in case when axes intersect in one point. Second
sum in expression (10) for linear momentum present linear momentum of pure rotation,
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as relative motion around all axes with intersection in the pole Oy on self rotation axis.
These K terms are different from zero in all cases.

Example 1: Expression of linear momentum of a rigid body coupled rotations
around two no intersecting axes, we can write in the following form:

] = ﬁé?l’Z) + ﬁé?Z) + ﬁé(z)?) [y, Ty M + a)l@(OZ) +w, w(OZ) (11)

Example 2: Expression of linear momentum of a rigid body coupled rotations
around three axes without intersections, we can write in the following form:

& = o[, gz + Togp + Tops M + @, [Ty, Typs M + aﬁéé%) + wzég?3) + %ér(%) (12)

2.1.3. Angular momentum of a rigid body coupled multi-rotations around
axes without intersections

By using basic definition of angular momentum and expression for velocity of
rotation of elementary body mass and its position vector (9), we can write vector
expression for angular momentum.

Example 1: Expression of angular momentum of a rigid body coupled rotations
around two axes without intersection, we can write in the following form:

&o = oM + o[ e [, M +w1["o: ]+ wz[ro ]+ 6013(02 +o, }(02) (13)

Example 2: Expresion of angular momentum of a r|g|d body coupled rotations
around three axes without intersections, we can write in the following form:
§01 wl[r03 (01 2 z)]Jr 0)1[ ngoz 3)]+w [rO V(AOZ 3 ]+ wl[ﬂc 01 2~ z)]+ 501} (03) + w. t} (03) +(1)33 + (14)

+a)1[ 3( )]+a)2[pc @’(_823)]4’0)1 10,1 é(o )]+ a’z[ro ( )]+a)3[ (03)]

2.1.4. Derivative of linear momentum and angular momentum of rigid
body coupled rotations around two axes without intersection

Example 1. By using expressions for linear momentum (13), the derivative of linear
momentum of rigid body coupled rotations around two axes without intersection, we can
write the following vector expression:

o nM ol gIM 080 + o 80 ] (15)

+ 0, C +a) [n C ]+ Za)la)z[ﬁl,ééSQ)]

After anaIyS|s structure of linear momentum derivative terms, we can see that
there is possibility to introduce pure kinematic vectors, depending on component angular
velocities and component angular accelerations of component coupled rotations, that are
useful to express derivatives of linear moment in following form

d®
T - J‘Ol‘[nl' rO]M +m011

We can see that in previous vector expression (16), for derivative of linear
momentum, are introduced the following three vector rotators:

I Iy " . 2o
Roy = iy + &fVyy » mm = |:n11 . }'a’l {nb{ny . ﬂ Ry, = ol + O Vs
0 0

)+ 20,0, [nl,c( )]' (16)

|+ ‘nozz
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&0, o)) 17
- (N A
Mo =5 +of ﬁl,%f(]gz) ’ n
S ‘ @ﬁl
A e 2. = é(_oz) égoz)
R, = Aylioy, + OV, Ry = 0, A?é ) + @3 iy, A?é )
2 S\2
@ﬁz <,

Also, we can see that in vector expression for derivative of angular momentum
appear the following vector rotators: %, = o0, + 0V, and M, = @0, + w/V, expressed by
following expressions:

< D) ) 502 3(02)
. — . — ~ D2 D2 18)
9!1 =y m + a)12 0 M =l + a)lzvl "N —a n, 2| = n, L 2e (
(02) ) 2= G2 RCARLR = WUy + 0V
O NN g%’z)‘ 30

Example 2. By using expressions for linear momentum the derivative of linear
momentum of rigid body coupled rotations around three axes without intersections, not
difficult to obtain corresponding expression. Also, as in previous example, after analysis
structure of linear momentum derivative terms, we can see that there is possibility to
introduce pure kinematic vectors, depending on component angular velocities and
component angular accelerations of component coupled three rotations. We can see that
in vector expression for derivative of linear momentum series of the vector rotators
appear. Some of these vector rotators are listed here:

= e 2. é{os) égoz)
Ny = olpy, + @V Ryyy = a}l%«}»af ﬁly% ,
sﬁl 3 ‘ @ﬁi 3
. o -
Rz, = Dyligy + @5Vg; »
z( 0
35*022 =, 7@%3) +0)22 i, 'é;) ' (19)
@'(ﬁ?s)‘ @5‘33)
~ =(0s) =(0,)
- o 2o - e S
Moza = Oalloas + @ Vogz Rogs = d‘s%“‘ﬁ ﬁz'%
@ﬁ33 ‘ @ﬁsa

Also, we can see that in vector expression for derivative of angular momentum

of rigid body coupled rotations around three axes without intersections appear the
following vector rotators: R, = @0, + 0V, R, = ayli, + w2V, and R, = @yl; + 0V,
expressed by following expressions:
B0 B
et ]| Ty | =yl + 0V

(s 2009)

Ny
209 209

N 2| = n . 2

A nz,?&) = wyliy + W5V,

2,

RN.=a Ny + 2 3
3= W3 5&03)‘ 3 5@3)‘
N3 N3

(20)

B (05 3(05)
s, : = ayllz + 503%‘73
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2.1.5. Concluding remarks

By using theorems of changes of linear momentum and angular momentum with
respect to time, one may write two vector equations of dynamic equilibrium of rigid

body coupled multi-rotations about axes without intersection as the follows:
I S
E=G+FAN+FBN+FAm+§Fi (21)

d€,,
dt

i=P
[Fo + ﬁc,G]Jr [Fo +parFan ]Jr [Fo + pg..Fey ]Jr [Fo +ppFam ]+ Z [Fo + Pis Fi](22)

i=1
where F,i=123,.,p are external active forces, G is weight of a rotor, ¢, and g are

forces of bearing reactions at fixed axis. From previous analysis, we can conclude that
vector rotators appear into expressions of the kinetic reactions of the shaft bearings of the
structures of the rigid body multi-coupled rotations and that is very important to analyze
their intensity as well as their relative angular velocity and angular acceleration around
axes of coupled multi-rotations.

Recommendation foe next research and for solving three main mathematical
tasks: a* Generalization of the expressions for derivatives of linear momentum and
angular momentum for rigid body coupled multi-rotations around finite numbers axes
without intersections; b* expressions for kinetic pressures on bearing to series of the axes
of coupled rotations and corresponding numbers of coupled nonlinear differential
equations depending of number of system degree of freedom with corresponding
solutions and c* build a algorithm for using obtained results as a standard software
program for analysis nonlinear dynamic phenomena in rigid body coupled rotation
around finite number axes without intersections. These defined tasks need a team
interdisciplinary research, and will be very useful for engineering practice in analysis and
simulation numerous engineering system dynamics with coupled rotation and for vibro-
diagnostic.

2.2. Tangent spaces of position vectors and angular velocities of their basic
vectors in different coordinate systems

Angular velocities of the basic vectors of tangent spaces of the position vectors of
mass particles of the discrete rheonomic mechanical system are obtained in different
coordinate systems [22]. Starting from real three dimensional coordinate systems of
Descartes orthogonal three dimensional system type with fixed coordinates axis as a
reference, by different coordinate transformations for each position vector of
corresponding mass particle in discrete rheonomic mechanical system, basic vectors of
position vector tangent three dimensional spaces are obtained in different curvilinear
coordinate systems suitable to the corresponding geometrical scleronomic or rheonomic
constraints applied to the considered rheonomic system. For each basic vector of the
basic triedar of position vector tangent space of each mass particle of the discrete
rheonomic mechanical system, angular velocity vectors of basic vector rotations are
determined.

Then, after consideration and analysis of the number and properties of the
geometrical scleronomic and rheonomic constraints applied to the mass particles of the
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considered discrete rheonomic mechanical system, number of system degree of mobility
as well as number of system degree of freedom are determined. Corresponding number of
independent coordinates are chosen and corresponding rheonomic coordinates are
introduced. By use extended set of the generalized coordinates contained corresponding
number of independent coordinates and corresponding number of rheonomic coordinates,
position vectors of the mass particles of the discrete rheonomic mechanical system, are
separated into two subsets.

First subset contain position vectors of the mass particle, keep their three
dimensional tangent space each with three basic vectors.

Second subset contain position vectors of the mass particle, each depending, in
general case, of the all generalized coordinates, independent and rheonomic. Then, each
of the position vectors are with n+R -dimensional tangent spaces and with  basic
vectors.

2.2.1. Introduction

Let us consider a discrete system with N mass particles with mass m,, and
with corresponding position in real three dimensional space determined by geometrical
points N a=123..,N (see Figure 2). For beginning we take that positions of the

material points, as well as corresponding geometrical points coordinates are determined
by coordinates in fixed orthogonal Descartes coordinate system with three coordinates as

denoted by N(a)(x(a), y(a),z(a)).a =12,3,..,N, where O is fixed coordinate origin, and
Ox, Oy and Oz fixed oriented coordinate strain lines-coordinate axes. Coordinates

of the position vector of each material point are equal to coordinate of the geometrical
point which determine mass particle position in the space. For Descartes coordinate
system  for position of the each mass particle we can write:

ﬁ(a)(X(a), Y(a): Z(a))z X(a)r+ y(a)]+ Z(a)k ,a=123,..,N.
Let us, now, consider previous discrete system with N mass particles wirh
mass m,, and with corresponding position in real three dimensional space determined

by same geometrical points N, a=123..,N in generalized coordinate system of

curvilinear coordinates (q(a)l,q(a)z,q(a)s) a=123,..,N corresponding to mass particle
positions. For same geometrical points coordinates in considered three coordinate

. 1 2 3
systems are: N(a)(X(a),y(a),Z(a)).a =123,...,N and N(a)(Q(a) 1Y) () ),
a=123,...,N .. Formulae of coordinate transformation from previous coordinate system
with fixed axes and new curvilinear coordinate system are:

X = X e U
Ve = Yieo O U P ) (1)

1 2 3

a)= z(w)(q(oc) 'U(a) 1Y) )
Position vectors of each mass particle and corresponding geometrical points are
invariant geometrical objects in both coordinate systems, but their coordinates in
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considered coordinate systems are not equal to coordinates of the corresponding
geometrical point. In generalized coordinate system geometrical
points N(,), & =123,.,N  have  following  coordinates: (q(a)l,q(a)z,q(af’),
a=123,...,Nand coordinate of position vectors of these geometrical points are

(p(a)l,p(a)z,p(a)3), a =123,...,N . For position vectors we can write:

~ _. def =inv.vektor

P lKe Yior Ze) = Kl Vi + 2K = Pl e ) @)

POl 8 0=
= 1o e 8 i+ 210 0 00
o =123, N @3)

Figure 2. Discrete material system with N mass particles and geometrical
rheonomic constraints

For first example in polar-cylindrical coordinate system geometrical points have
the following coordinates: N(a)(r(a),qo(a), z(a)) a=123..,N and position vectors

,B(a)(r(a),w(a), z(a)) of corresponding geometrical point are: r(,),0, z(,) and we can write:
Pleollle P01 2= Tiote) + 0 Coe) + 2o K = Vo) + 2o K (4)
a=123,..,N

where  Ty(), Co(y)and k,a=123..,N are basic unit vectors of tangent space of

corresponding position vector in polar-cylindrical coordinate system.
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For second example in spherical coordinate system geometrical points have the
following coordinates: N(a)(p(a),(p(a),g(a)) a=123,.,N and position vectors

ﬁ(a)(p(a),(p(a),g(a)) of corresponding geometrical point are: Pa)0,0 and we can write:

Bla)\ Pl Pla) H) )= Pl Pot) *+ 0 o) + O Vo) = Pl (%)
a=123,..,N
where  po(,), Co(e)and vo(,), @ =123,...,N are basic unit vectors of tangent space of
corresponding position vector in polar-cylindrical coordinate system.

2.2.2. Basic vectors of the position vector three-dimensional tangent space
in generalized curvilinear coordinate systems

In real two-dimensional coordinate systems, position vector tangent spaces are
three-dimensional and the basic vectors of the tangent spaces of each position vector of

each mass particle we denote with gy, @ =123,..,N, i =1,2,3 (see Figure 3). These

vectors are in tangent directions to the corresponding curvilinear coordinate line and in
general are not unit vectors. Basic vectors it is possible to obtain by following way (for
detail see Refs. [22], [23], [24], [25], [26], [27], [28], [33] and [34]):
gaiza”—(“:, a=123...N, i=12,3 ©)
(q)
or by formula coordinate transformation and by following expressions:

OBy _ e e ) W(a)(%)llq(af’q(af)j \ 20 U )

g all — r + |Z
) ) ) )
) el Yo ) ) Vol U )]+ P20 0 ) %
Yk 2 2 I+ 3 i+ . k
e () e e
G = ) e U ) W<a>(%)1ﬂ<a>2'%>3)i . 0200 8 )
) oo’ o0’ 0o’

Contravariant coordinates of the position vectors it is possible to obtain by
following formulas:

1 ¥t 90”9 ) 200" U 30000 00*) 200 0 90 o)
A o) ) ) )

Plo e 0 0=

2

1 00" 9 0 20 0 0 8 0 0 ) 200 0 0 ) Yoo e )-
A ()’ ey’ ()’ ()’
1
) Yl )

)
1{%)(‘1(@1’%)Z%f)f‘wa)(‘k 4 f%f)_5X<a)(Q<a>1’M-‘I(af)a/(a)(ma1"1<a)2-‘1(a>3)}
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_ 1 P(a)(qmﬁqu»qu)@z(a)(q(afv% ’,

a0, 0 00(s) )

»
W[}
)

w|]
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2.2.3. Change of the basic vectors of the position vector three-dimensional
tangent space in generalized curvilinear coordinate systems

Without losing generality, we consider change of basic vectors of a position
vector of one mass particle during mass particle motion through real space and described
in three-dimensional space. Also, we focused our attention to the orthogonal curvilinear
coordinate system. For that case change (first derivative with respect to time) with time
of the basic vectors of tangent space of a position vector are (see Figure 3.):

9, =0+

dt
= gl(rlllql +F112q2 +F113q3)+ g2<F121q1 +F122q2 +F123q3)+ gs(rlslql +F132q2 +F133q3)

dg, =~ 1. .

d—t2=gz+[0’p2vgz]: (8)
= (rélgl + r221@2 + 1"2315413 )ql + (rzlzgl + l"222 g, + 1"232g3)q2 + (@3@1 + 1"223@2 + 1?3@3)13

dg. = 1. -

%293+[wp3'g3]:

1= 2= 3= Vel [l = 2 = 3= )2, [l = 2 = 3= |43
= (1"3191 +15:0, +r3193>1 + (rszgl +135,0; +r3293):1 + (r3391 +1330, +r3393)1
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N (@t @) a?@)a’ () Alat.a?,6%)

(ql(t)n qZ(t)’ qs(t))= Plg1 + PZGZ +P3gs

5
q dsgjq%. .
N op 1§ 93 ql\\ i O3
q--k L8 e gy
q Z 7 .. .
- > 02
= _0p .
92=aq—2 8 q g 9’
2
G 28_[73 6\ /N 0 0?)
0 L =
q k P 9, . y
i O~J

oy =0, 0 1). 0 (1), o) ¢(0).6%0.6°)

Figure 3. A position vectors and its three-dimensional space with corresponding
curvilinear coordinate system and tangent space with corresponding three basic vectors
of the position vector tangent spaces along mass particle motion through time

After analysis of the obtained derivatives of the basic vectors of position vector
tangent spaces in three-dimensional orthogonal curvilinear coordinate systems we can
separate two sets of the terms in obtained expressions (8). First set correspond to the
relative derivative of the corresponding basic vectors in the following forms:

*

g, = gl(rlllql + rllzqz + r113‘3'13)
2=0, (Fzzlql + lﬂzzzqz + F223q3) )

0; = gs(rglql + Fs?’zqz + Fssaqa)

These vectors present vector forms of extensions of the corresponding basic
vectors and in scalar form it is possible to express relative change of the intensity —
dilatation of the basic vectors in direction of its previous kinetic state. In differential form
is possible to write:

dla
de; = M =T1;dq* +T1,dg? + Tjdg®
[
dg,|
IR

(o]

*

dgz = = rgzldql + r322dq2 + r323dq3 (10)
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d|ga|
[H

From analysis of the obtained derivatives of the basic vectors of position vector

tangent spaces in three-dimensional orthogonal curvilinear coordinate systems we can

separate second set of the terms in obtained expressions (8). Second set correspond to
the rotation change of the corresponding basic vectors in the following forms:

[@ply gl]: gZ(Flzlql + 1"122‘512 + F123q3)+ gs(rl?’lql + F132(12 + Fl%qg)
— _ — . o2 <3 = 3 3 42 3 43
(@52, G, ]= 6.(Th6" + T07 + T0° )+ G, (T + TH07 +T50°)  (a1)
(6o 65 6Tt + 1507 + 1?6, [ + 567 + T°)
where we introduce notation @, @,, and @, for vectors of the angular velocities of

deg = = r331dql + rssquz + F333dq3

the corresponding basic vectors of the position vector tangent space. When curvilinear
coordinate system is not orthogonal and angles between three basic vectors are
changeable with time these angular velocities are different for each basic vector. When
basic vectors are orthogonal and without change orthogonal relation, all three angular
velocity are same.

For the case of the discrete mechanical system N mass particles for
each vector position of each mass particle is necessary, by analogous way as presented in
previous part, is possible to determine change of the basic vectors of tangent space of
position vectors.

After analysis of the obtained derivatives of the basic vectors of position vector
tangent spaces for each mass particle, in three-dimensional orthogonal curvilinear
coordinate systems, we can separate two sets of the terms in obtained expression and
corresponding for other two sets of the basic vectors. First set correspond to the relative
derivative of the corresponding basic vectors. These vectors present vector forms of
extensions of the corresponding basic vectors and in scalar form it is possible to express
relative changes of the intensities — dilatations of the basic vectors in direction of their
previous Kinetic state.

From analysis of the obtained derivatives of the basic vectors of position vector tangent
spaces for each mass particle in three-dimensional orthogonal curvilinear coordinate
systems, we can separate second sets of the terms in obtained expressions. Second set
correspond to the rotation change of the corresponding basic vectors. We introduce

notation  &,)p1, @u)p2 aNd @(,)ps for vectors of the angular velocities of the

corresponding basic vectors of the position vector tangent spaces. When basic vectors
are orthogonal and without change orthogonal relation, all three angular velocity are
same, for each vector position.

For example 1*: in polar-cylindrical curvilinear coordinate system by
expressions (8), (9), (10) and (11) we can write (see Figure 4.a*):

dg, dg, . -. - A S
e g(-Tsingp+ jcosp) o= %0 =08, =[6er. 6]
— d" = *

99, _ e =1Cy+r o =fCo—rot =g¢+[@P¢'g¢]

dt dt dt
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dt dt dt

iy dig dr _ .

g, =0, de, = |_.(p|:_' @py = K
g, r

B - . Iy -

g¢:rCO:?g¢l a)P(p=¢k1 gz=01 CUPZ=O

Angular velocities of the basic vectors of each position vector tangent space of
mass particle motion in polar-cylindrical curvilinear coordinate systems are:
E)(a)P :(p(a)k ,a=123,.., N.

N(rt)pt)z)  Alre.z) N(pt).olthyt) Aloow)

. RS L
. Gp =Y +¢=—y Ty +¢k

oS ydg @p =y Sy + Py siny + v, cosy)

b-k
Figure 4. A position vectors and its three-dimensional spaces with corresponding
curvilinear coordinate system and tangent space with corresponding three basic vectors
of the position vector tangent spaces along mass particle motion through time
a* polar-cylindrical curvilinear coordinate system; b* spherical curvilinear coordinate
system

For example 2*: in spherical curvilinear coordinate system by expressions (8),
(9), (10) and (11), we can write (see Figure 4.b*):

dg, dg, 11

I A e A AN IR LT

dg, dg, . . = .o
%=d—:’=co(pcosw—pt//smw)—(ﬂ(poCOS!//—VoSIm//)pcosw
dgs _ 49, i

— = pvy + pl—gCy Siny —yp
el pl= g siny —yp,)

ﬁp=0, [@Pp:ﬁpJ:‘/}‘jo"'@oCOS‘//

- ca I 1.
copp:y/c0+(pk:—pcoswg¢+¢(gpsmz//+;gwcost
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(ocosy — pyrsiny)g,,

L . 1
=C COoSy — Sin =
3, =Colpcosy — pyrsiny) oSy

|p,. G, | = [~ S + (5o siny + 7 cosy ), & pcosy | = (5, cosy — vy sinw )pcosy

Gy ==+ =Gy ok =——V G +4| g, siny +-2g, cos
Py W §0 l// 0 pCOSl// 1) ¢) P l// p 73 l//
dg, dg, .. . -
2B W _ i+ p(— @G, siny —

el Al p(= gty siny — B, )

. s

g =p O:_g ’

v P4

[QPV/’QW =-g0,l9y —yg, = [_'//60 +¢(f"05in‘//+‘70 COS'%/):PVO]

- = e .« = O — . - - 1 —
Wp, =—V+QP=wCy+gk=— + siny +—@,, cos
py =W +@=yCH+gK pcoswgw w(gp v pg.,, t//j
Angular velocities of the basic vectors of each position vector tangent space of
mass particle motion in spherical curvilinear coordinate systems are:
D) =V (a) * Pla) =V(a) Cola) + DK
)P = W(a)Co(a) + (b(a)(ﬁo(a)Sin Y(a) +Vo(a) COSl//(a))
a=123,...,

2.2.4. Dimensional extension of the position vector tangent spaces of the
reheonomic mechanical system in generalized curvilinear coordinate systems

Considered discrete mechanical system is constrained by G geometrical
stationary constraints in the form:
fla07 06 0 0 O e G )0, A <1236 (12)

and by R geometrical rheonomic constraints in the form (see Ref. [23]):
1 2 3 1 2 3

f G0 0" 007 0 G v G G, 0) =0,

7=123..R (13)
Considered system is rheonomic system with p=3N —G degree of the system mobility,
and with n=3N -G —R degrees of the freedom. For the n generalized independent
coordinates we take qi , 1=123,....,n. Also, we introduce additional subsystem of the
R rheonomic coordinates q” =q"*” =¢,(t), » =1,2,3....R which correspond to number
of rheonomic constraints. Then we have extended system of the generalized curvilinear
coordinates qi , 1=123,....,n,...,n+7,...,n+R. Then we know that subsystem of R
rheonomic coordinates q” =q"7 =4,(t), »=123...R contain known rheonomic

coordinates as functions of the time. But, force of the rheonomic constraints change are
unknown (see Ref. [21]).
Let us now take into account that first n coordinates of the position vectors of

the mass particles are independent generalized coordinates. Extended system of the
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generalized coordinates containing independent coordinates qi, i=123,..,n and

rheonomic coordinates q” =q"” =4, (t),» =123...R , then it is possible to list in the
form:

q'= %)1, """" '

¢ = gy, A" = Q)

o° =qq), q"" = oy

a*=qp), 0" =g

0° =0y, 4" =gy

q° = Q(z)ay- q"t= Q(n)z,

........ q" = Q(n)3

q” =q"7" =¢,(t), 7 =123..R (14)

On the basic of the listed system (14), we can conclude that in considered case, we use

coordinates of the positions vectors of the first K s%:%@N —~G-R) mass particle as

generalized independent coordinates.

Then on the basis of previous for the coordinates of the geometrical point which
correspond to the mass particle positions at arbitrary moment of the motion, we can
write:

Nz(q4 =0p).0° =0dp) 0 = Q(z)s) (15)

i=123..,(N-K)

/51( Y=g, 0° =)0 = Q(l)a)
5 2 6

Bolo = U 0° =0p).0° = q(zf)

e (an—z _ q(K)l’q3K—l _ q(K)z’qu _ q(K)s)

Bras (0407 0 G 0™ =123, (N—K)

(16)

2.2.5. Concluding remarks

We can see that in extended system of generalized coordinates, we can
identified two sets of the position vectors of the mass particles: one set (15) contain K,

ngzé(SN—G—R) position vectors of the mass particles depending of three
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generalized coordinates, and second set (16) contain theN-K > G ; R :

Ks%:%(BN—G—R) position vectors of the mass particles depending of all

p=3N -G generalized coordinates in general case, or more then of three generalized
coordinates.

Also we can conclude that in extended system of generalized coordinates, we
can identified two sets of the position vectors of the mass particles, one set (15) contain

theK, K s%:%@N ~G-R) position vectors of the mass particles with three-

dimensional tangent space and each with three basic vectors of this tangent spaces, and

G+R 1

second set (16) contain the N — K > , K< % = §(3N ~G—R) position vectors of

the mass particles with extended dimension of the tangent space and to each tangent
space correspond p=3N —G basic vectors in general case, or more than three basic

vectors of the tangent space.

Open directions for next research and applications. As a possible open
directions for next research and application are: an analysis of expressions for
generalized Corilis forces introduced by changing position of motion observer from
fixed coordinate system to rotate curvilinear coordinate system correspond to vector
position tangent space; applications of the previous results for solving problems of the
numerous coordinate system properties used in astro-dynamics; extension and proof of
extension Lagrange differential equations to the description of the rheonomic system
dynamics and necessary generalizations.

3. ADVANCES IN ANALYTICAL MECHANICS.

3.1. Analytical mechanics of hereditary discrete system vibrations
3.1.1. Introduction

Integro-differential equations and their applications in development of analytical
mechanics of discrete hereditary systems are used by Gorosko and Hedrih (Stevanovic)
(see References 111 [35-54])

Research results in area of mechanics of hereditary discrete systems, obtained
by Gorosko and Hedrih (Stevanovi¢) (see References IV [35-54]) are generalized and
presented in the monograph [35] which contains first completed presentation of the
analytical dynamics of hereditary discrete systems. Two classes of dynamically defined
and undefined hereditary systems are defined and considered by introducing
corresponding restrictions. Main results of mechanics of hereditary discrete systems are
presented with new applications important to engineering.

Approximation of expressions for the coefficients of damping and corresponding
decrements as well as for circular frequency of oscillations of hereditary oscillatory
systems are obtained with high accuracy in the first and second approximations.
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Analogy between hereditary interactions and reactive forces in systems of
automatic control is identified and a possibility to extend theory of analytical dynamics
of hereditary systems to mechanical systems with automatic control is pointed out (see
References [36] and [37] by Gorosko and Hedrih (Stevanovic)).

The Lagrange’s mechanics of hereditary systems are extended and generalized to
thermo-rheological [35,52] and piezo-rheological [35] discrete mechanical systems as
well as to discrete mechanical systems with standard light creep elements. .

Analytical dynamics as general science of mechanical system motions was
founded by Lagrange (Joseph Luis Lagrange (1735-1813)) in the period of his work at
Berlin Academy. The Lagrange’s book “Meécanique Analytique” contains basic analytical
methods of mechanics and was published in France in 1788. Introduced analytical
methods in Mechanics by Lagrange are main and first base of analytical mechanics in
general. Lagrange’s equations of second kind and Lagrange’s equations of first kind
with unwoven Lagrange’s multipliplicators of constraints are main fundament of
Analytical Dynamics.

Analytical dynamics is largely applied and used in engineering system dynamics
and in natural sciences as well as for investigation of mechanical system dynamics and in
physics of the microworld.

Mechanics of hereditary continuum is presented by series of fundamental
publications and monographs. In current literature term “hereditary” and “rheological”
systems are equivalent. Mechanics of discrete hereditary systems up to a ten years before
was presented only by separate single papers and containing only solutions of partial
problems.

Research results in area of mechanics of hereditary discrete systems, obtained
by authors of this paper, are generalized and presented in the monograph [35], published
in 2001 by Gorosko and Hedrih (Stevanovi¢)), which contains first presentation of
analytical dynamics of hereditary discrete systems. We can conclude that this monograph
contains complete foundation of analytical dynamics theory of discrete hereditary
systems and by using these results, numerous examples are obtained and solved (see
Refs. [35-54]). In this analytical mechanics of hereditary discrete systems, modified
Lagrange’s differential equations second kind in the form differential and integro-
differential forms with kernels of relaxation or rhelogy are derived.

3.1.2. Models of hereditary elements in analytical dynamics of hereditary
discrete systems.

Hereditary system is each system which contains mutual hereditary interaction
between material particles in the form of one or more coupling constraints with
hereditary properties.

Simple visco-elastic element is Voight’s type element (Woldemar Voigt, 1859-
1919). In the state of extension resultant force appears by two components, one by visco
and one by elastic properties in the deformation of visco-elastic element and constitutive
stress-strain relation given as relation between force and extension of element in the
following form:

P(t)=cy(t)+ w(t) (1)
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In Mechanics of hereditary continuum in the case of axial (in one direction)
stressed and deformed Voight’s type body stress strain constitutive relation is expressed
by following relation: & (t)= Ee(t)+ &(t). More acceptable and precise and better

compatible with experimental data with real hereditary body properties is model of the
standard visco-elastic body (Kelvin and Poyting-Thompson’s body). Constitutive stress
strain relation given as relation between force and extension of element in the following
form:
nP(t)+ P(t)= ncy(t)+ Cy(t) )

In mechanics of hereditary system constants N, C and C obtain special names: time of
relaxation, rigidity coefficients, one momenteneous and prologues one.

For generalized hereditary element model relation between force and
deformation is possible to describe by differential equation high order derivative in the
following form:

m k m k
Zakd—P+P(t)=b0x+Zbkd—i( (3)
r=1 dtk k=1 dt

For more complex viscose elements (represented by the Jeffreys’ bidy (J-body)
and Lethersich’s body) stress-strain state is described by differential equation in the
form:

nP(t)+ P(t)=b,y(t)+nb,J(t) @

Equivalency and analogy of hereditary interactions and reactive forces in
systems of automatic control gives possibility to extend theory of analytical dynamics of
hereditary systems to mechanical systems with automatic control. For example,
automaton with transfer function presented in the following form (see References [36]
and [37] by Gorosko and Hedrih (Stevanovic)):

by +bip+..+b,p"
W(p)= 0 blp npn
l+ap+...+a,p

presents a hereditary interaction (3) between material particles of the discrete mechanical
system with one degree of freedom.

Parameters of the automaton of arbitrary structures are defined in an experimental
way and it is possible to obtain amplitude-phase characteristic. In our opinion there are
real possibilities and perspective to use method of amplitude-phase characteristic for
experimental obtaining of mechanical characteristic of the hereditary discrete mechanical
systems. It is possible to solve some difficulties with identification coefficient of the
momenteneous rigidity which appear in the mechanical investigation of the hereditary
forms and shortened longtime experiments.

()

3.1. 3. Integral models of the stress-strain state of the hereditary elements.

There are three mathematical forms for description of constitutive relations of
hereditary properties of hereditary interaction [35], in the building of hereditary system’s
mechanics. These forms are(see References [36] amd [37] by Gorosko and Hedrih
(Stevanovic)):
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1* Differential equation, expressed in the form of dependence reaction force P of
the rheological coordinate X, usually presented as deformation or relative displacement
of the hereditary constraint in the form (3).

2* Integral equation, expressed in the form of dependence reaction force P of the
rheological coordinate Yy , usually presented as deformation or relative displacement of

the hereditary constraint:
t

P(t)=c| y(t)- j.%(t -7)y(z)d z’} (6)
0

c-C -3 . : 1 .
where J(t-7)=-——¢e " is relaxation kernel, and 5 _1lis coefficient of the
nc n

element relaxation.

This integral relation (6) can be obtained by solving equation (2) with respect to the force
P . By this integral equation, the relaxation of the reaction force P depending on the

rheological coordinate Y , is presented and expressed.
For the case of the generalized standard hereditary element (3) integral equation
is possible to obtain in the form (6) in which relaxation kernel ﬂ(t —z')presents sum

by sum of exponents.
3* Integral equation, expressed in the form of dependence rheological coordinate
Y, usually presented deformation or relative displacement of the hereditary constraint

and reaction force P :

t
y(t):% P(t)+ [$(t-r)P(c)dr (7)
0
c-¢ Lo . g . -
where S‘i(t - T): — “gre is kernel of rheology and B =—18 the coefficient
nc nc

of the  creep or retardation or rheology.
3.1. 4. Three forms of equations of motions of a hereditary oscillator.

Simple model of a hereditary discrete system is hereditary oscillator with one
degree of freedom which contains one material particle with mass M and one standard

hereditary element P with material visco-elastic properties defined by following
coefficients: N, cand C constitutive stress-strain relation expressed by relation (2)
between force P(t)and generalized and rheological coordinate y(t). Then by using

principle of dynamical equilibrium of the oscillator it is possible to obtain equation of the
oscillator motion in the following form:

my(t)+ P(t)= F(t) ®)
where P(t) is resistive reaction of the rheological element, F(t)external forced

excitation. Using constitutive relation (2) or (10) for stressed and deformed standard
hereditary (rheological) element for eliminating resistive reaction of the rheological
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element P(t) from last equation (8) we obtain three corresponding forms of the

equation of motion of the rheological — hereditary oscillator with one degree of freedom
listed as follow: one in differential form:

nmy/(t)+ myi(t)+ ney(t)+ Cy(t) = nF (t)+ F(t) 9
and two in integro-differential forms:

my(t)+ c[y(t) [n(t- T)y(f)dr} R (10)

)+ c{y(m _jﬁ(t - omyl(c)d } CF()+ c_j.@(t F(r)de (11)

For the case of the weak singular hereditary oscillator equation of the dynamic
equilibrium (oscillator motion) in the differential form is not possible to obtain, but in the
integro-differential forms is possible.

3.1. 5. Thermo-rheological pendulum
3.1.5.1. Light standard thermo-rheological hereditary element

When standard hereditary element is modified by two temperatures T, (t) and
Tw (t) which are introduced by thermo-modification of visco-elastic properties by
temperature T, (t) and by thermo-modification of elasto-viscosic  properties by
temperature T,,(t), than constitutive relation between stress and strain state of the
thermo-rheological hereditary element (see Ref. [35]) is:

nP(t)+ P(t)+ nFy (t)+ Fy (t) = nca(t)+ E[p(t) - o (12)
in which

Fu (t) =CyayTy (t)’ Fe (t): Cra Ty (t) (13)
are thermo-elastic forces, and p(t) is rheological coordinate, c,,,c, are coefficients of
thermo-elastic rigidity, ¢,,,a, are coefficients of thermo-elastic dilatations, N is time of

relaxation, and ¢, ¢ an instantaneous rigidity and a prolonged one of an element.

Constitutive relation (12) of the thermo-rhelogical hereditary element from
differential form, we can rewrite in two integro-differential forms.

3.1. 5. 2. Light standard piezo-and thermo-rheological hereditary element

When standard hereditary element is modified by two polarization voltages U (t)
and UM(t), which are introduced by piezo-modification of visco-elastic properties of
subelement of piezoceramics, by UK(t) and by piezo-modification of elasto-viscosic
properties by U,, (t), and thermo-modified by two temperatures T (t) and T, (t), than

constitutive relation between stress and strain state of the piezo-rheological hereditary
hybrid element is in the form (12) in which

FM (t) =Cum aUMU M (t)+ Crm aTMTM (t)
Fy (t) = Cuk @Y (t)+ Crx o T (t) (14)
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are thermoelastic and piezo-elastic forces, and p(t) is rheological coordinate, ¢, ¢, are
coefficients of thermo-elastic rigidity, o, ,a, are coefficients of thermo-elastic
dilatations, c,,,Cy are coefficients of piezo-elastic rigidity, o, are coefficients
of piezo-elastic dilatations N is time of relaxation, and ¢, ¢ an instantaneous rigidity and
a prolonged one of an hybrid element.

3.1. 5.3. Pendulum with standard thermo-rheological hereditary element

The thermo-rheological hereditary pendulum has two degrees of freedom, one
degree of motion freedom defined by angular coordinate 3 and one degree of

deformations freedom defined by changeable length of thread as a coordinate p(t).

Let us compose the equations of the thermo-rheological pendulum dynamics
with thread in which the standard thermo-rheological hereditary element with
constitutive stress-strain relation (12) is incorporated. Now, by introducing force P(t) of
the extension of the thermorheological hereditary thread from constitutive relation (12)

presented into integral form, the equations of the pendulum motion are in the forms (for
detail see Reference [52] by Hedrih (Stevanovié))'

5(a+ O +gcose+[ Jotomt -
(15)
~ P j [Fo (7)- Fi (IR (- 2)d=P ()
(oo + p())° 6 +2(pp + p(t))d(t)+ g(pg + p(t))sin @ = M(t) (16)

This system is a system with one integro-differential and one differential equation
of the thermo-rheological hereditary pendulum with motion in vertical plane.

If the thermo-rheological pendulum is in the horizontal plane, from second
differential equation of the previous system, we can obtain the relation between the
length of the pendulum thread and of the angular velocity in the following form:

2
o(t)= g(O{LP(O)} (17)

Pot P(t)

By introducing this previous expression (17) in the first equation of the system

(16) (for the case of horizontal plane) the following integro-differential equation for the
pendulum Iength thread is obtained'

[po + ,D C b

-l o !p (8

J[FM (O)R(t-7)dzP(t)
0

1,
m
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3.1..6. Concluding remarks

Solution of obtained integrdo-differential equation (18) is mathematical problem
in analytical mechanics of hereditary discrete system dynamics.

Also, solutions of the similar integro-differential equations are tasks for
mathematics in the function of applications in mechanics and engineering system
dynamics with hereditary properties.

In the basis of the construction of Lagrange’s mechanics of hereditary discrete
systems, the classical mechanics principles are used [35]. These principles are: Principle
of the work of forces along corresponding possible system displacements, as well as
Principle of dynamical equilibrium.

Initial conditions of hereditary system dynamics are very important, containing the
history of rheological interactions of the system. Then, it is important to take into account
stress-strain history of viscoelastic elements — interactions between hereditary system
material particles.

Analogy between hereditary interactions and reactive forces in the systems of
automatic control gives possibility to extend theory of analytical dynamics of hereditary
systems to mechanical systems with automatic control.

For description of properties of dynamics of a hereditary system by using
relaxational or rheological kernel (resolvent), these kernels are expressed by exponential
or fractional-exponential forms [35] . Descriptions of hereditary properties of the system
by using differential forms (2) and integral form (6) and (7) with exponential kernels are
equivalent. For the case of fractional-exponential forms of the kernel (6) and (7) in the
integral form corresponding equivalent differential forms not exist.

The Lagrange’s mechanics of hereditary systems is extended and generalized to
the thermo-rheological [35, 52] and piezo-rheological [35] mechanical systems.

Open directions for next research and applications. Directions for next research
in area of mechanics of hereditary discrete system must be focused to find analytical
forms of solutions or approximations of solutions of integro-differential equations and to
build mathematical theory of the material memory of the history of previous stress and
strains in the material before starting system motion and its observation. Mathematical
theory for slowing problems with determinations of the initial conditions of the
hereditary system is second main task in this area. Present in science, there are numerous
numerical approach and numerical experiments over the integro-differential equations
and numerical procedure expressed by software tools but for advances in area of
analytical dynamics of hereditary systems it is necessary analytical approach, solutions
and qualitative methods for evaluations of the system solution stability.

For practical applications in mechanics and engineering system dynamics
analytical forms of the approximations of solutions of intgro-differential equations are
necessary for easier quantitative estimation larger class of the dynamic phenomena
hereditary system behavior. All real constructions and engineering structures are with
hereditary properties.
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3.2. Analytical mechanics of fractional order discrete system vibrations
3. 2.1. Introduction

Differential fractional order equations and theirs applications in development of
analytical dynamics of discrete and continuous fractional order systems with like single
and multi-frequency modes, or fractional order modes are important results for
applications in different area of science and practice (see References (see References I
[39-46] ).

Discrete continuum method is based on the continuum discretization and
coupling by standard light hereditary, or fractional order elements (see References [49]
and [50]). Main nets, main chains and mail fractional order oscillators with main
fractional order modes of plane as well as space coupled mechanical chains (cases with
ideal elastic, hereditary and fractional order). Fractional order standard light elements
have applications in mechanics of continuum (models of longitudinal and transversal
oscillations of beams), in biomechanics (mechanical models of double helix DNA chains
[45]), to systems with coupled pendulums, as well is in signals transfer (see
Referenceslll.).

3.2.2. Standard light fractional order element

Standard light coupling element of negligible mass is in the form of axially
stressed rod without bending, and which has the ability to resist deformation under static
and dynamic conditions. Standard light fractional order creep element for which the
constitutive stress-strain relation for the restitution force as the function of element
elongation is given by fractional order derivatives in the form (see References [40] and
[41] by Hedrih (Stevanovi¢)):

P(t)=—eox(t)+ ¢, 2 [x(0)] (1)

where o¢[s] is operator of the a™ derivative with respect to time tin the following
form:

et [ @

where c,c, are rigidity coefficients — momentary and prolonged one, and o a rational
number between 0 and 1, 0<a <1.

3.2.3. Governing equations of the fractional order multi-chain plane system
model

Coupled governing fractional order differential equations of the multi chain
fractional order plane system vibrations, according notation in Figures 5.a* and b*, and
determined standard light fractional elements by constitutive relation (1) and (2) , used
for coupling of the mass particles, are in the following form:
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. a
my Xk, j = _Ck—l,j(xk,j _Xk—l,j)+ Ck,j(xk+1,j - Xk,j)_ca,k—l,th [Xk,j - Xk—l,j]+
" - -
+Cok, i D [Xk+1,j —Xk,j]—ck,(j—l,j)(xk,j —Xk,j—1)+ ck,(,-,m)(xk,m—xk,j)— ®)
~ o ~ o
~Cok(j-1 i) [Xk,j _Xk,j—l]+ Ca k(. j+1) [Xk,j+l_xk,j]

k=1234,...,N, j=1234,..,.M.

(j-Lj j+1)-th chains

a8 o 7~ P : j+1)-th chains
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A H
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Figure 5. Discrete continuum fractional order model in a plane - Hybrid
multi chain fractional order plane system. (a*) Hybrid multi-chain system, in one plane
and in the form of coupled chains by standard light fractional order elements and in the
cantilever form of boundary conditions;  (b*). Three coupled chains (j—1)-th, j-th
and (j+1)-th chains, j=12,34,...,M, as part — subsystem of the hybrid multi chain
system with coupling elements and kinetic parameters: masses, stiffnesses and fractional
order parameter of the fractional order element and generalized coordinates of the
system. Attached a separate ] -th chain of the hybrid chain system with notation of the
generalized coordinates X k=1234,.,N, j=1234,.,M.

j—th chain

Ceatini)  Cjni) Con(jag)

Cerivile Sfjtij Cet(jtile  Citia Cja Sotja

For the homogeneous plane system corresponding to the system (3) of
fractional order differential equations let us introduce the coordinate transformation, in
accordance with trigonometric method (see References [54] by Raskovi¢ and [43], [44]
and [40] by Hedrih (Stevanovic)) in the following form: :

s=M
Xe i = D Ees)SiN @, k=1234..N s j-1234....M - (4)
)

where é‘k(s) are normal coordinates of the main chains of the hybrid plane system as

well as generalized coordinates of the s-th main chain from the sets and for the
corresponding linear system are in the form: &) =Cy)cos(@st + ) and
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s
2
system obtained by using the trigonometric method (see Refs. [54] by RaSkovié¢ (1965)
and [40], [43], [44], [45], [46] and [48] by Hedrih (Stevanovi¢) (2002, (2004), (2007),
(2009) and (2010)) depending of boundary conditions of the transversal chains in the
form of the longitudinal chain connections.

0. and ¢, are eigen characteristic numbers of the hybrid

~2 _~ KC_KC . o .
Oils) = Ufs) = AT SINT 0 Ty =0

%fk(s) —Cks) T (2 +Kﬁk(s))§k(s) —Gea(s) + [— Skafs) + (ZKa +’?aﬁk(5))§k(s) —§k+1(s)]= 0

k=1234,..,N,s=123,..,M (5)

Let us introduce the following coordinate transformation:
r=N r=N

Stk(s) _ Z‘fk(s)(r) _ Z”(s)(r)Sin kS, * S= 1,2,3,...., M (6)
r=1 r=1

Taking into account that sinkd, is different them zero in arbitrary cases from
(3), we can obtain the transformed system of the governing fractional order differential
equations (5) of the eigen main chains as well as the transformed basic governing system
of fractional order differential equations (3), with respect to the new introduced
coordinates 75, containing m«n independent subsystems for each pair of the (s)r)

from the sets s—123...m and r=1,2,3,4,...., N in the following forms:

2 2 a
i) * @y ooy + @ik X i ]= 0. (7)
s=123,..,M:r=21234,..,N
where
a)j(s)(r) = %<2(1«a -1+ Usyr) +(z?a-;c)a‘k(s)> y5=123,...M,r=1234,... N (8)
This last system of fractional order differential equations (7) represents m xn
independent partial fractional order differential equations describing independent
fractional order oscillators each with one degree of freedom and eigen normal coordinate
NGs)r) + $=123..,M:r=1234,..,N of the considered fractional order hybrid system

and containing Nsets of the M eigen main chains normal coordinates
N(s)r)rs=123...M » F=1234,..,N. Then, we can conclude that simultaneously with

determination of the normal coordinates of the eigen main chains, we determine as well
as normal coordinates of the considered hybrid fractional order plane system vibrations
with mxn degrees of freedom. Also, we can conclude that normal coordinates for the
linear system, correspond to the normal coordinates of the corresponding fractional order
system and expressions for generalized coordinate transformation to the eigen normal
coordinates of the basic linear system vibrations, we can use for the corresponding
coordinate transformation of the corresponding fractional order hybrid system vibrations
to the eigen normal coordinates.

3.2.4. Eigen factional order signals and eigen main chain signals in the
fractional order multi-chain plane system model

Type of the obtained fractional order differential equations in the system (7) is
same as in numerous author’s papers, but with different coefficients. These coefficients
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are sets of eigen circular frequencies w(zs)(,) and fractional order material properties

characteristic numbers wj(s)(,) in the form:

oty = axsin? 24 21— cosg,)| * =123 M T =1234, N ©)
o = > :

D)) = %<2(xa ~1)+ 2(1—cossr)+4,?asin2%>, s=123...M,F=1234,..,N (10)
which depend of boundary multi-chain system conditions determining characteristic

numbers: ¢, and 9, (see Refs. [54] by RaSkovi¢ (1965) and [40], [43], [44], [45], [46]

and [48] by Hedrih (Stevanovi¢)).

Now, taking into account solutions of the fractional order differential equation
(see Reference [38] by Bacli¢ and Atanackovi¢ (2000)), for the system of the fractional
order differential equations (7), we can write corresponding solutions of N(s)r)

s=123..M,r=1234,..,N, in the form of fractional order like one frequency time
functions which are eigen main modes and normal coordinate 7),) of the fractional
order plane system in the following expansion:

© k k (?l)l a)i -5 g t_aj
ﬂ(s)(r)(t) = ﬂ(s)(r)(O)Z(—l)k wﬁ?s)(r)tZKZ( ]23)()+

o= =) o r2k+1-aj) (11)
- SONG 5( -
-~ (O) (_1)k zkS r,[2k+1 [j a(s)(r)

s=123..,M,r=1234,.., N
This last expressions (11) determines eigen normal fraction order like one frequency
modes of the hybrid fractional order system corresponding to one eigen circular
frequency and corresponding eigen fractional order properties characteristic number (10)
of material fractional order properties of standard light elements. Also, we can conclude
that the expressions (11) are mathematical descriptions of the main normal fractional
order like one frequency signals.

Now, taking into account coordinate transformation:

& ):ri'ffk( Zn ysinkd, (12)
sz sin jog = %%q ysinkd, sin jog (13)

s=1 r=1
and solutions (ll), we obtain expressions for the like multi-frequency fractional order
generalized coordinate in the following form:
1* eigen normal coordinates for obtaining eigen main chains and generalized
coordinate of the eigen main chains,

r=N 0
= 2 s 0)sin p 8, Y (-1 s ZkZ[ j
r=1 k=0 (s r
r=N (1 )Jw 5
. ] 9 o s r 2k+1 -
+§77(s>( ) )sin p Z Z[J%k )1“(2k+2 aj)

j=0

[24

(2k+1 aj)

1J2 -dj
s

(14)
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p=123..,N,s=123,..,M

2* generalized coordinate of the hybrid fractional order system:

s=Mr=N -
¢= .Y sinpd, SIrlqgosZU 0)sin ps, Z D fiyet ZkZ( j2|<+1)04)+

s=1 r=l

s=Mr=N K (k (+1) P 1) -aj
+ Sin P, sinde, Y75 (0)sin p g, D oZyot™ [J“(S(r)

;; Sz z S r ; ] a)(zsi(r)l“(anLZ—aj)

p=123...N ,Q=123...M (15)

3.2.5. Eigen factional order signals and eigen main chain signals in the
fractional order multi-chain space system model

For the homogeneous fractional order multi-chain space system dynamics,
presented in Figure 6, by the similar way as in previous chapter I11.2.4. is possible to
write system of coverning fractional order differential equations by use coordinate
notation from Figure 6, and corresponding material system coordinates.  Then let
introduce the following coordinate transformation:

s=K . —
X0 = 2 & sinkey 1 =E23 4 N -1234 k=123...K. (16)

s=1

where g((isf(j), i=1234,...,N, j_1234,..m fOreach s=123,...,K,are normal coordinates

of the main plane subsystems R(S), s=12,3,....,K in the form of the independent K
plane nets each consisting of the coupled M chains each with N degrees of freedom.
os,5$=123,....,K are eigen characteristic numbers of the hybrid system and
according trigonometric method (see Refs. [54] by Raskovi¢ (1965) and [40], [43], [44],
[45], [46] and [48] by Hedrih (Stevanovic)) depending on boundary conditions of the
transversal coupled chains in the form of the normal direction of chain connections
between parallel plane nets, determined by direction of increasing indices
k=123,.. . Each of these K main and independent plane nets are with N xM

degree of freedom with N xM normal coordinates § 1i1=1234,.,N s j_1234,..m TOF
each s=1,23,....,K and are like multi frequency fractlonal order time functions form K

independent subsets of circular frequencies a)éf))( i) and corresponding fractional order

characteristic numbers “’S}i),(j) i=1234,....,N, j_1234,..m fOreach s=123,..,K
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Jk—th chains
—th chains
n S Fr {754)(k—1)-th chains
P "“ X
Ers=t (327} (k-2)-th chains
Mil1,j-1k-2 i Aj-1k-2
4

i +1j-Lk-2

b*

Figure 6. Discrete continuum fractional order space model - Hybrid multi chain
fractional order space system. (a*) Hybrid multi-chain system, in space and in the form
of coupled chains by standard light fractional order elements and in the cantilever form
of boundary conditions;  (b* ). The coupled chains (j-1)k-th, jk-thand (j+1)k-th
chains, and (j-1)k-th , (j-1)(k-1-th , and (j-1)(k-2)-th, j=1234,..,M,
k=123,...,K as part — subsystem of the hybrid multi chain system with coupling

elements and kinetic parameters: masses, stiffnesses and fractional order parameter of the
fractional order element and generalized coordinates of the system, with notation of the
generalized coordinates x,, , k=1234,..,N, j=1234,...M, k=123...K.

Taking into account that sinke; is different them zero in arbitrary cases from

system of governing fractional order differential equations, we can obtain the
transformed basic governing system of fractional order differential equations with respect

to the coordinates é((is)?(j), i=1234,..,N, j_1234..m Containing K independent
subsystems of coupled fractional order differential equations of like multi-frequency
N x M -frequency main plane nets for each S from the set of s-=123..k in the
following forms:

9 4(6) ) () (s)

i) f(m),(n*’f[ SN0 *256)() 5<i>,<j+1>]+

#1804 T8 K - el e 28 + 2680 - 8]0
i=1234,..,N, j=1234,..M1 §=123,...,.K (17)

M i) (o) 7(s
< 200) &y + ),
)

Previous obtained K subsets of fractional order differential equations describing
dynamics of the main subsystems is expressed by new coordinates 5((3,)( j)r 1=1234..N

j—1234..m containing K independent subsystems for each S from the set of

$s=123..,K .

These subsystems present K mathematical descriptions of dynamics of independent
eigen main plane (or surface) nets containing coupled chains with corresponding subset
of the eigen circular frequencies and corresponding fractional order characteristic
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numbers of main plane (surface) nets. Through these eigen main plane nets is possible to
transfer subset of the signals with frequencies from the corresponding subset of the eigen
circular frequencies. These signals are fractional order like N x M frequency signals.
Next approach is similar as in the previous chapter I11.2.4. for system containing coupled
chains in one plane. Then, due to the limited length of the paper, we will not to present
all derivatives and suppose writer to follow previpus chapter to obtain independent
subsystems of the fractional order differential equations describing main independent
fractional order oscillators each with one degree of freedom, in the form;

FENNe) wé)(,)(p)§(s)(')(p) + 0oy o) B [g(s)(r)(p)J: 0, (18)

$=123,...K, r=1123...M ,p=123...N

where
5((?’)“) _ r:Mn((is))(r)sin g i=12,34,..N, i=1234,..M15=123,..,K (19)
r=1
p=N
q((is’))(r): g(s)(r)(p)néi“’))(r)sinir,z/p L i=1234.,N . 5=123,..K ,
p=1
r=123...,M (20)

Previous system (18) contains N xM xK independent fractional order
differential equations each only along one coordinate ;(S)(r)(p),s:1,2,3,....,|<,

r=123...M,p=123...N. . These coordinates ¢\ NP} o 155 i
r=123..,M,p=123..,N, are normal coordinates of the hybrid discrete fractional

order space system containing parallel coupled chains in the parallel planes and in the
parallel lines in these planes.

Number of fractional order partial oscillators is equal to the product N x M x K
and equal to the number of the system degrees of freedom.

3.2.6. Concluding remarks

Then we can conclude that through eigen main plane (surface) nets R(s),
§=123,....,K, it is possible to transfer like N xM -eigen frequency fractional order

signals as independent on other subsets of plane like N xM eigen frequency fractional
order signals in other eigen main plane nets R(S), s=123,...,K.

Each eigen main fractional order plane nets R(S), $=1,23,....,K is possible to
decompose into M independent eigen chains, in total there are M xK main
independent chains of all space system, with normal coordinates n((is))(r)
i=1234,..,N,s=123,...K,r=123,....,M of these independent eigen chains . Then we
can conclude that through each independent eigen main chain is possible to transfer like
N - frequency fractional order signal, as well as that coordinate 77((5)(') are N-

frequency fractional order time functions with corresponding main chains sub set of N -
frequencies and corresponding characteristic fractional order properties numbers.
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From the last obtained system (18) containing N xM x K independent
fractional order differential equations each along one normal coordinate

NP 103 Kk, r=123..,M  p=123..N We can conclude that each of these
normal coordinates of the system is like one frequency fractional order time function

with  eigen circular frequency from the set wé)(r)(p), $=123,....K,
r=123..,M,p=123...N and fractional order characteristic numbers a)i(s)(,)(p),
s=123,...K, r=123,...,M ,p=123..,N describing fractional order properties of the
system eigen vibrations. Number of fractional order partial oscillators is equal to the
product N xM x K and equal to the number of the system’s degrees of freedom. Then
we obtain normal coordinates for the transfer of one frequency fractional order signals
through space fractional order vibration structure.

Then, we can conclude that simultaneously with determination of the normal
coordinates of the eigen main nets and eigen main chains we determine as well as normal
coordinates of the considered hybrid fractional order system with nxmxk degree of
freedom. Also, we can conclude that normal coordinates for the linear system,
corresponding to normal coordinates of the corresponding fractional order space system
and expressions for generalized coordinate transformations to the eigen normal
coordinates of the basic linear system we can use for the corresponding coordinate
transformation of the corresponding fractional order space hybrid system to the eigen
normal coordinates for the considered hybrid system.

Open directions for next research and applications. Directions for next
research in area of mechanics of fractional order discrete system must be focused to find
analytical forms of solutions or approximations of solutions of fractional order
differential equations different types and integrals.

Also, applications of the fractional derivatives and fractional integrals for
describing constitutive relations of different types and sources of material . Research in
this area nust be focused also to the experimental investigation of the material constants
and parameters defined by fractional order derivatives and operators.

For practical applications in mechanics and engineering system dynamics
analytical forms of the approximations of solutions of fractional order differential
equations are necessary for easier quantitative estimation larger class of the dynamic
phenomena fractional order system behavior. All real constructions and engineering
structures are with plastic properties.

4. Advances in elastodynamics, nonlinear dynamics and hybrid system
dynamics

4.1. Krilov-Bogolyubov-Mitropolyski asymptotic method of nonlinear
mechanics, method of constant variation and averaging method

The different first approximations of solutions of nonlinear differential
equations have very large applications in engineering practice for fast evaluations of the
kinetic parameters of engineering dynamics (see Reference [55-57] by Hedrih
(Stevanovi¢) and [58-60] by by Hedrih (Stevanovi¢) and Simonovi¢). Some time these
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first approximation are used for engineering practice with enough precisions and not
necessary to use second and higher approximation. One of the main reason that in this
part we take into consideration a comparison between first approximation obtained by
different method, as well as used different starting known solution for obtaining first
approximation.

Let compare three first approximations of the solution of a nonlinear differential
equation with small nonlinearity, describing dynamics of nonlinear oscillator with one
degree of freedom (see Figure 5.a*) , in the form (see Reference [55-57] by Hedrih
(Stevanovic)):

% (t)+ 26, % (t)+ @i (t) = —@5%2(t), for 6,20, £ 20, of > 6F (1)

inwhich &, = &6, and @3, = eofy,, and & and & are small parameters.

We use three different approach and three methods for obtaining first
approximation of the previous nonlinear differential equation (1). First is starting known
analytical solution of a corresponding linearized differential equation which correspond
to nonlinear differential equation (1).

IV.1.1* In first case, for starting known solution, we can take solution of the
linear differential equation in the following form:

% (t)+26,% (t)+ 0% (t) =0, for 5,20, £ =0, wf > 6} ()
with known analytical solution in the form:
x,(t) = Ryse " cos(pit + gy ), for 8, 20, £ =0, &f > 57 ?3)

in which circular frequency of damped vibration is in the form p, = wla;f —512 and, Ry,

and  «, are integral constant depending of initial conditions. Amplitude of this

oscillation is in the form Rye ™" and decreasing with time.

4.1.2* For finding first approximation of the nonlinear differential equation (1),
we take starting known analytical solution (3) of linearized differential equation in the
form (2) and as a possible firs approximation of the solution we take into consideration
the following

x,(t)= Ry(t)e " cosd,(t) , for &, #0, %0, wf > &6 (4)
in which a(t) = R;(t)le~** amplitude and full phase @, (t)= p,t+¢,(t) contain unknown

functions of time Rl(t) and ¢1(t) which need to determine. For this fist approach, we

applied Lagrange method of variation of constants to the known solution (3) of the
linearized differential equation corresponding to nonlinear differential equation (see
Reference [55-56] by Hedrih (Stevanovi¢)). After obtaining system of differential

equation along unknown functions of time Rl(t) and ¢1(t) we applied average to the

obtained members along one period of the T, = 2% = 2z damping vibrations.

p ./ a)lz _ 512

Then, after differentiation along time of the proposed approximation of the
solution (4) we obtain:
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% (t) = —6,R, (t)e ™" cos @y (t)— Ry (t)e ™ p, sin @, (t)+ (5)
+Ry(t) e cosdy(t)— Ry (t)e 4 (t)sin @y (t)
to which we introduce condition that this first derivative (5) of the proposed first
approximation of the solution (4) have same form as solution (3) of the corresponding

linearized differential equation (2), by other words, this condition express the following:
that this first derivative (5) of the proposed first approximation of the solution (4) have

same form as in the case that unknown function of time Rl(t) and ¢1(t) are constant.

After applying introduced previous condition we obtain first derivative of the
proposed first approximation (4) of the solution in the following form:

%, (t) = —8,R, (t)e ™" cos @, (t) - Ry (t)e ™ p, sin @, (t) (6)
and the following condition
Ry(t)cos @, (t) - Ry(t) gt (t)sin @, (t) = 0 (7)

that unknown functions of time Rl(t) and ¢1(t) must to satisfy.

Second derivative of the proposed first approximation (4) of the solution is in
the following form:

5(t) = (52R, (1)~ Ry(t)p2 — 5,R. (1) Ry (t) pudh " cos @y 1)+ @

+(8R.(t)s + 26,R, (1) pr - Ry (t) py Je sin oy (1)
Alter introducing first (6) and second (8) derivatives of the proposed first
approximation (4) of the solution into nonlinear differential equation (1) and taking into
account condition (7) we obtain the system of differential equations along unknown

functions of time Rl(t) and ¢1(t) in following form:
Ry (t)cos @, (t)— Ry (t) e (t)sin @, (t)= 0

Ry(t)pygh cos s (t) + Ry(t) pysin @4 (t) = @z [Ry(t) F cos® oy (t) (9)
Previous obtained system of differential equations along unknown functions of

time Rl(t) and (ﬁl(t) present a non homogeneous algebra system along derivatives of

unknown function of time R(t) and ¢1(t) with determinate in the form:

- nost .01, - 0 10

with following solutions:

~2
Rl(t)=%=%e25ﬂ[Rl(t)]3 cos® @, (t)sin @, t)
1

~2
(/ﬁl(t):% :%e‘w1t [Ri(t)Fcos* @y(t), for 6,20, 20, w?>82 (11)
1

Then, after obtaining previous system of differential equation (11) along

unknown functions of time, Rl(t) and ¢1(t) we applied average to the obtained
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members along full phase @, (t) = p,t + ¢,(t) in interval ® [-,27] correspond to one

period of the T, = 2z 2—”damping vibrations:

21 ~o

rel(o:% e 2[R ()P oos” @ t)sin @t 1)
o ™

27 ~9

=5 Ile e 2% [Ry(t) [ cos* @, (t)dd,(t), for &, =0, (12)
T

£=0, of > 57
Then, we obtain a system of differential equations along unknown functions of
time Rl(t) and ¢1(t) in first averaged approximation:

R.1(t) =0
~2
ht)- g % e 2% [R,(t)f for 8,20, 20, of >5f (13)
1
After integration of the previous system of differential equations along unknown

functions of time Rl(t) and ¢1(t) in first averaged approximation for known initial
3

values in first approximation t=0, R;(0)=Ry 1 ¢(0)= ¢y, = ———— @R + g We
1651 Py

obtain:

Ry (t)= Ry = const

)=~ — R 2 1)y = - haREe (14)

166,p, 166,p,

for 6,20, 620, w? > 67

where g, = @y +L5)§1R§1, and full phase is in the form:
166, p,
Dy (t)= pit+h(t)= pot - 3 leRgl(efwlt —1)“‘ Jor = Pyt —Lg)r%|1|:zc§1972§1t + Qo>
165,p, 166,p
for 8,20, 20, w?> 57 (15)

Then first averaged approximation of the solution of the nonlinear differential
equation with hard cubic small nonlinearity (1)

3
t)= Rye %' cos| pjt ————
)R o 3o
for 6,20, £=0, of > 57 (16)

In the case that, we have a nonlinear differential equation with sogt cubic small
nonlinearity in the following form:

leRme L+ 0501J )
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% (0)+ 26,% (1) + 0% (t) = +og 32 () for 6,20, %20, of > 67 (17)
on the basis of the previous obtained firs averaged approximation of the solution we can
write:

X (t) = Rope™ COS( pit + % aiRGe 2 + 0501) :

1M
for 5,20, %0, of > 6F (18)
where for known initial values in first approximation t=0, Rl(O)z Ry, mand
3 ~2 2 -
0)= @y, = ————o{1Rp1 + @1 We obtain:
$(0)= gy 165,p; N1Ro1 T o1
3 oo
ap = P ——prlRm . (19)
For the case that for 6, =0 we can use the system of differential equations

along unknown functions of time Rl(t) and ¢1(t) in first averaged approximation (13)
and before integration put &, =0, and after that applied integration, or find limes of the
26t
solutions (16) and 18) for &, — 0, and taking into account that is (%imoﬁeg—l):—Zt,
- 1

obtain first averaged approximation of the solution of nonlinear differential equations (1)
as well as (17)

% (t)+ 25,% (t) + @f % (t) = Fag 6 (t) (20)
in the following form:

X, (t)= Rye ™" cos{ pt¥ % i REe ™t + amj

101
for 5,20, 620, o? > 5¢ (21)
3 ~2 2
where oy, = ¢y T —— @R
01 ¢01 1651[31 N1'*01

% (t)= Ry COS<(@1 i%@iﬁé}‘ + ¢01> :
(2]
for 5,=0,5=0 ¢#0, & > 57 (22)

4.1. 2.1* In second case, for taking starting known solution for obtaining
approximation of solution of the nonlinear differential equation (1), we can take solution
of the linear differential equation in the following form:

X(t)+ p?X(t)=0 (23)
with known analytical solution in the form:

X(t) = acos(pyt +ap) (24)
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in which circular frequency of harmonic vibration is in the form p = ,/a)f —512 and, a
and ag are integral constant depending of initial conditions. Amplitude of this
oscillation is in the form a and is constant and no depending of time.

A
@,(t)= p, = const - linear; system with linear damping

- soft nonlineait! (1) w%u")ﬁl[a(t)]z' hard nonlinearity
H )

P a(alt))

a* b*
Figure 7. a* Nonlinear system with one degree of freedom. b* Amplitude-frequency
characteristic for free vibrations of the system damped nonlinear dynamics with of soft
and hard nonlinearity

4.1. 2.2* For that case, we must transform nonlinear differential equation (1)
taking into account the following generalized coordinate transformation:

X =xe or x=Xe ™, (25)

After generalized coordinate transformation an transformation of differential
nonlinear equation (1), we obtain:

d’X 25t

Gzt = ot (26)
where

& (x e—51t)e 52 ~3(t)e—251t 27)

Let start with general form of the nonlinear differential equation in the form:

ﬂ+25d +atx = x & (28)

dt? dt dt

For small parameter & =0 we obtain linear differential equation

d X dx 2

g 25d +0°x=0 (29)
with solution:

x =ae *cosy =e X (30)
with amplitude ae™® with phase y = pt+a , where p =,/o* -5° and also:

da _ 0 dv = p = const (31)

dt dt
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In which aand « are determined by their initial values. By generalized coordinate
transformation (25) nonlinear differential equation (28) take the following form:

2~ - —~
[‘ZT;‘ + <a)2 - 52>i] — o (ieé‘ ,z—:e*f" jeé‘ (32)
or
25 - = = =
(ZT;(+ pzizef[ie‘&,i—:e‘&je& :d(i'i_)t(’rj (33)

In beginning, we supposed that 5:515 , and that & is same order of small value as

gand that 7 =&t is slow changing time and that for one period T, =2—” change of the
p

system dynamics is small, and that function J[ie&,i—:eﬂ = J[i(;—):rj satisfy all

necessary conditions for application of the asymptotic method Ktilov-Bogolyubov-
Mitropolyski  for application f the method with slow changing system dynamics
parameters and with slow changing time (see Reference [61-68] by Yu. A.
Mitropolyskiy).

Then, the n-the asymptotic approximation of the two parametric family of a
one frequency solution of differential equation (33) we suppose in the form:

xe® =X =acosy + &U,(a,w,7)+ U, (a,p,7)+... (34)
where U,(a,,7),U,(a,y,7), .... periodic functions of y = pt+¢(t), with period 27,

and no containing first harmonic of ¥, and where amplitude and phase A and Y are
unknown functions which are determined by system of differential equations
corresponding order n-th asymptotic approximation along amplitude and phase in the
form:

z—?zgﬁﬁ(a,r)+82A2(a,r)+...
dd—‘;/: p+eB(a,7)+&%B,(a,v)+... (35)
where A(a,z), Ay(a,z), ..., and Bi(a,z),B,(a,V),.... Are unknown functions of

amplitude and slow changing time.
Introducing, on the basis of previous formulated condition we can write:

2
IUj(a,w,r)einW:O i=12,..m (36)
0

Then, we calculate first and second derivatives of the n -th supposed asymptotic

approximation ot the solution in the following forms:

%); —_apsiny + S{Al(a,r)cosy/ —aB,(a,z)siny + g% + p%} + (36)

+ gZ{Al(a,r)cosv/ —aB,(a,z)siny + Ai(a,r)%+ Bl(a,r)%+ pau—2+gau—2}+s3...
da oy oy or
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d2x
— —ap cosy +
dt?

siny +
dz dt P |// ('7‘[2 1'7‘[?’

dA(a,7)dr cosy —a
dr dt

+c{—2p/\sinw—2paBlcosq/+ dBl(a’T)dT i 22 Ul 6ZU1 AZU } (37)

+e {(AldAi aB? - 2paszcosw (2pA2+2AiBl+Aia— squ}

A2 2 2y
('au1+2pl31(3u1 2%, U, &, gAiau %

2
+&°92
¢ { PA ooy P o T "oy T ova

+6‘34u

After introducing previous asysmptotic aproximation of the solution (34) and
their first and second derivatives into nonlinear differential equation (33) and applying
method of equal coefficient of the small parameters un left and right side of
transformation of nonlinear differential equation, we obtain series of the relation between
unknown functions U,(a,y,7),U,(a,w.7), ... . Alarz), Alaz), ..., and
B,(a,7), B,(a,v),..... For the reason that we need only first asymptotic approximation of
the solution, we take into account the following relation obtained from coefficients with
first step of the small parameter &

—2pA(ar)sin?y = f(e"*{acosw},e"*{f apsiny ¥ siny

—2paB,(ar)cos’y = f (e {acosy }, e {-apsiny | * cosy (38)
Taking into account development of the previous expressions along full phase
w = pt+g(t) we obtain relations — equations for obtaining unknown functions A (a,7)

and Bl(a z’) in the following form (see Reference [61-68] by Yu. A. Mitropolyskiy).:

Aar) ——I( {acosy}e {—apsinw})e‘;fsinyxdy/

27

B,(azr)=- 27z1pa !?(e “{acosy},e ’5’{—apsiny/})egr cosydy (39)

Then taking into account that &f (xe‘at ((jj)t( e“i) ef(iz—:rj and differential

equation in the form (33) and introducing (27) in previous obtained expression (33) for
obtaining functions A (a,z) and By(a,z) we can write:

Ay(at)=0
1 3 3 _
sBl(ar)=%wf,1aze 26 Vi 87zp wha%e ™t (40)

where 6, (8, =506, and @f;, = i, for & and &, same order small values.

Then, system of differential equation (35) along a and v in the first
asymptotic approximation is possible to write in the following form:
da
o

dV/ 3 2,-265t
=p+—owya‘e 41
m =p 8 a)Nl (41)
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and first asymptotic approximation of the solution in the form
xe* =X =acosy orinthe form: x = Xe ® =ae * cosy (42)
In the previous first asymptotic approximation full phase is in the form:

3 _ s
l//(t): pt—@mﬁlel(e 2 —1)""//01 =pt-

for 6,20, e #0, 0?>82, p=yaf -7 .

We can see and conclude that first approximation of the solution of considered nonlinear
differential equation (1) obtained by application different methods, first method of
variation constant with average along full phase, and asymptotic method by Krilov —
Bogolyubov-Mitropolyski (see Reference [61-68] by Yu. A. Mitropolyskiy) give us same
results, but with different methods and proof.

3~y L2 25t
— o R§e T + gy s (43)
166, N1M01 o1

4.1.3.1* In third case, for taking starting known solution for obtaining
approximation of solution of the nonlinear differential equation (1), we can take solution
of the linear differential equation in the following form:

X+ wix=0 (44)
with known analytical solution in the form;
X(t) = a cos(at + ag). (45)

in which circular frequency of harmonic vibration is in the form @, and, a and «,are
integral constant depending of initial conditions. Amplitude of this oscillation is in the
form a and is constant and no depending of time.

4.1.3.2* For that case, for finding first approximation of the nonlinear
differential equation (1), we take starting known analytical solution (45) of linearized
differential equation in the form (44) and as a possible firs approximation of the solution
we take into consideration the following

X(t) = a(t) cosd(t)., for 5,20, £ 0, w? > &F (46)
in which a(t) amplitude and full phase ®,(t)=et+¢(t) contain unknown functions of

time a(t) and ¢1(t) which must to determine. For this third approach, we applied
known Krilov-Bogolyubov-Mitropolyski asymptotic method of average to find first
asymptotic approximation of the solution of nonlinear differential equation (1).

Then we start with nonlinear differential equation

X+ w] X = &f (X, X), (47)
and suppose first asymptotic approximation in the form:
X(t) = a(t) cos d(t). (48)

where unknown functions a(t) and ®(t) are determined from the system of differential

equations of first asymptotic approximation (see Reference [61-68] by Yu. A.
Mitropolyskiy) in the following form:
da(t
dt
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OO _ 0 +280a) (48)
where
1 2z
A(a) = By I f (acoscb, —aa sin d))sin OdoD,
ﬂ'C()_L 0
2
B(a)=— If(acosd),—aa)lsin ®)cos ® do. (49)
2ram 0

For our nonlinear differential equation (1)
f(x,X%) :—(25>'(+a)§l x3), (50)
where je 8, =6, @i, = cwf.
Taking into  account initial values in  first  approximation
t=0:a(0)=a,, ®(0)= @, we obtain that

a(ty=a,e " =ae™,

D) = oyt - 032l 1)+ o, (51)

; 3
2 o2 (,-2¢6t
wnag\e -1+ D, =yt -
160w, N 0( ) o= 1660

and first asymptotic approximation of the solution of a nonlinear differential equation (1)
around harmonic starting known analytical solution, we can write in the following form:

x(t) = a,e " cos{wlt - wia2 (e’z‘slt —1)+ (DO} (52)

160 0

From this obtained first asymptotic approximation (52) of the solutions of
nonlinear differential equation (1) with starting known analytical harmonic solution (45)
in the case for damping coefficient tends to zero &, — 0, and taking into account that is

_ fetog L ) - .

b[lino 5 =-2t, we obtain first asymptotic approximation of the solution for
1 1
conservative nonlinear system vibrations in the form as in the previous two case obtained
first approximation of solution of same nonlinear differential equation (1) by use
different method and different starting known analytical solution.

4.1.4. Concluding remarks

Let we made a general review of the obtained results for approximately solving
of the nonlinear differential equation with small cubic nonlinearity in the form: :

-- - 2 =2 3

% (t)+ 265 (t) + o x,(t) = Faoge (t) (53)
in which hard or soft, refers to + sign approximately, &, = 5151 and &g, = gy, and
e and g are small parameters (see Figure 7)..

By use first two methods, starting known analytical solutions in the form (3) and
we obtained same first approximation of the solution in the following form:
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- — 3 ~2 L2 st
% (t)= R, " cos| p,tF w2 REeM 4 o
1() 01 (pl 165, p, N1Mo1 01|,
for 5,20, 620, o > &} (54)

where oy =¢o1i%0~)ﬁlR§1- For the case that damping coefficient tends to zero,
1Py

from this first approximation (54), we obtain first approximation of the solution for
conservative nonlinear system dynamics in the following form:

3 -
%, (t)=Ro; COS (0)1 is—wrilelJt + P01
]

for ,=0,5=0 ¢20, of > 5’ (55)

We can see that circular frequency of nonlinear dynamic of conservative system
is not isochroous and depends of initial conditions — initial amplitude.

For the case that coefficient of the cubic nonlinearity tends to zero, from this
first approximation (54), we obtain known analytical solution of the linear no
conservative system dynamics in the following form:

X (t) = Rose ™ cos(pyt +axgy ),
for 5,#20,6=0,0? > 82 @, =0 (56)
From the third case we start by harmonic known analytical solution in the form

(45), we obtain the following first asymptotic approximation of the solution of same
nonlinear differential equation:

_s 3 _
X(t) = a,e " cos| it F———wiale M 1)+ @, |
V) =a, |:w1 1650, (Y] o( ) 0

for 6,20, €0, of > 57 (57)

This asymptotical approximation is different them in previous case (54) and this
is normally because we take different starting analytical known solution if different basic
linear differential equations as a two different linearizations of the considered same
nonlinear differential equation.

For the case that damping coefficient tends to zero, from this first approximation
(57), we obtain first approximation of the solution for conservative nonlinear system
dynamics in the following form:

_ 3
X(t) = a,e " coy| | o £ ——— i@ [t+ D, |,
() 0 |:(wl 1651(01 N1%o ¢}

for 6,=0,5=0 20, & > &’ (58)
same as in the previous cases (55).

For the case that coefficient of the cubic nonlinearity tends to zero, from this
first approximation (57), we cannot obtain known analytical solution of the linear no
conservative system dynamics in the form (56) but we obtain:
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Xl(t) = Rme_&lt COS(a)lt + 0‘01),

for 6,20, £=0, o? >6f @j;=0 (59)
not acceptable, because in this case starting solution was harmonic. In this case if we
need harmonic solution we must annulled parameters of cubic nonlinearity and of
dumping in the same time.

Then we can conclude that first two approach (54) for obtaining first
approximation are more general and more suitable for use in the considered
approximation of the solution them (59).

Open directions for next research and applications. Directions for next
research in area of approximation must be focused to find analytical forms of
approximations of solutions of nonlinear differential equations. Present in science, there
are numerous numerical approach and numerical experiments over the nonlinear
differential equations for numerical slowing nonlinear one, or coupled system of
nonlinear differential equations, but these are only particular solutions without proof that
these solutions are right, and general.

For practical applications in mechanics and engineering system dynamics
analytical forms of the approximations of solutions are necessary for easier quantitative
estimation larger class of the nonlinear dynamic phenomena and nonlinear dynamics of
the stem behavior.

4.2. Hybrid system dynamics with complex structures and transfer energy

4.2. 1. Governing coupled partial differential equations of transversal
vibrations of coupled axially moving double belt system

The sandwich belt system contain two belts coupled by distributed discrete light,
neglected mass, ideally elastic belts with stiffness C m as a elastic layer. The both belts

are represented by area of the constant cross sections A along length l between
rolling and fixed bearings A and B, and by p the density of the belt material. Let

suppose that sandwich double belt system is moving in the axial directions X with an
axial velocity v(t). The transversal vibrations of the sandwich double belts are

represented by the transverse displacements Wl(x,t) of upper belt and WZ(X,t) of

lower belt. b is damping coefficient of the damping force distributed along belts. Also,
let suppose that displacements are small, and that cross sections during the transverse
vibration haven’t deplanations. Also, it is supposed that both belts are loaded by active
axial force, due to the belts’ tension, and external distributed excitations

q(i)(x,t), I =1,2 perpendicular to the x-axis, than in stressed state in the belt’s cross
section appear normal stresses with intensity o, almost sure constant intensity during

the time vibrations and along the length of belt between bearings. Than we can conclude
that normal stress o in belts of sandwich double belt system for a cross section during
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vibrations change only direction. For both belts in this double belt system, let’s accept a
string (wave)-like type model between two rolling bearings.

In Figure 8. a* the kinetic parameters of the transversal forced vibrations of the
axially moving sandwich belts are presented, and in 8.b* the elementary segment, with
length dx , of the axially moving sandwich belt system excited by external transversal

distributed forces and notations of the kinetics parameters are pointed out. ql(X,t) and

a, (X,t) are external transversal excitations distributed along upper and lower belts

between rolling bearings and are function of the coordinate X directed in the direction of
the axially moving belt system.

Using d’Alambert principle of dynamical equilibrium and applying to the
transversal forced dynamics of the elementary segment of the axially moving sandwich
belt with length dx and notations of the kinetics parameters pointed out in Figure 8.b*
for both component belts in double belt system, similar as in the paper [75], we can write
the following system of the transversal forced vibrations of the component belts in the
axially moving double belt system:

pAdx—Dzvélt(ZX’t) =—oAsina, +oAsin(e; +day ) -
_bMdx+c[w2(x,t)—w1(x,t)]dx— ay (x, t)dx
pAdXDZLEX’t):—GASinaz +oAsin(a, +da, )- )
CpDwe(t) g cfw, (x,t)—wy (x,t)Jdx + g, (x, t)x

Dt

X

=const
onst
| o
(%, t)+ aV\%():('t)dx
X

4)(-] X+ dx X"

iV
Ay

Figure 8. Transversal forced vibrations of the axially moving sandwich belts
a* Kinetics parameters of the transversal forced vibrations of the axially moving
sandwich belts
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b* Elementary segment of the axially moving sandwich belts with length dx and
notations of the kinetics parameters for the case of the forced regime

Having in mind that the transversal belts’ displacements are small it is right to
take into account the approximations as in Refs. [72] and [75], and also, introducing the
following denotation

_ | _|C _b ~ _Qi(x’t)
Co—\/:, K_\/;’ za—pA, Gi(x.t)= A )

and the following partial differential operator: vat [0]

Lx,t[-]:st—zz-(cg_vg);;;mo%u&/o%ua%wz (3)
and for the case V=V, =CONSt, previous partial differential equations (1) it is easy to
rewrite in the following forms:

L e[ ()] = 2w (x,t)+ Gy (x,t) = 0

Lyt [Wz(xvt)]—Kle(th)—az(Xat):0 4)

These partial differential equations are coupled by last terms.

4.2. 2. Solution of the basic decoupled partial differential equations

By using new independent coordinates in the following form:

£=x
Vo
= X+t 5
22 (®)
the partial differential operator (3) obtain the following
2
_~ C -~ o~
O P I R W (6)
Co —Vo
and corresponding decomposition into two independent operators in the following forms:
~ o d
L [el=]| —+256— 7
] an + 68,7} Y]
~ o 28y, @ K2
L o|=(—F-+— 0 —_— (8)
el [552 (cg—vg)ag‘ (cg—vgﬂ

then coupled partial differential equations (4) of the moving sandwich belts obtain the
following form:
2
C ~ ~ ~
20T 6] (63 VI (6] 2wy (6.m) + (6 m) = O
Co —Vo
2

2 Ly ()] 65 8 D6 )] () -Gy (6m) =0 ©)
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Basic decoupled partial differential equations are:

Cepfem]= 5 0, ()] (6 - e lw(em)=0, =12 (10)

0~ 0
Solution of the partial differential equation type from previous system (10) can be
looked for Bernoulli’s method of particular integrals in the form of multiplication of two
functions (see book [53] by Raskovi¢ or Refs. [72] and [75]), from which the first
X(i)(cf), i=12 depends only on space coordinate £ and the second Y(i)(n), i=12 is

function of 7:

W(i)(é:’n):X(i)(é:)Y(i)(n)’ i=12 (11)
For beginning, the assumed solution (11) is introduced in previous system

equation (10) and we obtain two decoupled ordinary differential equations in the
following forms:

L, [v,( ]+|<ZCC oY, (7)=0 (12)
~ k2
L:[X(i>(§)]+mx(i)(§)zo (13)
and after denotations:
- _kzcj—vj 5_ N, T k? —x? 14)
¢ icj—vji' ic - )
we obtain:
d Y“>2('7 )25 dY“)(”)mZY(i)(n):o (15)
dn dn
d°X(6) 5 dx(i)(§)+zzx(i)(§):0 (16)
dé? d¢

Particular solution of the transversal displacement of the decoupled belts on the
elastic Vincler type foundation, described by the partial differential equation (10) is in
the form (11) must to satisfy the boundary conditions: displacements in the rolling
bearings must be equal to zero:

w, (x,t) =0, w(i)(g,n)k:? =0, X,(0)=0, C,=0, i=12,
n=

w (x,t) =0, w,(&n) = =0,X,(¢)=0, C,e”sinp/=00)

v,
n=l———rtt

.. . . S
and then characteristic equation have the following roots: P, =7 ,$5=1234,.......

Than, we obtain series of particular solutions for each of the characteristic eigen
numbers. Eigen amplitude functions are particular solutions of the ordinary differential
equation (15) in the following forms (see Refs. [72] and [75]):
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SE - 5e . ST
X(i)s(éz): e’ sinp& =e 55”175

for  Puge =TA —6° = 57” A>5 (18)

=12 s=1234,....

where
2 -
Y k —K = &/0 2 _ 92 2 2 2
M= 2>5:( > ks_/ls(co—vo)+1<
2,2 2
v,
@ 5% +K2+(—”] 2-v) §=1234,......
cs—V, 14
0 0
(19)
2
52 k2 o —Vo _5vs ) ¢~ V5 J{s_”] M>52
R c s ¢ cs

Corresponding space - time 77 -functions are particular solutions of the ordinary
differential equation (16) in the following forms (for detail see Ref. [75]):
Y.(n)=e""(AChdn+B,Shd.n)

fOf a(l,z)s 21\'52 —(5: 0'35 < 5

Y(i)s (77): ei(y’](As Cosqsn +B s Sln qsn)

fOI’ q(l,Z)S = iﬂﬁﬁ)‘s - 52 035 > 5
2 2 2( 2 2f
_ Cy —V S Cy —V,
U2 =+\/(K2—52 oo — +(—”j 00 (20)

¢ ¢ c

4.2.3. Approximation of the solution of the governing coupled partial
differential equations

For solving coupled partial differential equations of transversal forced
vibrations of the sandwich double belt system in the form (4) or (9) we take into calculus

same eigen amplitude functions X(i)s (é) for both belts in the form (18) and different
unknown functions: Y, (77) and Y, (77) Than the solution suppose in the following
expansions:

S=00 S=00

Wiy (&)= D" Xy s (a5 ()= D" e Xy 5 (£)Ys(n)

s=1 s=1
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(&)= Zx Ze“x (2)s() (21)

These expansion we put into the equations of the system (9), taking into account (15) and
(16) previous system of the equations obtain the simplest form, and after multiplying first

differential equation by e'zgéx(i)r(f)d(f and second by e'z"T’fx(i)S (£)d&  and
integrating along belt’s length ¢ between double belt system bearings and taking into
account modified conditions of the orthogonality of eigen amplitude functions X (5)
for both belts in the form (18), as well as that some terms of the sum disappeared for
different: ZS #* Zr for S# 1T, and in the corresponding result, we obtain s-th family

system of the two coupled ordinary differential equations with respect to the unknown
functions Y(;)s(77) and Y(z)5(»7) in the following form:

{E,,[va)s(n)]dﬁ@%ﬁv@s £—VO)[Y ]} 0
{EU[Y(Z)S(U)]"'ZSZKC&;—ZVSXY(Z)S £;VO)[Y ]} QZs() (22)

where

6(2)5 (77) 7 (23)

E j RMOICE

The solution of the system of second order no homogeneous ordinary
differential equations (22) for the S-mode in the form of the expansion along eigen

amplitude functions X (x)= X s (&)= X(2)s (&), in the form (18), can be looked in

the form: of the solutions for basic homogeneous system (see Ref. [75]) and we will
apply the Lagrange's method of the variations of the constants of the eigen unknown

function Y, (77) and Y, (77) in the form (20), introducing for integral constant the
following unknown functions C(l)s(n), D(l)s(n),M(l)S(n),N(l)s(n)of n for a s-
mode, S =1,2,3,4,....00. We propose that C(l)s(n), D () M 1 () N(l)s(n) are

functions of 77 and we can write:
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=e" {[C(l)s (17)cos gr + D) (17)sin 5577]+ [M (1) (7)cos Pery + N1 (7)sin 5577]} (24)

=e %" {[C(l)s (7])COS 5577 + D(l)s (ﬂ)Sin 55’7]_ [M (@)s (77)005 5577 + N(l)s (U)Sin 5577]} (25)
where (for detail see Refs. [[72] and [75])

g - V2 sz Y
P=. "0 °{(c§—v§(7j —62} , $=1234,.... (26)
2 ,
= [cg-v¢ sz
P = 003 0 {(c0 ITJ —52+2K2}, s=1234,... (26%)

In order to obtain first and second derivative with respect to 77 of the proposed

forms of functions Y(l)s(n) and Y(Z)S(n), we suppose that first derivatives of the
functions Y(i)s(n), i=12, $=12,3,4,...00 with respect to the 77 are equal to the

corresponding when coefficients Cy, (77), Days (77), M) (77), N s (77) are constant and
then we obtain the two equations-conditions. After introducing first and second
derivatives of the proposed functions Y(i)S (77) i=12, $=1,2,3,4,....00 with respect to
1 into the system of no homogeneous second order ordinary differential equations (22)

for the S-mode in the following form (18) and together with previous conditions for
first derivatives, we obtain the system of the no homogeneous algebra equations along
unknown first derivative of the unknown coefficients Cpy)s(17), Diyys (17) M g)s (7). Ngys (17)

with respect to 77. After solving previous obtained system of the equations we obtain the
first derivative of the unknown coefficients  Cy),(17), Dy (7). M p)s (17), Nipys (17) - with
respect to 7 and after integrating for unknown coefficients-functions
Cw)s (7), Dy (7). M p)s (1), Niays (7) we have the following expressions:

1t 5= ~ o
C(l)s( = —Ej.e‘s”[Q (77)]5'” psndn
So
1 n
Doy (7)= J e [Qe (7)+ Qpags () Jc0s Berln
So
1 n
My (7)= “”“EIGM 4 (07) - Qpags () in By (27)

1 sl ~ =
N (7) = Nayos + EJ‘G"” [Q(l)s (7)-Qua)s (77)]005 psndn
S0
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v
C—°V2X+t. Now, previous unknown eigen functionsY(i)s(n), i=12,
0~ Yo

$=1,2,3,4,...0 depending on 7 for S - forced mode and eigen amplitude functions

where 77 =

X (€)= X (25 (&) = e%¢ sin%[gE are in the following form:

n
= [0 Quu )+ Qe )in Bl )

Y(0s(7)= € 7[Ciups €05 Ber7 + Diays sin By |+ 25
S0

-5 = - 1 F R = .=
+€ bﬂ<[M (1)os COS Ps77 + N(l)Os sin psn]"’ 25 je 20r-v) [Q(l)s (7)_Q(2)s (T)]Sln Ps (77_ z')d T>
50

(28)

Y(z)s(ﬂ) =™ [C(I)OS €0s P77 + Dig)ps Sin 5577]_ e IM (1)os COS P77 + N(1)os Sin 557]‘

+

1 F soal= < 1 h soal= - .=
o [e Qs () + Qo 0 )Jsin Bl — oo - 2 [eotr Qs ()~ Qo () in By - )

So S0
where constants Cp;jo, D5, Mp)os and Nig),, are unknown constant defined by
four initial conditions: belts’ point elongations and velocities at the initial moment.
.The s-family of the particular solutions are in the following forms:
Wiijs (X, 1) = X35 () Yigs (1) (29)

Wiy (€,77) = X5 (€)Ya)s (7) = e’ sin 57”5 [C(l)OS €08 Pg77 + D s SIN Bon]+

Se_sn - ST = inb
+e%¢7 sm7§[M (t)os €OS P77 + Nizyos Sin pSU]Jr

(30)
1 Se oo . S 1 o [ ~ o~
+Eea5 on sm%f!e" [Q(l)S(T)+Q(2)S(T)]S|n P, (7—7)edr

-~ n _~ —~ ~
e =eT 7 sin ¢ o7 Q) Qs ()in B -2
0

S
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Wiags (£,17) = X0 (€)Y (2)s () = €757 sin 57”5[(3(1)03 c0s P77 + Dy, Sin Py~

_edEon sin%é[M (1)os COS 5577+ N(1)os SN :F:)s']]—
31)
1 5oy toslx ~ - (
gm0 e Q. () + Qs e i By o) -
s 0

1 Sesn . T [ = .=
e i e Qs o) (i B - ekie
s 0

The s-family of the particular solutions for pure forced vibrations of a double

belt system excited by external excitation distributed function depending only of time,
are in the following forms:

W(l;;arced (X,t) _ Z

+

=y 22 2

i) )
(o L

St ST

e sin—x
4

5 ~ A ) 2 (32)
I e’[Q(ls(r)+Q(2)s(r)]sm ch 5 (Co—Vo{Tj -8%t (p—rhHe-
0 ) N
o etsin " x
+Zl 2 .2
5= ZJCO —2V0 {(Cg SISlj 52+2K2}
Co
n= ZVO X+t
s sz [ y | =ve (2 oY s7 2 2 2
j e’ [Q(ns(f)— (z)s(r)]sm °C2 (co —VOI Zj —82+ 2k Hp-7)de
° 0
© e %tsin > x
W(l;grced (X,t) — z
s=1 _v2 2
F T
7]—Cgfvgx+l . VZ : (33)
T - v
[ e [o(l)s<r)+o<z)s<r)]st R IR
0 0 ( .
i e""sins7”x

cf-vg e ~ 2 _\2 2
[ e [Bu.()-Gp (e )bin J - {(cg ) - +2K2}(n_r)dr



346 KATICAR. (STEVANOVIC) HEDRIH

1V.2. 4. Appendix

Previous solutions are obtained on the basis previously obtained solutions of
the coupled partial differential equations describing free transversal vibrations of the
axially moving double belt system.

The s-family of the particular solutions for decoupled belts and for free
transversal vibrations are:

Wiijs (X, 1) = X5 () Yigs (1) (A1)
-5 2V°2x+t +5 X
W(I)S(X’t):e (007\/0 ]
2(2 2 2 .2
¢ ¢ Co Co \Co—Vo

The generalized solution for decoupled belts transversal free vibrations is
expressed by expansion

wilt)= 3 W (60 = 3 X 0X)¥jye(x,1) (A2)
s=1 s=1

—é‘[ 2 x+tJ+gx
wx)=e 5%

= 2(2_\2 2_\2
S [ TEAT o (e

Cg Co Co —Vo

Solution of the coupled ordinary differential equations for free oscillations

d?Y, s\77 dYu)sln)  ~ ~
M), 200 v )-8 -0 3
d?Y, s\77 dYp)sln)  ~ ~
(X 2s D), G - )
(A.4)
suppose in the following form:
Yo (7)=Dye*" , i=4-1, =12 (A4)

Characteristic equation of the formalized dynamical system have the following four sets
of the characteristic eigen numbers:

/1(1,2,3,4)3 =—0+F m i=+-1
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2 2 2
P =_5¢i\/COC2V° {(cg _vgi%”j —52} = 5Fip, ,
0

S=1234,..... (A5)
2 2 2 _
Aol :—5$i\/co b {(cg _vg{slj 52 +2K2} =57 P,
, 7 ;
§=12,34,...... (A.6)

The ratio between amplitudes of the own space-time 77 - functions Y(l)s(n) and

Yo.(1).  Y..(7)=D,e*" is not difficult to obtain in the form

D
Ws) —31,5=1234,....... r=1234.. Then, we can conclude that

D(z)s(r)
considered system of the coupled ordinary differential equations have four different and
complex sets of roots and eigen characteristic numbers for defining unknown own space-

time 77- functions Y(l)s(n) and Y, (77): having four sets of characteristic numbers
we can conclude that corresponding four sets of the particular solutions for compaosing
the functions Y/, (77) and Y, (77) exists in the following form:

e cos gy

,5}7 - ~
e °"sin pgn
Y = = A7
ws020901)=) oy o = (A7)
e°7sin pgy
Vv
where is 77 =— 0 ~X+t,and s=12,34,....... ., or in developed form:
C —Vo

—é‘[ Yo x+t] 2 2 2
e \B% Jeog ZVO S X+t % 2V° (cgfv(f(s—”j -5?
CH Vo (o L
—5[ Vo x+t] 2 2 2
e (9% Jgin ZVO X+t % ZVO (CS—VSIS—EJ -5°
c - Vo C 1 (A.8)
Y(1)s(1,2,3,4)(77) = [
e

5 2V°2x+tJ V. 02 _y2 s 2
7 Jeog 2o x+t | 220 (cé—vé(—j — 52+ 212
Co —Vo o l
V,
—5[72 0 2><+t] 2 2 2
- Y Co -V, sz
e O Jsinl 0 x+t | [222 (cé—vé(—] —5% 422
Cy—Vo (o !

Finally the unknown space-time 77 - functions Y(1)s(’7) and Y, (77) for free
double belt system transversal vibrations we obtain in the following forms:
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Yoy (n)=e" [C(l)s cos Pg77 + Dyg)s Sin 5577 +e“5’7 [M C0S Py + N 1) Sin Esﬂ] (A.9)

Y(o)s(7) =" [C(l)S c0s P77 + Dy, sin psry [M coS P77 + N p)s Sin psry] (A.10)
The s-family of the particular solutions for free vibrations are in the following

forms:
(A.11)

Wi)s (X,t): X(i)s (X)Y(i)s (X,t), s=1234,.......

22 2
Wy (X t)=e" 3tgin 7 xJ R, cos [ 2V° x+tj % ZVO (cé—vé{s—”j —S2 4+ B )
L (o5 —v0 [ L (A12)
s v cd-v¢ sz
+e7sin==xdU cos( | 52— X+t - (cg—vg{—) —82+2K% b 4y,
! o -vg Co ¢
sz v ci-v¢ sz’
W(o)s (X, t) =" sin==xq Ry cos ( 0 2x+t] e (cg—vg(—j -5+ B -
14 Cy —Vo [ 14 (A13)
St ST Vo Vs (2 sV 2
—e %' sin—x<U; cos X+t Co—Vo | — | —0°+2k° +
o [cg—vg J ¢ | OI ¢ j T

where R, U, B and y, are unknown constants defined by initial conditions.
Then, finally, the generalized solutions of the based coupled partial differential
equations are expressed by expansion in the following forms (free vibrations):

t) (A.14)

wi(x,t)= ZW(i)s(X,t) = zx(i)s(X)Y St
s=1 s=1

for coupled

2.2 2

, v i -v sz

wiy(x,t) = étZsz{R cos<(c§ _ng x+t]\/ ch 0 {(cé—vé{gj —52}+ﬁ5>}+
(A.15)
4ot in ST u, cos{ | Y0yt %~V (czfv2 ST 2752+2 2h

Z ] S C2—V2 CZ 0 0 ] K Vs

s=1 0 0 0

s> . ST Vo cZ-v? (2 s\ o
wy(x.t)=e 25m7x Ry COS( | 52— X+t e LR e B A

=1 Co —Vo Co
v cZ-v¢ sz
"”ZS'” x1U cos [ — 2X+t] 00 (cg—vg{—j —52 421 4y
! Co —Vo Co l

where R, U, B, and y, are unknown constants defined by initial conditions, two by

initial transversal displacements of component belts and by two transversal velocities of
the component belts ( for detail see References [72] and [75]).
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1V.2.5. Concluding Remarks

Subject of mathematical description and analytical study, presented in this part
of the paper, is a theoretical, pure classical model of hybrid elastodynamic model very
useful for university teaching of elastodynamics as a fundamental part of the engineering
science (mechanical, civil and physics), as well as, a good introduction of the students
and engineers of the multifrequency wave phenomena in real mechanical systems with
moving material.

If we compare the expressions for coupled and uncoupled belts, we can
conclude that for uncoupled belts’ transverse free vibrations contain one frequency
damped vibrations in one eigen amplitude shape, and for coupled vibrations contain two
frequency damped vibrations in each one amplitude shape, and that these two-frequency
dumped vibrations are uncoupled with relation of the other shape own vibrations. This is
visible directly from corresponding expressions (A.12), (A.13) or (A.14) and (A.16)
presented in Appendix.

For analysis forced regimes, we can use terms expressed by (30), (31) and (32)
from which, we can conclude that forced vibrations in each mode should be contain three
frequencies which are thwo frequencies of the free own double belt system vibrations,

~ o V5 |(sx 2(2 2) 2| and 3 co—Vo|(s7 2(2 2) 2_ g2 and one
P = = |7 Co—Vg -6 Ps = 2 |\ Co—Vo J+ 2K =67 |
0 N 0

frequency of external forced excitation, frequencies ;. Free vibrations regimes are two

frequency, and forced are three, or multifrequency, depending of number of frequencies
of applied external transverse excitations.

From last expressions for particular or generalized solutions (30), (31) and (32)
as expressions of transverse displacements of double belt system, we can conclude that

we can separate eigen amplitude functions X(i)s(cf) along the space & -length-time

77(X,t) coordinate system as well two eigen phase functions ﬁs(x) and ES(X)
expressed by:

2

2 2 2

~ \" Cy —V, S

B ()= 525 x |22 (—”J (CS—VS)—52], $=1234,..... (33)
cy — Vo (o L

2

~ 2 2 2

= v c2-v2|(s

B (x)= 0 x [0 (_”j (cg—v§)+2/<2—52} $=1234,....(34)
Ch — Vo c5 14
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Figure 9. Sixth cases pf the possible vibrations firms of the double belt system with

elastic layer for different eigen amplitude functions X (&)= e% sin 57”5 for the

Vo
Cg —V02

solutioninthe &, n=

X+t coordinates system,

If we compare the expressions for solutions with respect to the other way analysis, of
the solutions for coupled and uncoupled belts, we can conclude that for uncoupled belts’
transverse displacements of forced vibrations contain one frequency damped vibrations
and corresponding frequency forced regime in one eigen amplitude shape, with one eigen

phase functions ,ES (X) (see expression from Ref. [75]) and for coupled double belt
system vibrations contain two frequency damped free vibrations and corresponding
frequency forced regime, as well as corresponding combinations in each one amplitude
shape with two eigen phase functions ,ES (X) and Es (X) expressed by (33) and (34).

Also, in other way, we can compare amplitude forms of the dynamics of coupled and
uncoupled belts and conclude that dynamics of the uncoupled belts containing two types

of eigen amplitude functions: XE,C)Q (X) sin SIN. AND ng))s(x) sin cos corresponding
to one frequency free vibration mode and that double belt system dynamics contains
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also two types eigen amplitude functions, but each of the both two frequencies:

;(E,C)z(x) sin cos and ;(gls)z (X) sin sin for first frequency of the mode and ;(%82 (X) sin

~

cos and 5-(%,8)2 (X) sin sin for second of the same mode, contained in expressions (30),

(31), (32) and (A.12), (A.13), (A.14) (A.15).
In Figure 9. sixth cases of the possible vibrations firms of the double belt system

5¢ . ST
with elastic layer for different eigen amplitude functions X(i)S (§)= e’ sin 7§for

Vo

Cg —Vo’
We haven’t information if this theoretical model of a sandwich double belt

system was applied in real systems, but in our opinion it is possible to use this hybrid
model of sandwich belt system in the different kind of conveyer in which is necessary
that upper (or lower) belt haven’t vibrations under transversal periodic excitation. It is
possible in the condition of the dynamic absorption, when only lower (or upper) belt is in
the forced regime of vibrations. This sandwich double belt system can be project as a
dynamical absorber, when upper belt in the system is excited by external periodic
excitation no vibrations, and only lower belt have forced vibrations.

Series of the papers [69-92] contain results of analysis based on analytical expressions
describing dynamics of hybrid systems with complex structure. These system contains
coupled plates, beams or belts.

the solution inthe &, 7=

X+t coordinates system are presented.

4.3. A review of the study of the transfer energy between sub-systems in the
complex structure systems.

4.3.1. Transfer energy in spring pendulum system

For introducing to the problem of the energy transfer or transient in the hybrid
non-linear systems, it is useful to take, for simple analysis, into consideration the change

energy between parts of the energy carrying on the generalized coordinates ¢ and p in
the very known system, known under name spring pendulum system, with two degree of

freedom. For the analysis of the energy in the spring pendulum we can write the kinetic
and potential energies in the forms (see Refs. [72], [44], [56] and [83] by Hedrih
(Stevanovic)):
1 7. ;
E = Em[pz + (P + 5)2¢2]
and
E, =%Cp2+mg(p+f)(1—cos¢) (1)

where: M is mass of the pendulum, ¢ length of pendulum string-neglected mass spring
in the static equilibrium state of the pendulum, and C spring axial rigidity and ¢ and
p are respectfully, angle and extension part of length of the string-spring of the
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pendulum with comparison of the sprig length in static equilibrium state of the
pendulum, taken as the generalized coordinates of the system. For the linearized case for
kinetic energy, after neglecting small member - part of kinetic energy on the generalized

coordinate ¢, we can taking into account following expression:

* Expression E,, = %m(p + Y $* changes into approximation

o= m(egf @

Only for small oscillations — perturbations from equilibrium position it is
possible to use approximation of the expression for kinetic and potential energy in the
form:

E, z%m[pz +(£¢ﬂ and E, z%sz +%mg£¢2 (3)

For that linerized case the generalized coordinates are normal coordinates of the
small oscillations of the spring pendulum around equilibrium position p=0,¢=0 and

coordinates are decoupled. In this linearized case of the spring pendulum model, the
energy carried on the these normal coordinates are uncoupled and transfer or transient of
the total energy don’t appeared between proper parts of the separate normal coordinate
and on the separate processes defined by normal coordinates are conservative systems
each with one degree of the freedom. In this case each of the coordinate there are
conversion of the energies from kinetic to potential, but sum of the both of one normal
coordinates is constant.

1 . 1
= :Emp2 and Epp zEsz 4)

1 ; 1
Ees = Em(€¢)2 and Epp ~5Mg0° ®)
This is visible from system of the differential equations in the linearized form:

. c
p+wsp=0 where o? =

¢+ wfp=0 where a;f:% (6)
but for the non-linear case the interaction between coordinates is present and then energy
transient appears.

E, =%m[p2+€2¢2+p2¢2 +2p€¢2] and
1
E,= ECpZ +mg/(1-cos @)+ mgp(l—cos¢) 7
We can separate the following parts:
I* Kinetic and potential energies carrying on the coordinate p are:

2

1 . 1
Ekpzzmp and Epp=ECp2+mg,0 8
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By analysing these previous expressions, we can see that with these expressions
for decoupled oscillator with coordinate o, we have pure linear oscillator or harmonic

. . . c .
oscillator with coordinate o and frequency a)22=—, and separated process is
m

isochronous.
I1* Kinetic and potential energies carrying on the coordinate ¢ are
1 .
Ey = §m€2¢2 and E,; =mg/(1-cos¢) 9)

By analysing these previous expressions we can see that with these expression
for decoupled oscillator with coordinate ¢, we have pure non-linear oscillator with

coordinate ¢, and separated process is no isochronous. For linearized case this oscillator

have eigen frequency ? =% .

I11I* Then formally, we can conclude that in the spring pendulum, we have
coupled two oscillators, one pure linear with one degree of freedom, and second non-
linear, also with one degree of freedom. In the hybrid system these oscillators are
coupled and mechanical energy of the coupling contain two parts: one kinetic energy and
second potential energy. Then, in the coupling, hybrid connections with static and
dynamic kinetic properties are introduced.

Kinetic and potential energies of the coordinate and p interaction in the non-linear

hybrid model are:

Ex(s.p) = %m[p +20]pg*  and

Ep(m}) =-mgp Cos¢ (10)
For non-linear case ordinary differential equations are in the following form:
p+@5p=-g(l-cosg) (11)
.. . 2 . 1 ..
b+olp=af(g-sing)-—phlp+)-—zplp+20) (12)

or in non-linear approximation forms for small oscillations around zero coordinates
p=0,¢4=0 oraround stable equilibrium position of the spring pendulum are

2 4 6 8
. A A A
+ - ———t———+..... 13
pr@p g(z 24" 6 8l ] (13)
3 5 7
PRI 2 .. 1 ;
¢+w1¢~—601{5—5+?—----J—£—2P¢(P+€)_E—2p(p+2€)¢ (14)
If we introduce phase coordinate, then we can write:
V=p

V=—0?p-g(l-cosg)
u=g (15)
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i =—wf¢+wf(¢—sin¢)—£%p¢(p+€)—£%p(p+26)«'5

or in the approximation

vV=p
2 4 6 8
Vz—a)zzp—g(%—%+%—%+ ..... J
u=g
. 2 2 ¢3 ¢5 ¢7 2 .. 1 i
U~-wd—o R TR —£—2P¢(P+£)—f—gp(/3+2€)u (16)

From system equations (11)-(12), as well from their approximations (13)-(14), we can
see that their right hand parts are non-linear and are functions of generalized coordinates,
as well as of the generalized coordinates first and second derivatives. Also we can see
that generalized coordinates ¢ and p are around their zero values, when p=0,4 =0 at

the stable equilibrium position of the spring pendulum, and that also are main coordinates
of the linearized model. It is reason that the asymptotic averaged method is applicable for
obtaining first asymptotic approximation of the particular solutions and it is possible to
use for energy analysis of the transfer energy between energies carried by generalized
coordinates ¢ and p in this non-linear system with two degree of freedom, but

formally, we can take into account that we have two oscillators, one non linear and one
linear each with one degree of freedom as two sub-systems coupled in the hybrid system
with two degree of freedom, by hybrid connection realized by statically and dynamical
connections. This interconnection have two parts of energy interaction between sub-
systems expressed by kinetic and potential energies in the forms expressed by (10).
Taking into consideration some conclusion from considered system of the spring
pendulum, we can conclude also that it is important to consider more simple case of the
coupling between linear and non-linear systems with one degree of freedom with
different types of the coupling realized by simple static or dynamic elements, for to
investigate hybrid phenomena in the coupled sub-systems.

4. 3.2. Forced vibratos of spring pendulum

Let consider the energy transfer between parts of the energy carrying on the
generalized coordinates ¢ and p in the spring pendulum system with two degrees of

freedom excited by external excitations. For that analysis of the energy in the spring
pendulum in the forced regime excited by external one frequency excitation -
generalized forces M ,(t)= Mg cos(Q t+9,) and F,(t)= Fycos(Q,t+9, ), we can write

the kinetic and potential energies in the forms (1). By taking into account all comments
and asymptotic approximation as in the introductory part of this paper, as well as
corresponding expressions (2) — (5), system of the differential equations of the linearized
system is in the following form (see Refs. [72], [44], [56] and [83] by Hedrih
(Stevanovic)):
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p+awlp=hy,cosQt+9,) (17)
c F
where @) =—, hy, =—>
2 m 0p m
b+ wlg=no,cos(Qt+9,) (18)

M
where 2_9 p =0
2] ) h0¢ fz

Solutions of the linearized equations (17) an (18) are:

h
p(t)= R, cos(m,t + a02)+%cos(§2 S+ Sp) (19)
W) —Qp
#(t)= R, cos(mpt + gy ) LT (Qt+9,) 20
=k a)_|.+a01+ Z_QZCOS ¢+ ¢ ( )
@ 2%

For that linearized case both chosen coordinates are main coordinates of the
linearized model, and from solutions (19) — (20), we can see that free and also, forced
vibrations are uncoupled, and not interaction between free, and also forced modes of the
vibrations. Then, we have two uncoupled oscillators with different eigen circular

. c . - .
frequencies =% and w3 =—and different forced external excitation frequencies
m

Q, and Q, and with possibilities of appearance two main uncoupled resonant regimes,

2 2_9 2 2_C
when Q¢,resonant =@ = 7 and Qp,resonant =0, = E

In this case for linearized models and in the resonant cases, expressions for
solutions are in the following forms:

; h
p(t), . = Pocosamyt +22in wt +ﬂ[w2tsin<a)2t + Qp)—sin w,tsin 3p] (21)
p,resonant — @2 a)z 2 a)Z
¢£0 H h0¢ - . .
¢(t)|9¢,resmm o, = o0 +asm A +£[a)ltsm(a)lt + ,9¢)—sm aytsin 3¢] (22)

But, for the non-linear case the interaction between coordinates is present and
then energy transient appears.

Expressions for kinetic and potential energies are in the same forma as presented
and analyzed in first part V.1.1 for free vibrations and named by (1)-(5) and (7)-(10).
Then, the expressions for coordinates are different and must be taken in the forms (19)-
(20) and (21)-(22).

By analyze corresponding expressions, we can see that with these expression for
decoupled oscillator with coordinate o, we have pure linear oscillator or harmonic

2

. . . c .
oscillator with coordinate p and frequency w; =—, and separated process is
m

isochronous. By analyzed these corresponding expressions, we can see that with these
expressions for decoupled oscillators with coordinate ¢, we have pure non-linear
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oscillator with coordinate ¢, and separated process is no isochronous. For linearyzed
case this oscillator have eigen frequency a)f :% :

For forced non-linear case differential equations of the system non-linear
oscillation are in the following form:

p+wip=—g(l-cosg)+ hopcos(Q t+9 ) (23)

p+ate =l (p-sing)- p¢(p 0)- /1 plp+20)f +hg,cos(Qut+8,)  (24)

or in non-linear approximation forms for small oscillations around zero coordinates
0 =0,¢=0 oraround stable equilibrium position of the spring pendulum

¢ ¢ ¢ 4
p+a)2p~—g( 24 o 8I+ ..... +hopcos(th+3p) (25)
# ¢ ¢ 2 . 1 .
¢+a)l¢ a)l[a—g IR —€—2p¢(p+€)—(—2p(p+2€)¢+hO¢COS<Q¢t+19¢)
(26)
If we introduce phase coordinate, then we can write:
V=p
V=—wlp-g(L-cosg)+h,cos(@,t +9,)
u=4g

U = —wf¢+ o2 (p—sing)- p¢(p ()- gl p(p+2€))+h0¢cos(Q¢t+9¢) (25)

or in the approximation

v=p

Vz—wfp—g[§—§+%j—¢8—j+ ..... J+hopcos(9pt+9p)

u=g (26)
U~-wig— azl(z' ¢5! gz; ....J—%qu(p+€)—ﬁi2p(p+2€)u+h0¢COS(Q¢t+L9¢)

From system of the differential equations (23)-(24), as well as from their
approximations (25)-(26), we can see that their right hand parts are non-linear and are
functions of generalized coordinates, as well as of the generalized coordinates first and
second derivatives with respect to time and function of time. Also, we can see that
generalized coordinates ¢ and p around their zero values, when p=0,4=0 at the

stable equilibrium position of the spring pendulum are also main coordinates of the
linearized model. It is reason that the asymptotic averaged method is applicable for
obtaining first asymptotic approximation of the solutions
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Then, it is possible that first asymptotic approximations of the solutions of the
system of non-linear differential equations (23)-(24), take into account in the following
asymptotic approximations for the small spring pendulum forced elongations in the
form:

p=a,(t)coslot +¢,(t))
¢ =a,(t)cos(@,t + ¢, (t)) @27)
where amplitudes a,(t) and a,(t)and phases ¢, (t) and ¢, (t) are defined by system of

first order non-linear differential equations in first asymptotic approximation in the
following form:

ap(t)ja;%)sm(%(t)_gp)
. hO
()=, -Q, —WCOS(%(‘)— ‘9p)

h _ h 2(t)
a¢(t)z—msm(%(t)—%ﬁm%95|n(¢¢(t)—8¢)
. o |, a5t hoy
¢¢(t)Na)l_Q¢+E 1- 2pfz }_2a¢(t)(col+Q¢)COS(¢¢(t)_'9¢)+ o8
hy @)

+ cos(p,(t)- ;)
3a,(t)m +Q,) 2 AR
where Q,~@ and Q,~w, are external excitation frequencies in the resonant rages

corresponding eigen frequencies of corresponding linearized system. Previous system of
four non-linear and first order differential equation in the first asymptotic approximation
are obtained by asymptotic Krilov-Bogoliyubov-Mitropolyskiy method and for small
amplitudes of external excitations and in the resonant rages of the both frequencies.

4. 3.3. Concluding remarks

Taking into consideration some conclusion from considered system of the spring
pendulum, we can conclude, also, that it is important to consider more simple case of the
coupling between linear and non-linear systems each with one degree of freedom with
different types of the coupling realized by simple static or dynamic elements (see Refs.
[72], [44], [56] and [83] by Hedrih (Stevanovic)) for to investigate hybrid phenomena in
the non-linear system forced dynamics.

Also, it is possible to use for energy analysis of the transfer energy between
energies carried by generalized coordinates ¢ and p in this non-linear system forced

dynamics with two degrees of freedom, but formally, we can take into account that, we
have two oscillators, one non-linear and one linear each with one degree of freedom as
two sub-systems coupled in the hybrid system with two degree of freedom, by hybrid
connection realized by static and dynamic coupling. This interconnection have two part
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of energy interaction between sub-systems expressed by Kinetic and potential energy in
the form (10).

Taking into consideration some conclusion for considered system of the spring
pendulum forced oscillations, we can conclude also that it is important to consider more
simple case of the coupling between linear and non-linear systems each with one degree
of freedom with different types of the coupling realized by simple static or dynamic
elements, for to investigate hybrid phenomena in the system forced dynamics.

4.4. Analysis of the trigger of coupled singularities in nonlinear dynamic of no
ideal system

4.4.1. Free vibrations of the heavy mass particle along rotate rough curvilinear
line with Coulomb friction

For beginning let to consider free vibrations of the heavy mass particle along rotate
rough curvilinear line with Coulomb’s type friction, see Figure 8.a*. For the case that

curvilinear line is in the vertical rotate plane OXz around vertical Oz axis, we can take
that equation of the curve-linear line is: z = f(x), or f,(x,z)=2z— f(x)=0 and
with the following properties f(— X): f(X) and that coordinate pole is in the zero
point f(O)zO in which line have minimum (see Figure 8.a*). Also we take that

curvilinear line rotate around vertical Oz axis with constant angular velocity Q=0k
(see Ref. [103] by Hedrih (Stevanovic)).

Heavy mass particle, mass M, moving along rough curvilinear line with Coulomb’s
type sliding friction coefficient 4, is loaded by proper weight Mg, as a active
conservative force and by four no ideal constraint reactions, one Fy - normal ideal
constrain reaction, second Fgy in binormal direction and two additional, F, first
tangential component of the no ideal constraint reaction induced by friction and
proportional to the normal component reaction F, F,=—uFy sign V., and F,,
second tangential component of the no ideal constraint reaction induced by friction
caused by pressures in the binormal direction and proportional to the binormal

component of the inertia force Fgy, F,, =—uFgy Sign Vi, caused by curvilinear line

rotation around vertical Oz axis with constant angular velocity Q = Qk
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~

a*
Figure 8. Heavy material particle motion along rough curvilinear line with Coulomb
friction

Force of the inertia of mass particle realtive motion along the curvilinear line which
rotate around vertical Oz axis with constant angular velocity Q=Qk, have two
components. One component is force of the inertia of the circle rotation around vertical
axis in the form Ifjp =mQ?x{ , and second is Coriolis inertia force of the system and we

can  write: Fyg =—Fjc = Zm[ﬁ,vre|]= 2mQv,, cosaB.  Corresponding  force  of
Coulomb’s type friction is in the

form: Fﬂ2 = ﬂ‘FNBh —21MQV c03a| || =—-2umQV,, COS .
re
By use principle of dynamical equilibrium we obtain expression for the intensity

of normal and binormal components of curvilinear constraint reactions corresponding
differential double non-linear equation of the heavy mass particle motion along rotate
arbitrary curvilinear rough line, with angular velocity of rotation Q, and defined by
function z = f(X), for the case that the coefficient of the Coulomb’s type sliding

friction is 4, s in the following form:
i(x\/u z'z)iyxz L 0P X (1Fu)+
dt Vi+ 272 V1422
for v, >0 @

9 (2'+p)+ 20 =0
+,/1+212 (2" )+ 2400 for v <0

For the case of heavy mass particle motion along no ideal arbitrary rough
curvilinear line without rotation, differential equation is in the form:::

' for v >0
i()‘(\/1+ z’z)+g N 1 (xzz”+ g) 0 { rel )
dt Vi+z2?2 1427 for v, <0

Let consider special case of the rough curvilinear line with friction along normal
surface contact (without last term +2.Qx in (1)) and let introduce new variable in the

rel|
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following form: U = X*, then previous differential double equation (1) of the mass
particle motion along rough line is possible to transform in the following form:

du "'+ X _ 2 for v >0

—+2u ( Zﬂ):—ZQ2 ~(1F ') - g2 (' + u) rel

dx L+ 22) [+ 22) L+ 22) for v, <0
®)

Previous differential double equation (3) of the material particle motion along rough

curvilinear line according new helping coordinate U is ordinary double differential

equation first order with changeable coefficients and type in following form:

j—ui P(X)u = Q(X) with following solution:
X
[x()f =
PYRACETIN 2(24p) g 4
—e ’J b2?) —ZI{QZ X (17 2')+ J 2 (Z’i/z)}eZj be2?) Wk s c )

L+27?) 1+7'

From the previous first integral, the following equation of the phase trajectories
in the phase plane (X, X) we obtain:

Vrzel (X)=

PYLACET)IY ACETIIN (5)
i+ 22k P 2| Q2 0T ) (7 ) 2 B i

(l+ 7' ) (l+ 7' )

where C integral constant depending of initial conditions, angular coordinate and angular
velocity at initial moment, or starting terminate mass particle positions for next phase
trajectory branch.

For reason to compare properties of kinetic parameters of main considered
system dynamics and corresponding fictive (neglecting terms with acquire of velocity

x?) for comparison we transform corresponding differential double equations in the
form of the system of first order differential double equations and for obtaining
singularities for main system and fictive systems use conditions that right hand side all
equations must be equal to zero (null). Then we obtain the following conditions:

*For main system dynamics:

dx

—=v=0
dt

dv ., 27" _ ., 1 o X1F 2') g(z'+u)
—=— -Q - =0
a (1+z’2)+ﬂx (1+z’2) (1+z’2) (1+z’2)
*For corresponding fictive systems

dx
o
o xiFs) gletu) o
dt (1+z ) (1+z )

(6)
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and

%:v:O

dv_ (@°+g7)_

dat 1+22) ®

We can see that for listed main system and for fictive system, conditions for
obtaining singularities are same. Depending of the curvilinear line form zZ = f(X), we
obtained two nonlinear algebra equations in the following forms:

i) w0 @)
(1+z'2) (1+z'2)

1+ 7'
from which we can obtain, one or more roots.
If corresponding algebra double equation (9) have one root for =0 then

words are about one equilibrium position with ,,one side left“ and ,,one side right*
bifurcation of the equilibrium position and one fictive trigger of coupled singularities
caused by Coulomb’s type friction between mass particle and rough curvilinear line.

If corresponding algebra double equation (9) have odd number of roots for
1 =0 then words are about trigger of coupled singularities in a dynamics of a basic

non-linear system correspond to the system with friction. In this case corresponding
algebra double equation (9) for « =0 have corresponding odd number of roots for each

of the sets of the sign + , but all these roots are selected in two subsets, first one an ”one
side right* singularities and other "one side left* singularities correspond to the ,,one
side left“ and ,,one side right* relative equilibrium positions. Then, each roots of the
corresponding algebra double equation (9) for =0 , have two corresponding roots
obtained from corresponding algebra double equation (9) for 4 =0 and then there are
present new fictive triggers of coupled one side singularities. Then we have trigger of the
coupled triggers of coupled one side left, one central and one side right singularities,
which are present in the system with Coulomb’s type friction and with a corresponding
nonlinear system with ideal constraints and with minimum a trigger of coupled
singularities in its nonlinear dynamics.

Example 1. For the case that line is a circle shaped by (z—R) +x?=R?,

©)

z=R-yR%=x% for u=0 and u=0, from (9) there are two corresponding algebra
equations, one of which for g 0 is algebra double equations:

QX4 g =0 and
R? - x?

KX X B
92x[l+\/R2_X2J+g[\/R2_X2 i,uJ_O (10)

From first algebra equation for x =0 of previous system (10) is visible that x=0 is a
root correspond to the equilibrium position, but there are also pair of the roots:
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2
o2 g g
%= Rz_? for RO?

trigger of coupled three singularities exists. Also, we can conclude that second algebra
equation for z =0 have minimum two roots. First approximation of the minimum vales

9

o

<1. In this case for 4 =0 in system dynamics minimum a

of first two roots are x, 3 ~+2u—-, which correspond to the “one side right” and “one

side left” equilibrium positions and with x =0 build a trigger of coupled two one side
singularities appeared as a result of bifurcation by introducing Coulomb’s type friction.
By qualitative analyzing of the second algebra double equation from system (10) in the
form:
2 2 2p2
4 2)_ 2| p2 2\9 oR 2 9°R
X (1+/1 )—x (R —(1+4,u )EJ—X(iZ,u o7 J—4,u o =0,

we conclude that, also, one trigger of coupled three triggers of coupled one side
singularities appear.

Example 2. For the case that line is an ellipse shaped by (ﬂj +X—:1,
a

2
z=R+ awfl—:)(—2 ,for u=0 and u =0, from (9) there are two corresponding algebra

equations, one of which for 4 =0 is algebra double equations (see Figure 8.b*):

QO%x+ag

X x x
2 2 2
b”_ _pand 0% 1—yab—2 +g| +a—2L —+ (=0 (11)

2
X X X
From first algebra equation for x=0 of previous system (11) is visible that
x=0 is a root correspond to the equilibrium position, but there are also pair of two

2
roots: x1’3=ib‘/1—(b?gzj for b?gz <1. In this case for x=0 in system

dynamics, minimum a trigger of coupled three singularities exists. Also, we can conclude
that second algebra equation for 4 =0 have minimum two roots. First approximation of

the minimum vales of first two roots are X, 3~ izy%, which correspond to the “one

side right” and “one side left” equilibrium positions and with x =0 build a trigger of
coupled two one side singularities appeared as a result of bifurcation by introducing
Coulomb’s type friction. By qualitative analyzing of the second algebra double equation

2 2
from system (11) in the form: (xiyé] (R2 —xz): xz(%$ yxj , we conclude that

appear also one trigger of coupled three triggers of coupled one side singularities.
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4.4. 2. Theorem of trigger of coupled singularities

Previous considered differential double equations of the heavy mass particle
along rough curvilinear line with Coulomb’s type friction is possible to express in the
following generalized form of differential double equation with double signs (see Ref.
[103] by Hedrih (Stevanovic)).:

X.J_rbﬂ)-(z+g[k’|:(x,$xﬂ)]f(x,ixﬂ)=0 for XZO (12)

where b, coefficient depending of Coulombs type coefficient of friction, and X,

parameter in coordinate dimension depending of Coulombs type coefficient of friction
and with a corresponding governing differential equation for ideal system dynamics for
x,, =0 in the following form:

$+glk, F(x)]f(x)=0 (13)

4.4. 3. Theorem on the existence of a trigger of the coupled singularities and
the separatrix in the form of number eight in the conservative system.

By using nonlinear dynamic analysis of systems with described nonlinear
phenomenon of the trigger of coupled singularities and corresponding families of phase
portraits and potential energies (see References [84-103]) as well as the corresponding
experimental investigations of such non-linear dynamics in mechanical engineering
systems with coupled rotation motions (see Refs. [96] and [87]) it was easy to define and
to prove a series of the theorem of the existence of a trigger of coupled singularities in
non-linear dynamical conservative and no conservative systems with periodical structure.

Theorem: In the system whose dynamics can be described with the use of non-
linear differential equation in the form (see Refs. [88] and [89]):

s+glk, F(x)]f(x)=0 (14)
and whose potential energy is in the form:

E= mj glk, F(x)]f (x)dx = G[k, F(x)] (15)

in which the functions f(x) and g(x) are:

F(x):Jf(x)dx and G(k,x):jg(k,x)dx (16)

and satisfy the following conditions:
f(=x)=—-1(x) g(k,x-+nT,)=g(k, x)
f(x+nT, )= f(x) g(k,—x)=g(k, x)
f(0)=0 gk, F(x,)]=0, for k e (k. k, ) (ky, kg )-.. 17
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f(x)=0, x, =sT,, s=1234,.. X, =%, £IT,,
r=01234,.. || T
2

gk, F(x)]= 0, for k & (k;, k, )L (ky, ks )....
and both functions f(x) and g
between two zero roots:

a* for parameters values k¢ (k,,k,)U(k,,k,)..., outside of the intervals
(k. ,k, ) (ky, ks )... , the trigger of singularities in the local area does not exist.

b* for parameters values ke(k,,k,)U(k, k;)..., inside of the intervals
(k... k, ) (ky, ks ). , the series of triggers of coupled singularities in the local domains

exist.
We can see that for the case a* the second derivative of the potential energy can be
positive or negative: :

x) have one maximum or minimum in the interval

for %E(Oko Epmin %o

stable equilibrium p.

for M>0 E
dx

pmin Xs
d%E (18)
72" =Js=2p, p=1234,. stableequilibrium p.
dx rex,
for dfd(:((S)<0 Epmax X S$=2p-1
p=1234,.

unstable equilibrium p.

and equilibrium positions can be stable and unstable with corresponding singular points
alternatively change, periodically, with period T, .from stable center to unstable saddle
point, and corresponding phase portrait is without trigger of coupled singularities and
without separatrix in the form of number eight.

Also we can see that for the case b* the second derivative of the potential
energy can be positive or negative

d’E df (x)
P =m{glk, F(x —} 0 E
o] Ml FIY <0
Xs .unstable equilibrium position
d’E dglk, F
dxzp ) _m{g(EF(X()X)][f(x)]Z}X_X >0 Epmin (19)

X, .stable equilibrium positions
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and equilibrium positions can be stable and unstable with corresponding singular points
alternatively change, periodically, with period T, .from stable center to unstable saddle

points, and corresponding phase portrait is with triggers of coupled singularities and with
series of the separatrix in the form of numbers eights. Then, the triggers of coupled
singularities exist in the phase portrait in the intervals defined by:

Xe [7%"+ST,%"+ sTj s=01234,...

Integral energy of the system is in the form:
%% +2G[k, F(x)]= 2 + 2G][k, F(x(t, )] = const (20)
Equation of homoclinic orbit in the form number "eight" trough homoclinic
point (0,0) is:
? +2G[k, F(x)]= 2G[k, F(0)] = hy,, = const (21)

for glk. F(x )]=0, for ke (k. ko) (ky ko). in which the functions F() and G(k.%)
are in the form (16) and satisfy the conditions (17).

In Figure 9 B* and B* equivalent of potential energy E () graph of basic
ideal mechanical system, which corresponds to no ideal Coulomb’s type friction, is
presented. In Figures 9 B*b*, B*c* and B*d* the sets of the homoclinic phase

trajectory layering, for ;=0 and different values of the kzlz‘% <1 and axis
YER/o)

eccentricity are presented. Homoclinic orbits in the form of number eight appear and

disappear with changing parameter :1:‘1 <,. Two sets of the of the singular points:
A 0?1z

9

<1 Eexists
0?2

@s=S7m,5=1234,.. and g —arccos—2_+2s7, $=1234,.fort (_1_
10?2 A

together with homoclinic orbits — separatrix in the form of number eight.

In Figure 9. A*a* equivalent of potential energy E ,(¢) graph of basic ideal

mechanical system, which corresponds to no ideal Coulomb’s type friction, is presented
as a function of coordinate the ¢ . In Figures 9. (A*b*), (A*c*) and (A*d*) series of the

<
<, and

phase trajectory portraits, for oy =0, and different values of the | _1 ‘L
>

A |in?

A
eccentricity of axis of circle rotation are presented. Two sets (A*b*) and (A*c*) of the of
the singular points in phase portraits are visible: ¢, =s7,s=1234,. and

(ps:arccosmiziz”, s=1234,. for  _1 ‘L <1-One set (A*d*) of singular points in

a1 |2

A

9

phase trajectory portrait is visible: ¢, =sz,s=12,34,... for | _1 _
(Q?

A
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Figure 9. A* Equivalent of potential energy Ep((o) graph of basic ideal

mechanical system (A*a*) corresponding to no ideal Coulomb’s type friction and phase
trajectory portrait (A*b*), (A*c*) and (A*d*) for oy =0 and different values of the

k:%:‘miz il and axis eccentricity. Two sets (A*b*) and (A*c*) of the of the singular
points: ¢, =sz ,$=12,34,... and o, :arccosiiZSﬂ, §=1234,..fort k:l: 9 |<1.
102 A |o?
One set (A*d*) of singular points ¢, =sz,s=12,34,... for k:l:‘% >1-
yRRIZe)

Figure 9. B* Equivalent of potential energy E,(p) graph of basic ideal

mechanical system (B* a*) correspond to no ideal wich Coulomb’s type friction and

homoclinic phase trajectory layering (B* b*), (B* c¢*) and (B* d*) for oy =0 and
different values of the | ziz‘iz <1 and axis eccentricity.
A
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4.4. 4. Triggers of coupled singularities in non-linear dynamics of coupled
double rotor systems with Coulomb’s type friction

In this part, we start with a new model of the non-linear dynamics of two coupled
rigid rotors with mass particle debalances and no ideal surfaces between rotor shafts and
cylindrical bearing where appear Coulomb’s type friction (for detail see Reference [87]).

In Figure 10. a* the structure of the coupled double rotor system with Coulomb’s
type friction into contact surfaces between rotor shafts and cylindrical bearings is
presented. In Figure 10. b* decomposition of this system with plan of the Coulomb’s
type friction forces is presented.

Figure 10. Coupled double rotor system (a*)with Coulomb’s type friction into
contact surfaces between discs and shafts; Decomposition (b*) of the system with plan
of the Coulombs type friction forces

Governing nonlinear differential double equation of the coupled double rotor system
dynamics with Coulomb’s type friction into contact surfaces between rotor shafts and
cylindrical bearings take the following form:

mRS{%+/ip2}biyer2[cos kp—kap? COS¢]rﬁ+ mgRsin q[)(%iyr cos kgo]—

— 2pmgR, sinkg(R F ur cos )T (22)
T urmg[cowwggbz}(%i MY COS kgoji u/lrmg[cos kgo+%Rk2(/')2}(R F prcos ¢))= 0

For k =2 and for ideal constraints (by neglecting friction) previous differential
equation obtain the following form:

9

D)+ 1-44ipcosg)sing =0 23
7 W( pcosg)sing (23)

Obtained differential equations (23) is in the class (13) and then on the basis of
the listed theorem of trigger of coupled singularities in chapter VI1.2.1.. we can conclude

that non-linear dynamics in basic system when condition b <1 is satisfied appear a
p

trigged of coupled singularities and in the phase trajectory portrait appear a homoclinic



368 KATICAR. (STEVANOVIC) HEDRIH

orbit in the form of number eight. Sets of singularities are: first ¢, =sz and second

Qs = arccosﬁ for 44p >1, presented in Figure 9..
p

4.4. 5. Concluding remarks

Systems with coupled multi-step rotors are important for engineering applications,
then it is important to investigate ideal as well as no ideal system nonlinear dynamics.
Also, no stability in the working processes of like that system dynamics caused higher
level of noise and vibrations. Present Coulomb’s type frictions in these kind of system
dynamics caused new instability and more higher level of noise and vibrations. This is
reason that is important to investigate non-linear phenomena in dynamics of other
corresponding ideal as well as no ideal system dynamics. Also, system with vibro-
impacts are important for engineering practice. Vibro-impacts are strong non-linearity
with discontinuities in the system kinetic parameters and alternations of the forced and
velocities directions in comparison before and after impacts (see Reference [102] an
[104] by Hedrih (Stevanovi¢), Raicevi¢ and Jovic).

4.5. A review of the study of non-linear and stochastic vibrations through
scientific research projects and doctoral dissertation and magistar thesis defended
at Mechanical engineering faculty University of Ni$ in period 1972-2011 in area of
Mechanics

IV.5.1. The study of the transfer of energy between sub-systems coupled in hybrid
system (see Refs. [106-109], [55-56] by Heedrih (Stevanovi¢) (1975, 1995a,b, 1887a,b,
2007a,b, 2008a,b), [57-60] by Hedrih (Stevanovi¢) and Simonovi¢ (2009a,b,c) and [45]
and [69]Hedrih (Stevanovi¢) and Hedrih A. (2009a,b)) is very important for different
applications. Two papers by author (see Refs. [72] and [76] by Heedrih (Stevanovic)
(2005, 2006 and 2008) presents analytical analysis of the transfer of energy between
plates for free and forced transversal vibrations of an elastically connected double-plate
system. Energy analysis of vibro-impact system dynamics with curvilinear trajectories
and no ideal constraints was done by Jovi¢ in 2009 and in 2011 in his two theses (see
References [128] and [12]), for Magister of science as well for doctor’s of sciences
degrees. Potential energy and stress state in material with crack was study by Jovanovi¢
and presented in his Doctor’s Degree Thesis in 2009 (see Ref. [126]). Energy analysis of
the non-linear oscillatory motions of elastic and deformable bodies was done by Hedrih
(Stevanovi¢) her doctor’s degree thesis in 1975 (see Ref. [109]). Energy analysis
longitudinal oscillations of rods with changeable cross sections was original research
results in 1995 presented by Filipovski in his magister of sciences degree thesis (see Ref.
[119]). For all previous results see References from list in Appendix | — References VII -
[105-130] and Appendix Il — References VIII — [131-140] .

4.5.2. When, at an international conference ICNO in Kiev in 1969, my professor
of mechanics and mathematics, D. P. RaSkovi¢ (1910-1985) (see Refs. [32], [33], [34],
[53] and [54] Raskovi¢ (1965,1985) presented me to academician Yuri Alekseevich
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Mitropolskiy (1917-2008) (see Refs. [61-68] by Mitropolskiy (1955, 1964, 1968, 1976
and 2003) and when | started really to understand the differences between linear and
non-linear phenomena in dynamics of mechanical real systems, | knew | was on the right
path of research which enchanted me ever more by understanding new phenomena and
their variety in non-linear dynamics of realistic engineering and other dynamical systems.
(First my knowledge about properties of non-linearity and the non-linear function |
obtained in gymnasium from my excellent professor of mathematics Draginja Nikoli¢
and during my research Matura work on the subject of Non-linear elementary functions
and their graphics as a final high school examination.)

For beginning of this chapter, a review survey of original results of the author
and of researchers from Faculty of Mechanical Engineering University of Ni$ (see
References from lists in Appendix | — References VII — [105-130] and Appendix Il -
References VIII — [131-140]), inspired and/or obtained by the asymptotic method of
Krilov-Bogolyubov-Mitropolyskiy, and as a direct influence of professor Raskovi¢
scientific instruction and also by published Mitropolskiy's papers and monographs, as
well as publications by Kiev Mathematical institute scientists in area of non-linear and
stochastic dynamics . These results have been published in scientific journals, and were
presented on the scientific conferences and in the bachelor degree works (see [107] by
Stevanovi¢, (1967)), Magister of sciences theses (see [108] by Stevanovi¢ (1972), [110]
by Kozi¢ (1982), [112] by Pavlovi¢ (1982), [114] by Miti¢ (1985), [118] by Pavlov
(993), [119] by Filipovski (1995), [121] by Janevski* (2004), [122] by Simonovié¢
(2008)) and doctoral dissertations (see [109] by (Stevanovi¢) Hedrih (1975), [111] by
Kozi¢ (1990), [113] by Pavloi¢ (1990), [115] by Miti¢ (1994), [127] by Knezevi¢ (2000),
[124] by Peri¢ (2005), [126] by Jovanovi¢ (2009), [127] by Janevski* (2010), [128] by
Jovié** (2011), [129] by Simonovi¢ (2011) and [130] by Veljovi¢ (2011)) supervised by
Mitropolskiy (in period from 1972 to 1975) or by RaSkovi¢ (in period from 1964 to
1974) and by Hedrih in period from 1976 to 2011 year as well. For all previous results
see References from list in Appendix | — References VII — [105-130] and Appendix Il —
References VIII - [131-140].

In area of stochastic stability a scientific supports by series of consultation to
researchers was given by Kiev stochastic research group at Institute of Matmematics
NANU , S.T. Ariaratnam (Canada) and A. Tylikowski (Polad) and also by their papers.

The original results contain asymptotic analysis of the non-linear oscillatory
motions of elastic bodies: beams, plates, shells and shafts (see References by
(Stevanovi¢) Hedrih (1972, 1981, 1978, 1983, 1984, 1985, 1995); Hedrih and Raskovi¢
(1974); Hedrih, Kozi¢, Pavlovi¢, Miti¢ and Filipovski (1983, 1984, 1985, 1986, 1993,
1996, 1995)). Also, late a series of new research results are obtained by Janevski in 2003
[121] and by Simonovic in 2008 [122, 129] an in 2011 and also by Veljovic in 2011
[130] . The multi-frequency oscillatory motion of elastic bodies was studied.
Corresponding system of partial differential equations of system dynamics, as well as
system of first approximation of ordinary differential equations for corresponding
numbers of amplitudes and phases of multi-frequency regimes of elastic bodies non-
linear oscillations were composed. The characteristic properties of non-linear systems
passing through coupled multi-frequency resonant state and mutual influences between
excited modes were discovered.
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In the same cited papers amplitude-frequency and phase frequency curves for
stationary and no stationary coupled multi-frequency resonant Kinetic states, based on the
numerical experiment on the system of ordinary differential equations in first
approximation are presented. Resonant jumps are pointed out in the both series of
graphical presentation: amplitude-frequency and phase frequency curves for the case of
the resonant interactions between modes in the same frequency resonant intervals.

Using ideas of averaging and asymptotic methods Krilov-Bogoliyubov-
Mitropolyskiy in the Doctoral dissertation [109] and in References (see Refs. Hedrih
(Stevanovi¢) (1975, 1972, 1981, 1978, 1983, 1984, 1985, 1995)) author gives the first
asymptotic approximations of the solutions for one-, two- , three- and four-frequency
vibrations of non-linear elastic beams, shaft and thin elastic plates, as well as of the thin
elastic shells with positive constant Gauss's curvatures and finite deformations, and
system of the ordinary differential equations in first asymptotic approximation for
corresponding numbers of amplitudes and phases for stationary and no stationary
vibration regimes.

Some results of an investigation of multi-frequency vibrations in single-
frequency regime in non-linear systems with many degrees of freedom and with slow-
changing parameters are presented by Stevanovi¢ and Raskovi¢ article (1974).
Application of the Krilov-Bogolyubov-Mitropolskiy asymptotic method for study of
elastic bodies non-linear oscillations and energetic analysis of the elastic bodies
oscillatory motions give new results in theses [108] by Stevanovi¢ in 1975. One-
frequency transversal oscillations of thin rectangular plate with non-linear constitutive
material stress-strain relations and non-linear transversal vibrations of a plate with special
analysis of influence of weak non-linear boundary conditions are contents of the articles
by Hedrih (1979, 1981).

First approximation of an asymptotic particular solution of the non-linear
equations of a thin elastic shell with positive Gauss’ curvature in two-frequency regime is
pointed out in the article by Hedrih (1983). Two-frequency oscillations of the thin elastic
shells with finite deformations and interactions between harmonics have been studied by
Hedrih and Miti¢ (1983) and multi frequency forced vibrations of thin elastic shells with
a positive Gauss's curvature and finite displacements by Hedrih (1984). Also, on the
mutual influence between modes in non-linear systems with small parameter applied to
the multi-frequencies plate oscillations are studied by Hedrih, Kozi¢, Pavlovi¢ and Miti¢
(1984).

Multi-frequency forced vibrations of thin elastic shells with a positive Gauss'
curvature and finite deformations and initial deformations influence of the shell middle
surface to the phase-frequency characteristics of the non-linear stationary forced shell's
vibrations and numerical analysis of the four-frequency vibrations of thin elastic shells
with Gauss' positive curvature and finite deformations are content of reference by Hedrih
and Miti¢ (1985). Also, initial displacement deformation influence of the thin elastic shell
middle surface to the resonant jumps appearance was investigated by same authors
Hedrih and Miti¢ (1987). By means of the graphical presentations from the cited
References, analysis was made and some conclusions about non-linear phenomenon in
multi-frequency vibrations regimes were pointed out. Some of these conclusions we
quote here: Non-linearities are the reason for the appearance of interaction between
modes in multi-frequency regimes; In the coupled resonant state one or several resonant
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jumps appear on the amplitude-frequency and phase frequency curves; these resonant
jumps are from smaller to greater amplitudes and vice versa.

Unique trigger of coupled singularities (Hedrih (2003)) with one unstable
homaoclinic saddle type point, and with two singular stable center type points appear in
one frequency stationary resonant kinetic state. It is visible on the phase-frequency as
well as on the amplitude-frequency graphs for stationary resonant state.

In the case of the multi-frequency coupled resonant state and in the appearance
of the more resonant coupled modes in resonant range of corresponding frequencies,
unique trigger of coupled singularities, and multiplied triggers of coupled singularities
(see Refs. by Hedrih, 2004, 2005) appear. Maximum number of triggers of coupled
singularities is adequate to number of coupled modes and resonant frequencies of
external excitations. Multiplied triggers contain multiple unstable saddle homoclinic
points in the mapped phase plane as the number of resonant frequencies of external
excitations. For example, if a four-frequency coupled resonant process in u-v plane is in
question, four homoclinic saddle type points appear. The appearance of these unstable
homaclinic saddle points requires further study, since it induces instability in a stationary
non-linear multi-frequency Kinetic process.

By use a double circular plate system, presented in the References by Hedrih
(Stevanovi¢) and Simonovi¢ (2005,2006 and 2007), the multi-frequency analysis of the
non-linear dynamics with different approaches and by use different kinetic parameters of
multi-frequency regimes is pointed out. Series of the amplitude-frequency and phase-
frequency graphs as well as eigen-time functions—frequency graphs are obtained for
stationary resonant states and analysed according present singularities and triggers of
coupled singularities, as well as resonant jumps.

An analogy between non-linear phenomena in particular multi-frequency
stationary resonant regimes of multi circular plate system non-linear dynamics, multi-
beam system non-linear dynamics and corresponding regimes in chain system non-linear
dynamics is identified (see References by Hedrih (Stevanovic) listed in the reference list
from period 1972-2010).

Using differential equations systems of the first approximation of multi-
frequency regime of stationary and no stationary resonant kinetic states, we analysed the
energy of excited modes and transfer of energy from one to other modes. On the basis of
this analysis, the question of excitation of lower frequency modes by higher frequency
mode in the non-linear multi-frequency vibration regimes was opened.

45.3. In the Reference by Hedrih (Stevanovi¢) and Hedrih (2009), the
expressions for the kinetic and potential energy as well as energy interaction between
chains in the double DNA chain helix are obtained and analyzed for a linearized model.
Corresponding expressions of the kinetic and potential energies of these uncoupled
main chains are also defined for the eigen main chains of the double DNA chain helix.
By obtained expressions, we concluded that there is no energy interaction between
eigen main chains of the double DNA chain helix system. Time expressions of the main
coordinates of the two eigen main chains are expressed by time, and eigen circular
frequencies are obtained. Also, generalized coordinates of the double DNA chain helix
are expressed by time correspond to the sets of the eigen circular frequencies. These
data contribute to better understanding of biomechanical events of DNA transcription
that occur parallel with biochemical processes. Considered as a linear mechanical
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system, DNA molecule as a double chain helix has its eigen circular frequencies and
that is its characteristic. Mathematically it is possible to decouple it into two chains
with their set with corresponding eigen circular frequencies which are different. This
may correspond to different chemical structure (the order of base pairs) of the
complementary chains of DNA. We are free to propose that every specific set of base
pair order has its eigen circular frequencies and its corresponding oscillatory energy
and it changes when DNA chains are coupled in the system of double chain helix.
Oscillations of base pairs and corresponding oscillatory energy for specific set of base
pairs may contribute to conformational chances of DNA double helix, and its unzipping
and folding.

4.5.4. General concluding remarks

For limited length of paper, now we made only some comments concerning the
following

* Lissajous’ curves, orthogonal asynchronous and synchronous oscillations,
asynchronization and synchronization of subsystem in hybrid system dynamics.

Series of Lissajous curves as well as new series of the generalized Lissajous
curves obtained by software MathCad as a results of the coupled orthogonal multi-
frequency  oscillations are  suitable for to build a method of
asynchronization/synchronization for applications to the discrete continuum for
synchronization some parts of discrete continuum. By this method based on attractors of
asynchronization/synchronization of the component oscillations of the subsystems of
hybrid system is possible and suitable for to obtain conditions of the integrity of the
dynamical system. Generalized Lissajous curves can be used as attractors of
asynchronization/synchronization of the component subsystem oscillations which are
coupled as that these oscillations are orthogonal. By changing some parameters of the
coupled oscillators synchronization and by use current software tools as it is MathCad (or
MathLab or Mathematica), the visualization of the transformation of the generalized
Lissajous curve, up to its degeneration into part of straight line, can be obtain as results
of the orthogonal coupling of oscillatory multi-frequency signals. If this degeneration is
not possible, then these oscillators it is not possible to synchronized and corresponding
parameter is not parameter of synchronization. If as results of the change of some
parameters of the coupled oscillators synchronization is transformation of the generalized
Lissajous curve into one unique line then it is possible to obtain system parameters of
the attractor of partially synchronization or asynchronization of the coupled oscillators.

Also, there are some models of the discrete continuum in plane or in the space,
which mass particles moves oscillatory as result of coupled two in plane, or three in
space, orthogonal multi-frequency oscillations Trajectories of this mass particles are
generalized Lissajous curves. Applications of the knowledge about generalized
Lissajous curves is important for constructions of some processing machines with
working processes based on the motion of the coupled orthogonal multi frequency
vibrations.
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Ito’s stochastic differential equations and applications to stochastic oscillations
of mechanical systems with hereditary properties are also actual mathematical task for
open possibilities in engineering practice, as well as in other area of science.

Mathematical analogy and phenomenological mapping by use mathematical
models in applications to disparate physical models dynamics open very large
interactions between different area of science and easier transfer knowledge from one
area of science to other.

Also, one of main education task of Serbian mathematicians and other
university professor to fined minimum volume of the classical and new current
mathematical knowledge necessary to be in the programs of Ph.D. study enough for
mathematical background of new Ph.D. specialist for their next two decade research and
possibility to accept new and future mathematical discovery and be competent to applied
these new mathematical knowledge in research and practice, as well as to define new
mathematical tasks appear from his research and to directed to mathematicians for future
research.
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research results included in a Magistar of sciences these of Goran Janevski. Mechanical Engineering
Faculty University of NiS. (Project Leaders R. Pavlovii¢ and P. Kozi¢).

143. Ol 144023 Deterministic and stochastic stability of mechanical systems (2006 — 2010.), Ministry of
Sciences and Technology of Republic of Serbia. Some research results included in a doctoral
dissertations of Goran Janevski (supervisor Predrag Kozi¢). Mechanical Engineering Faculty University
of NiS. (Project Leader R. Pavlovii¢ and P. Kozi¢)

DOPRINOSI KLASICNOJ | ANALITICKOJ MEHANICI:
PREGLED AUTOROVIH REZULTATA

Katica R. (Stevanovi¢) Hedrih
Matematicki institut SANU, Beograd, Srbija
i Masinski fakultet Univerziteta u NiSu
Tel: 381 18 2 41 663;
e-mail: katica@masfak.ni.ac.yu,khedrih@eunet.yu,khedrih@sbb.co.yu

Apstrakt. Dat je pregled, u subjektivnom izboru, autorovih nau¢nih rezultata u
oblasti klasi¢ne mehanike, analiticke mehanike diskretnih naslednih sistema, analiticke
mehanike diskretnih frakcionog reda oscilatornih sistema, elastodinamike, nelinearne
dinamike, kao i dinamike hibridnih sistema. Glavni originalni autorovi rezultati su
predstavljrni kroz matematicke modele mehanike sa primerima primene na reSavanje
zadataka dinamike realnih mehani¢kih sistema apstrahovanih do teorijskih modela
mehanickih diskretnih ili kontinualnih sistema, kao i hibridnih sistema. Rad prikazuje i
metode i nau¢ne rezultate autorovih profesora Mitropoljskog, Andjeli¢a i RaSkovica, kao
i originalne naucne rezultate autora og rada dobijene primenom metoda njenih profesora.
Vektorska metoda je zasnovana na vektorima momenata masa i odgovaraju¢im
devijacionim vektorskim komponentama za pol i orjentisanu osu, koje je K. Hedrih ,
1991 godine, definisala i prikazala. Ovde su, takodje prikazani i rezultati u konsrukciji
analiticke dinamike diskretnih naslednih sistema dobijeni u saradnji sa O.A. Goroshkom.
Takodje je ukazano i na neke izabrane rezultate autorovih poslediplomaca i doktoranata u
oblasti nelinearne dinamike. Spisak naucnih projekata kojima je rukovodio autor je
prikazan, kao i spisak doktorskih disertacija i magistarskih teza koje sadrze naucne
rezultate uradjene pod mentorstvom autora ovog rada ili njenih prvih doktoranata.

Kljuéne reéi: Pregledni, vektorska metoda, vector momenta mase, vector
devijacionog momenta mase, rotator, spregnute rotacije, mimoilazne ose, bazni vektori
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tangentnog prostora vektora polozaja, ugaona brzina baznih vektora tangentnog prostora,
brzina ekstenzije baznog vektora, reonomne veze, reonomne coordinate, pokretljivost,
asimptotska aproksimacija reSenja, asimptotska metoda usrednjenja Krilov-Bogoljubov-
Mitropolzski, metoda varijacije konstanata, nasledni sistem, reolosko i relaksaciono
jezgro, standardni nasledni element, integrod-diferencijalna jednacina, izvod necelog
reda, kovarijantne koordinate, kontravarijantne koordinate, fizicke koordinate, metoda
diskretnog kontinuuma, prostorna frakcionog reda struktura, glavne sopstvene povrsinske
mreze, glavni sopstveni lanci, oscilator frakcionog reda, karakteristi¢ni brojevi sistema
frakcionog reda, prenos signala, visefrekventni, materijalne tacke, kruto telo, reduktor,
deformabilno telo, sistem viSe tela, transverzalni, longitudinalni, spregnute ploce,
spregnute trake, spregnute grede, stohasti¢ka stabilnost.
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