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Abstract

This paper presents an analytical solution of unsteady one-dimensional
natural convective flow of a viscous incompressible and electrically con-
ducting fluid past an infinite vertical cylinder with constant temperature
and magnetic field, applied normal to the direction of flow. Exact solu-
tions of dimensionless unsteady linear governing equations are obtained
by using Laplace transform technique. Numerical computations for the
transient velocity, temperature, skin-friction, Nusselt number are com-
puted and presented in graphs for various set of physical parametric
values viz; Grashof number, Prandtl number, magnetic parameter and
time.

Keywords: Vertical cylinder, MHD flow, Laplace transform, Free con-
vection

Nomenclature

B0 Magnetic induction intensity

g Acceleration due to gravity

J0 Bessel function of first kind and or-
der zero

J1 Bessel function of first kind and or-
der one

K0 Modified Bessel function of second
kind and order zero

K1 Modified Bessel function of second
kind and order one

R Dimensionless radial coordinate

t′ Time

T ′ Temperature

T Dimensionless temperature

u x-component of velocity

U Dimensionless velocity
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V Dummy real variable used in inte-
grals

Y0 Bessel function of second kind and

order zero

Y1 Bessel function of second kind and
order one

Greek symbols

α Thermal diffusivity of fluid

β Coefficient of thermal expansion of
fluid

ν Kinematic viscosity

ρ Density

σ Electrical conductivity of the fluid

1 Introduction

Unsteady free convection flow of a viscous incompressible fluid over a ver-
tical cylinder with constant temperature have attracted attention of many
researchers because of their wide applications in the field of engineering and
geophysics, such as start-up of a chemical reactor and emergency cooling of
a nuclear fuel element by forced circulation in case of power failure. Studies
of free convection flow along a vertical cylinder are important in the field
of geothermal power generation and drilling operations. In glass and poly-
mer industries, hot filaments, which are considered as a vertical cylinder, are
cooled as they pass through the surrounding environment. Sparrow & Gregg
[1] first studied the heat transfer from vertical cylinders. Goldstein & Briggs
[2] presented an analysis of the transient free convection heat transfer prob-
lem from vertical flat plates and vertical circular cylinders to a surrounding
initially quiescent fluid by employing Laplace transform technique. Botte-
manne [3] presented an experimental results of simultaneous heat and mass
transfer by free convection about a vertical cylinder placed in still air for
Pr=0.71 and Sc=0.63.

Magnetohydrodynamic flows and heat transfer processes occur in many
industrial applications such as the geothermal system, aerodynamic pro-
cesses, chemical catalytic reactors and processes etc. The earth’s magnetic
field is thought to be produced by electric currents extends outward from
the earth’s core into inter-planetary space, wherein encounters the magnetic
field and moving charged plasma of the solar wind. The solar wind flows
around the earth’s magnetic field but distorts the field as it does so. All the
magnetic fields are the result of moving electric charges. Several researchers
have investigated natural convection boundary layer flow of an electrically
conducting fluid in presence of magnetic field. Arora & Gupta [4] presented
an exact solution for the magnetohydrodynamic flow between two rotating
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cylinders under radial magnetic field. Agarwal et al. [5] analyzed the effect
of MHD free convection and mass transfer flow past a vibrating infinite ver-
tical circular cylinder. Raptis & Agarwal [6] studied the effect of MHD free
convection and mass transfer on the flow past an oscillating infinite coaxial
vertical circular cylinder. Ganesan & Loganathan [7] presented an analysis of
magnetic field effect on a semi-infinite moving vertical cylinder with constant
heat flux by employing an implicit finite-difference scheme of Crank-Nicolson
type. Elgazery & Hassan [8] presented a numerical study of radiation effect
on MHD transient mixed-convection flow over a moving vertical cylinder with
constant heat flux through a porous medium.

Recently, Reddy & Reddy [9] performed a numerical study of the interac-
tion of radiation and mass transfer effects on unsteady MHD free convection
flow of an incompressible viscous fluid past a semi-infinite moving vertical
cylinder by finite-difference scheme of Crank-Nicolson type. Reddy & Reddy
[10] also studied the interaction of free convection with thermal radiation
of a viscous incompressible unsteady MHD flow past a semi-infinite vertical
cylinder with variable surface temperature and concentration numerically.

However, no exact solution on unsteady free convective flow past ver-
tical cylinder with magnetic field effect seems to have been reported and
this motivates the present investigation. The problem of unsteady magne-
tohydrodynamic flow past vertical cylinders have important applications in
the study of geological formations, in the exploration and thermal recovery
of oil, and in the assessment of aquifers, geothermal reservoirs and under-
ground nuclear waste storage sites. The objective of the present study is to
make an analytic investigation of unsteady one-dimensional free convective
flow of a viscous incompressible and electrically conducting fluid past an infi-
nite vertical cylinder with constant temperature under the action of uniform
magnetic field applied normal to the direction of flow. The governing bound-
ary layer equations along with the initial and boundary conditions are first
transformed into a dimensionless form and the exact solutions of the result-
ing system of equations are obtained by using Laplace transform technique.
The behaviour of the velocity, temperature, skin-friction and Nusselt number
are investigated for various set of physical parameters viz; Grashof number,
magnetic field parameter, Prandtl number and time.
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2 Mathematical analysis

An unsteady one-dimensional laminar free convective flow of a viscous in-
compressible fluid past an infinite vertical cylinder of radius r0 is considered.
The x-axis is being taken vertically upwards along the axis of the cylinder
and the radial co-ordinate r is taken normal to the cylinder. Initially, it is
assumed that the cylinder and fluid are at the same temperature T ′

∞. It is
also assumed that at t′ > 0, the temperature of the cylinder raised to con-
stant temperature T ′

w. A uniform magnetic field is applied in the direction
perpendicular to the cylinder. The fluid is assumed to be slightly conducting,
so that the magnetic Reynolds number is much less than unity and hence the
induced magnetic field is negligible in comparison to the applied magnetic
field. The viscous dissipation is also assumed to be negligible in the energy
equation as the motion is due to free convection only. It is also assumed that
all the fluid properties are constant except for the density in the buoyancy
term, which is given by the usual Boussinesq’s approximation. Under these
assumptions the governing boundary layer equations are:

∂u

∂t′
= gβ

(
T ′ − T ′

∞
)
+

ν

r

∂

∂r

(
r
∂u

∂r

)
− σB2

0u

ρ
(1)

∂T ′

∂t′
=

α

r

∂

∂r

(
r
∂T ′

∂r

)
(2)

with initial and boundary conditions,

t′ ≤ 0: u = 0, T ′ = T ′
∞ ∀ r

t′ > 0: u = 0, T ′ = T ′
w at r = r0

u → 0, T ′ → T ′
∞ as r → ∞

 (3)

In order to write the governing equations, initial and boundary condi-
tions in dimensionless form, the following non-dimensional quantities are in-
troduced.

R =
r

r0
, U =

ur0
ν

, t =
t′ν

r20
, T =

T ′ − T ′
∞

T ′
w − T ′

∞

Pr =
ν

α
, Gr = gβr30

T ′
w − T ′

∞
ν2

, M =
σB2

0r
2
0

νρ


(4)

In view of the above, the governing Eqs. (1) and (2) reduce to the fol-
lowing non-dimensional form,

∂U

∂t
=

∂2U

∂R2
+

1

R

∂U

∂R
−MU +GrT (5)
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Pr
∂T

∂t
=

∂2T

∂R2
+

1

R

∂T

∂R
(6)

with corresponding initial and boundary conditions as:

t ≤ 0: U = 0, T = 0 ∀ R
t > 0: U = 0, T = 1 at R = 1

U → 0, T → 0 as R → ∞

 (7)

Here, M is the magnetic field parameter, Gr is the Grashof number, and
Pr is the Prandtl number.

3 Solution technique

In order to solve the governing unsteady non-dimensional Eqns.(5) and (6)
subject to initial and boundary conditions (7), we apply usual Laplace trans-
form technique.

Laplace transform of Eqns.(5) and (6) gives,

d2U

dR2
+

1

R

dU

dR
− (M + p)U +GrT = 0 (8)

and
d2T

dR2
+

1

R

dT

dR
− PrpT = 0 (9)

Where, p is the parameter of Laplace transform, defined by Lf(t) = F (p),
L being the Laplace operator, and U , T are the Laplace transforms of U and
T respectively.

Solution of (9), subject to transformed initial and boundary conditions
(7) gives,

T =
K0

(
R
√
Prp

)
pK0

(√
Prp

) (10)

Using equation (10), the solution of (8) subject to transformed initial and
boundary conditions (7) gives,

U =
Gr

p {M + p (1− Pr)}

{
K0

(√
PrpR

)
K0

(√
Prp

) −
K0

(√
M + pR

)
K0

(√
M + p

) }
(11)

(The way of deriving U and T is presented in the Appendix)
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Now, using the theorem of inverse Laplace transform in equation (10), we
have,

T =
1

2πi

γ+i∞∫
γ−i∞

ept
K0

(
R
√
pPr

)
pK0

(√
pPr

) dp (12)

The integrand of (12) has a simple pole at p = 0 and a branch point at
p = 0

Now K0(
√
pPr) do not have zero at any point in the real and imaginary

plane if the branch cut is made along the negative real axis. To obtain T (t, R)
from T (p,R), we use the adjoining contour Fig.1. Therefore the line integral
in (12) may be replaced by the limit of the sum of the integrals over FE, ED,
DC, CB, and BA as S1 → ∞ and S0 → 0.

Figure 1: Path of contour integration for the inverse integral.

The particular form of the inversion integral, equation (12) has chosen
because the value along the paths DC, BA and FE approaches zero as S1 → ∞
and S0 → 0.

Along the paths CB and ED we choose p = eiπV 2/Pr and p = e−iπV 2/Pr,
respectively.

On the path CB,

TCB =
1

πi

∞∫
0

e−
V 2

Pr
t J0 (RV )− iY0 (RV )

V {J0 (V )− iY0 (V )}
dV (13)
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and on the path ED,

TED =
1

πi

∞∫
0

e−
V 2

Pr
t J0 (RV ) + iY0 (RV )

V {J0 (V ) + iY0 (V )}
dV (14)

The sum of the integrals along CB and ED gives,

TCB+ED =
2

π

∞∫
0

e−
V 2

Pr
t

V

J0 (RV )Y0 (V )− Y0 (RV ) J0 (V )

J2
0 (V ) + Y 2

0 (V )
dV (15)

Also, the residue of the integrand of (12) at the point p = 0 is = 1
Thus from the theory of residues we have,

T = 1 +
2

π

∞∫
0

e−
V 2

Pr
tΓ (R, V )

dV

V
(16)

where

Γ(R, V ) =
J0 (RV )Y0 (V )− Y0 (RV ) J0 (V )

J2
0 (V ) + Y 2

0 (V )
(17)

Similarly, the inverse Laplace transform of equation (11) gives the expres-
sion of velocity profile as:

U =
Gr

M

1−
K0

(
R
√
M

)
K0

(√
M

)
+

2Gr

π

∞∫
0

e−
V 2

Pr
t{

M − V 2
(

1
Pr − 1

)}
V
Γ (R, V ) dV

+
2Gr

π

∞∫
0

V e−(V
2+M)t

(V 2 +M) {(V 2 +M) (1− Pr)−M}
Γ (R, V ) dV

(for M ̸= 0) (18)

U =
2GrPr

(Pr − 1)π

∞∫
0

(
1− e−

V 2

Pr
t

)
{
Γ

(
R,

V√
Pr

)
− Γ (R, V )

}
dV

V 3

(for M = 0) (19)
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Knowing the velocity and temperature fields, it is necessary to study the
skin-friction and Nusselt number. In non-dimensional form the skin friction
and Nusselt number are defined respectively as follows:

τ = − ∂U

∂R

]
R=1

(20)

Nu = − ∂T

∂R

]
R=1

(21)

3.1 Skin Friction

Expressions for the skin-friction τ obtained from Eqs. (18) and (19) as,

τ = − Gr√
M

K1

(√
M

)
K0

(√
M

) +

2Gr

π

∞∫
0

e−
V 2

Pr
t{

M − V 2
(

1
Pr − 1

)}Γ1 (V ) dV +

2Gr

π

∞∫
0

V 2e−(V
2+M)t

(V 2 +M) {(V 2 +M) (1− Pr)−M}
Γ1 (V ) dV

(for M ̸= 0) (22)

τ =
2GrPr

(Pr − 1)π

∞∫
0

(
1− e−

V 2

Pr
t

)
{

1√
Pr

Γ1

(
V√
Pr

)
− Γ1 (V )

}
dV

V 2

(for M = 0) (23)

3.2 Nusselt number

Expression for Nusselt number Nu obtained from Eq.(16) as:

Nu =
2

π

∞∫
0

{
e−

V 2

Pr
tΓ1 (V )

}
dV (24)
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where

Γ1 (V ) =
J1 (V )Y0 (V )− Y1 (V ) J0 (V )

J2
0 (V ) + Y 2

0 (V )
(25)

4 Results and discussions

In order to get an insight into the physics of the problem, the numerical
computations of velocity, temperature, skin-friction and Nusselt number are
made for different values of magnetic field parameter M , Grashof numbers
Gr, Prandtl number Pr, time t and presented graphically in Figs. 2-10.
Water, when mixed with salt; air when mixed with ionized gases, or salt
water vapour, they are electrically conductive. Our observation is based on
fluids which are slightly electrically conductive.

1 2 3 4

0.0

0.1

0.2

0.3

0.4

0.5

Pr=7

Pr=0.71

Gr=5, t=0.5

U

R

M=0

M=0.3

M=1.2

M=2

Figure 2: Effects of M and Pr on velocity profiles at Gr=5, t=0.5

The transient velocity profiles for different values of M and Pr at Gr = 5
and t = 0.5 are shown in Fig.2. It is observed from the figure that the
presence of magnetic field leads to a decrease in the velocity field. It is due to
the fact that the application of transverse magnetic field will result a resistive
type of force (Lorentz force) similar to drag force, which tends to resist the
fluid flow and thus reducing its velocity. The Prandtl number signifies the
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P r=7

Pr=0 .71U
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t=0 .3, M=0.8

Gr=8

Gr=10
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Figure 3: Effects of Gr and Pr on velocity profiles at t=0.3, M=0.8
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Figure 4: Effect of M with respect to time on velocity profiles at Gr=8,
R=1.6
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Figure 5: Effect of Gr with respect to time on velocity profiles at M=1,
R=1.6, Pr=0.71
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Figure 6: Effects of Prandtl number and time on temperature profiles.
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Figure 7: Temperature profiles with respect to time for different values of Pr
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Figure 8: Effects of M and Pr on skin friction at Gr=5
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Figure 9: Effect of Gr on skin friction at M=0.8, Pr=0.71
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Figure 10: Nusselt number for different values of Pr

relative effects of the momentum and heat transport by diffusivity process.
It physically relates the relative thickness of the hydrodynamic boundary
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layer and thermal boundary layer. It is observed here that transient velocity
decreases with increase in Prandtl number.

The effect of Grashof numberGr on the transient velocity profiles forM =
0.8, t = 0.3 and Pr = 0.71 and 7 are shown in Fig.3. The Grashof number
signifies the relative effect of the buoyancy force to the hydrodynamic viscous
force. The positive values of Gr correspond to cooling of the cylinder by free
convection. Heat is therefore condvected away from the vertical cylinder into
the fluid, which increases temperature and thereby enhances the buoyancy
force. As expected, it is found that an increase in the Grashof number leads
to an increase in the velocity due to enhancement in the buoyancy force.

Effects of magnetic field parameter and Prandtl number on velocity pro-
file against time are presented in Fig.4. Also, the effect of Grashof number
on velocity profiles against time is presented in Fig.5. It is observed that
initially velocity increases with time but for larger time, it approaches steady
state. Time required to reach steady state increases with Grashof number
but decreases with magnetic field parameter or Prandtl number.

The transient temperature profiles for different t and Pr are plotted in
Fig.6. It is observed that the temperature increases with decreased values of
Pr or increased values of time t. Also, Fig.7 depicts the temperature profile
against time shows that for larger time it tends to a steady state.

Fig.8 depicts the effects of magnetic field parameter and Prandtl number
and Fig.9 depicts the effect of Grashof number on skin friction. It is found
from the figures that the skin friction increases in presence of magnetic field.
Also, skin friction increases with Pr but decreases with Gr. Also, it is found
that skin friction tends to steady state for larger time and time required to
reach steady state decreases with magnetic field parameter but increases with
Grashof number.

Fig.10 shows the effects of Pr on the rate of heat transfer i.e. Nusselt
number. Here, it is observed that Nusselt number increases with Pr and time
required to reach steady state increase with Pr.

5 Conclusions

On the basis of the results obtained from the above discussions, the conclu-
sions of this study are as follows:

i Time required to reach steady state increases with Grashof number but
decreases with magnetic field effect or Prandtl number.



Transient free convective MHD flow past ... 399

ii The transient velocity increases with Grashof number but decreases with
magnetic field parameter or Prandtl number.

iii Skin friction increases with magnetic field effect or Prandtl number but
decreases with Grashof number.

iv Nusselt number increases with Prandtl number.
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Appendix

Solutions of the coupled equations

d2U

dR2
+

1

R

dU

dR
− (M + p)U +GrT = 0 (I)

and
d2T

dR2
+

1

R

dT

dR
− Pr pT = 0 (II)

Subject to the with boundary conditions,

U = 0, T = 1 at R = 1
U → 0, T → 0 as R → ∞

}
(III)

The equation (II) is modified Bessel’s equation in R with order zero. The
solution of this equation is given by,

T = C1I0

(
R
√

Pr p
)
+ C2K0

(
R
√

Pr p
)

(IV)

where C1 and C2 are two arbitrary constants and I0
(
R
√
Pr p

)
andK0

(
R
√
Pr p

)
are modified Bessel’s functions of first kind and second kind respectively of
order zero.

Since T → 0 and so T → 0 as R → ∞, so we must choose C1 = 0
Also, T = 1 and so T = 1

p at R = 1, so equation (IV) gives,

C2 =
1

pK0

(√
Pr p

) (V)

Therefore equation (IV) reduces to,

T =
K0

(
R
√
Pr p

)
pK0

(√
Pr p

) (VI)

Substituting the expression for T from (VI) in equation (I), we have,

d2U

dR2
+

1

R

dU

dR
− (M + p)U = −Gr

K0

(
R
√
Pr p

)
pK0

(√
Pr p

) (VII)
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Now, consider the equation

d2U

dR2
+

1

R

dU

dR
− (M + p)U = 0 (VIII)

which is modified Bessel’s equation of order zero. The solution of this equa-
tion gives

U = C3I0

(
R
√

M + p
)
+ C4K0

(
R
√

M + p
)

(IX)

where C3 and C4 are arbitrary constants. Considering solution (IX) as com-
plimentary function (CF) of equation (VII), the general solution of equation
(VII) i.e. U = CF + Particularintegral, is obtained by variation of pa-
rameter technique. Following, variation of parameter method, and using the
following identities,∫

RI0 (aR) I0 (bR)dR =
R

a2 − b2
[aI0 (bR) I1 (aR) −bI0 (aR) I1 (bR)]

∫
RI0 (aR) I0 (bR)dR =

R

a2 − b2
[aI0 (bR) I1 (aR) −bI0 (aR) I1 (bR)]

∫
RI0 (aR)K0 (bR)dR =

R

a2 − b2
[aI1 (aR) K0 (bR) + bI0 (aR) K1 (bR)]

and properties of modified Bessel’s functions [cf. Carslaw and Jaeger [11,12]]

d

dR
{I0(aR)} = aI1(aR),

d

dR
{K0(aR)} = −aK1(aR),

I0 (aR)K1 (aR) + I1 (aR)K0 (aR) =
1

aR

R being the dummy variable; finally using boundary conditions (III), the
expression for U is obtained as

U =
Gr

p {M + p (1− Pr)}

{
K0

(√
Pr pR

)
K0

(√
Pr p

) −
K0

(√
M + pR

)
K0

(√
M + p

) }
(X)

Submitted in May 2012, revised in February 2013, accepted in June 2013



402 Rudra Kanta Deka, Ashish Paul

Prolazna slobodna konvekcija MHD tečenja duž beskonačnog
vertikalnog cilindra

Ovaj rad predstavlja analiticki rastvor nestabilan jednodimenzionalni prirodni
tok konvektivnog viskozna nestiljiva i elektricno sprovodenje tecnosti pored
beskonacne vertikalne cilindra sa konstantnim temperature i magnetno polje,
primenjeno normalno na pravac toka. Egzaktna reenja bezdimenziono nesta-
cionarnog linearnih jednacina su vladajucih dobijeni koricenjem Laplasove
transformacije tehnike. Numericki proracuni za prelazni brzina, temperatura,
koe-trenje, Nusselt broj su obracunat i prikazan u grafikonima za razne fizicke
skup parametarskih Vrednosti naime, Grashofov broj, Prandtl broj, magnetni
parametar i vreme.
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