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Abstract

An analysis is performed to study the shear stress, the couple-stress
and heat transfer characteristics of a laminar mixed convection bound-
ary layer flow of a micropolar fluid past an isothermal permeable plate.
The governing nonsimilar boundary layer equations are analyzed using
the (i) series solution for small ξ, (ii) asymptotic solution for large ξ
and (iii) primitive-variable formulation and the stream function formu-
lation are being used for all ξ. The effects of the material parameters,
such as, the vortex viscosity parameter, K, and the transpiration pa-
rameter, s, on the shear stress, the couple-stress and heat transfer have
been investigated. The agreement between the solutions obtained from
the stream-function formulation and the primitive-variable formulation
is found to be excellent.

Keywords: Boundary layer, heat transfer, micropolar fluid, perme-
able flat plate

Nomenclature

f dimensionless stream function;

g dimensionless microrotation;

H characteristic length

j microinertia per unit mass

K vortex viscosity parameter

m couple-stress

n a real number

N̄ angular velocity

N dimensionless angular velocity

Pr Prandtl number

q surface heat flux
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Re Reynolds number

T̄ temperature

s transpiration parameter

T̄ Temperature of the fluid in the
boundary layer region

T̄w Temperature of the fluid at the sur-
face

T̄∞ Temperature of the ambient fluid

s transpiration parameter

U0 free stream velocity

ū, v̄ velocity components in x̄, ȳ direction

H characteristic length dimensionless
velocities in the x- and y-direction
respectively

V0 surface mass flux

x, y nondimensional streamwise and
cross-stream Cartesian coordinates

Y similarity variable

Greek symbols

κ thermal conductivity of the fluid

θ dimensionless temperature in the
boundary layer

ψ stream function

µ dynamic viscosity

α thermal diffusivity

ν viscosity coefficient

ρ density of the fluid

τ surface shear stress

γ gyroviscosity coefficient

1 Introduction

The concept of micropolar fluids introduced by Eringen [1] deals with a
class of fluids, which exhibit certain microscopic effects arising from the local
structure and micromotions of the fluid elements. These fluids contain dilute
suspensions of rigid micromolecules with individual motions, which support
stress and body moments and are influenced by spin-inertia. The theory
of micropolar fluid and its extension to thermomicropolar fluids [2] may
form suitable non- Newtonian fluid models which can be used to analyze the
behavior of exotic lubricants [3]-[4], colloidal suspensions or polymeric fluids
[5], liquid crystals [6]-[7], and animal blood [8]. Kolpashchikov et al. [9]
have derived a method to measure micropolar parameters experimentally. A
through review of this subject and application of micropolar fluid mechanics
has been provided by Ariman et al. [10]-[11]. On the otherhand, Rees and
Bassom [12] investigated the Blasius boundary-layer flow of a micropolar
fluid over a flat plate. In this investigation detailed numerical results have
also been presented as an asymptotic analysis for large distances from the
leading edge.

Studies of heat convection in micropolar fluids have been focused on
flat plate [13]-[17] and on a wavy surface [18]. Hossain and Chowdhury
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[19] investigated the effect of material parameters on the mixed convection
flow of thermomicropolar fluid from a vertical as well as a horizontal heat
surface, taking into consideration that the spin-gradient viscosity is non-
uniform. Later, Hossain et al. [20] investigated the problem for a viscous
incompressible thermomicropolar fluid with uniform spin gradient over a flat
plate with a small inclination to the horizontal.

The importance of suction and blowing in controlling the boundary layer
thickness and the rate of heat transfer has motivated many researchers to
investigate its effects on forced and free convection flows. Eichhorn [21]
considered power law variations in the plate temperature and transpiration
velocity and gave similarity solutions of the problem. Sparrow and Cess [22]
discussed the case of constant plate temperature and transpiration velocity
and obtained series expansions for temperature and velocity distributions
in powers of x1/2, where x is the distance in the stream-wise direction mea-
sured from the leading edge. Later, Merkin [23]-[24] and Perikh et al. [25]
presented numerical solutions for free convection heat transfer with blowing
along an isothermal vertical flat plate. Hartnett and Eckert [26] and Sparrow
and Starr [27] reported the characteristics of heat transfer and skin-friction
for pure forced convection with blowing; the former dealt with a non-similar
case. Locally non-similar solutions for convection flow with arbitrary tran-
spiration velocity were obtained by Kao [28]-[29], applying Görtler-Meksin
transformations. Free convection flow along a vertical plate with arbitrary
blowing and wall temperature has also been investigated by Vedhanayagam
et al. [30]. With this understanding Yucel [31] investigated mixed convec-
tion micropolar fluid flow over horizontal plate with uniform surface mass
flux blowing and suction through the surface. Recently, Attia [32] inves-
tigated the steady laminar flow with heat generation of an incompressible
micropolar fluid impinging on a porous flat plate considering a uniform suc-
tion or blowing is applied normal to the plate, which is maintained at a
constant temperature. Most recently, the MHD boundary-layer flow of a
micropolar fluid past a wedge with variable wall temperature has been dis-
cussed by Ishak et al. [33]. In addition to this mixed convection flow of a
micropolar fluid from an isothermal vertical plate has been investigated by
Jena and Mathur [34]

The problem considered here is the boundary layer flow and heat trans-
fer from a permeable flat surface with uniform surface temperature and
uniform surface mass flux. So far the authors concern, this has not been
discussed in the literature. The transformed boundary layer equations are
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Figure 1: The flow configuration and the coordinate system

solved numerically near to and far from the leading edge, using extended
series solutions and asymptotic series solutions. Solutions for intermediate
locations are obtained using the primitive-variable formulation as well as by
the stream-function formulation. In this investigation, we have considered
only the suction case and the effects of the material parameters such as
the vortex viscosity parameter, K, and the transpiration parameter, s, on
the shear stress, the couple-stress and heat transfer are presented graphi-
cally. The results illustrate the different behavior that occurs when these
parameters are varied.

2 Mathematical Formulation

A two-dimensional steady, laminar boundary layer flow of a micropolar fluid
along a permeable vertical flat plate is considered. The temperature of the
ambient fluid is assumed to be uniform at T and that of the surface at
Tw. The coordinate system and the flow configuration are shown in Fig. 1.
Under the usual boundary layer approximation, following Ahmadi [11] and
Rees and Bossom [12], the equations of conservation of mass, momentum
and energy that govern the flow are given as below:

∂ū

∂x̄
+
∂v̄

∂ȳ
= 0, (1)
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ū
∂ū

∂x̄
+ v̄

∂ū

∂ȳ
=
µ+ κ

ρ

∂2ū

∂ȳ2
+
κ

ρ

∂N̄

∂ȳ
, (2)

∂N̄

∂t̄
+ ū

∂N̄

∂x̄
+ v̄

∂N̄

∂ȳ
=

γ

ρj

∂2N̄

∂ȳ2
− 2κ

ρj

(
N̄ +

∂ū

∂ȳ

)
, (3)

∂T̄

∂t̄
+ ū

∂T̄

∂x̄
+ v̄

∂T̄

∂ȳ
= α∇2T̄ . (4)

Here, x̄, ȳ are the coordinates parallel with and perpendicular to the flat
surface, ū− v̄ are the velocity components, p̄ the pressure, N̄ the component
of the gyration vector normal to the x̄ − ȳ plane, and j is the microinertia
density. Furthermore, ρ is the fluid density, µ the dynamic viscosity, κ vortex
viscosity and γ is the spin-gradient viscosity given by γ = (µ + κ/2)j (see
[11]). We follow the work of many recent authors by assuming that j is a
constant and, therefore, it is set equal to a reference value, j0; consequently
the equation for the microinertia density (3) is trivially satisfied.

The boundary conditions to be satisfied by equations (1)-(4) are

ū = 0, v̄ = V0, N̄ = −n∂ū
∂ȳ
, T̄ = T̄w ȳ = 0,

ū = U0, T̄ = T̄∞ ȳ → ∞, (5)

where V0 represents the suction velocity of the fluid through the surface of
the plate. In this study we shall consider only the suction case (rather than
blowing) and therefore V0 is taken as positive throughout. Furthermore, n is
a constant, 0 ≤ n ≤ 1. The case n = 0 corresponds to the strong concentra-
tion of micro-elements. This indicates N̄ = 0 near the wall suggests that the
concentration of the particles is strong enough so that the micro-elements
near the walls are unable to rotate because of this concentration. The case,
n = 1

2 , on the other hand, indicates the vanishing of anti-symmetric part of
the stress tensor and denotes weak concentration. The case n = 1 may be
used for the modeling of turbulent boundary layer flows ([16]).

Now we introduce the following dimensionless dependent and indepen-
dent variables:

x =
x̄

L
, y =

ȳ

L
Re1/2, u =

ū

U0
, v =

v̄

L
Re1/2

N̄ =
U0

L
Re1/2N, θ =

T̄ − T̄∞
T̄w − T̄∞

, s =
V0L

ν
Re−1/2 (6)
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in the above set of equations, where x, y are the non dimensional coordinate
axis, u, v the non dimensional velocity components, L is reference length,
N is the non dimensional angular momentum, and θ is the non dimensional
temperature.

Thus equations (1)-(4) take the following form:

∂u

∂x
+
∂v

∂y
= 0 (7)

u
∂u

∂x
+ v

∂u

∂y
= (1 +K)

∂2u

∂y2
+K

∂N

∂y
(8)

u
∂N

∂x
+ v

∂N

∂y
=

(
1 +

K

2

)
∂2N

∂y2
−K

(
2N +

∂u

∂y

)
(9)

u
∂θ

∂x
+ v

∂θ

∂y
=

1

Pr
∇2θ (10)

In equations (6) Re(= U0L/ν) is the Reynolds number, K(= κ/µ), appeared
in equations (8) and (9), is termed as the vortex viscosity parameter and in
equation (10) Pr(= ν/α) is the Prandtl number. Here we also use j0 = L2

in equation (9).
The boundary conditions now become

u = 0, v = s, N = −n∂u
∂y
, θ = 1 at y = 0,

u = 1, T̄ = 0 as y → ∞. (11)

From application point of view, we need to find the values of shear stress,
τ , the couple-stress,m , and rate of heat transfer, q , at the surface of the
plate, that may be obtained by the relations given below:

τ̄ = (µ+ κ)

(
∂ū

∂ȳ

)
ȳ=0

, m̄ = γ

(
∂N̄

∂ȳ

)
ȳ=0

q̄ = −k
(
∂T

∂ȳ

)
ȳ=0

(12)

Using (6) on the relations (12), we obtain

τ = [1 + (1− n)K]

(
∂u

∂y

)
y=0

, m =

(
1 +

K

2

)(
∂N

∂y

)
y=0

q = −
(
∂θ

∂y

)
y=0

(13)
where τ,m and n are dimensionless shear-stress, the couple-stress and the
rate of heat transfer, respectively, which are defined by

τ =
τ̄LRe−1/2

µU0
, m =

m̄

ρU2
0L

, q =
q̄LRe−1/2

k(Tw − T∞
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3 Solution methodology

To Investigate the present problem we have employed two formulations,
namely, the primitive-variable formulation and the stream-function formu-
lation, method of solution of which are presented in the following sections.

3.1 Primitive-variable transformation

To get the set of equations (7)-(10) in convenient form for integration, we de-
fine the following one parameter group of transformation for the dependent
and the independent variables:

u = U, v = x−1/2(V + sξ), N = x−1/2G, θ = Θ, ξ = x1/2, Y = x−1/2y
(14)

Thus the equations (7)-(10) are transformed to

1

2
ξ
∂U

∂ξ
− 1

2
Y
∂U

∂Y
+
∂V

∂Y
= 0, (15)

1

2
ξU

∂U

∂ξ
+

(
V + sξ − 1

2
Y U

)
∂U

∂Y
= (1 +K)

∂2U

∂Y 2
+K

∂G

∂Y
, (16)

−1

2
UG+

1

2
ξXU

∂G

∂ξ
+

(
V + sξ − 1

2
Y U

)
∂G

∂Y
= (1+K/2)

∂2G

∂Y 2
−Kξ2

(
2G+

∂U

∂Y

)
,

(17)
1

2
ξU

∂Θ

∂Y
+

(
V + sξ − 1

2
Y U

)
∂Θ

∂Y
=

1

Pr

∂2Θ

∂Y 2
. (18)

Appropriate boundary conditions are

U = 0, V = 0, G = −n∂U
∂Y

, Θ = 1 at Y = 0,

U = 1, G = 0, Θ = 0 as Y → ∞. (19)

Once we know the values of U, V,G and Θ and their derivatives, we are at
position to find the values of shear stress,τ the couple-stress,m and rate of
heat transfer,q from the following relations obtained from (13):

τ = [1 + (1− n)K] ξ−1

(
∂U

∂Y

)
Y=0

,

m =

(
1 +

K

2

)
ξ−2

(
∂G

∂Y

)
Y=0

, (20)
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q = −ξ−1

(
∂Θ

∂Y

)
Y=0

.

3.2 Stream function formulation

To get the set of equations (7)-10) in convenient form for integration, we de-
fine the following one parameter group of transformation for the dependent
and the independent variables:

ψ = x1/2(f(ξ, Y ) + sξ), N = x−1/2g(ξ, Y ), θ = h(ξ, Y )

ξ = x1/2, Y = x−1/2y (21)

Here Y is the pseudo-similarity variable and ψ is the stream function that
satisfies equation (7) and is defined by

u =
∂ψ

∂y
, v = −∂ψ

∂y
. (22)

Equations (19), (21) and (22) thus reduce to

(1 +K)f ′′′ +
1

2
ff ′′ +Kg′ + sξf ′′ =

1

2
ξ

(
f ′
∂f ′

∂ξ
− f ′′

∂f

∂ξ

)
, (23)

(1+K/2)g′′+
1

2
(fg′+gf ′)−Kξ2(2g+f ′′)+sξg′ = 1

2
ξ

(
f ′
∂g

∂ξ
− g′

∂f

∂ξ

)
, (24)

1

Pr
h′′ +

1

2
fh′ + sξh′ =

1

2
ξ

(
f ′
∂h

∂ξ
− h′

∂f

∂ξ

)
. (25)

Boundary conditions take the form

f(ξ, 0) = f ′(ξ, 0) = 0, g(ξ, 0) = −nf ′′(ξ, 0), h(ξ, 0) = 1,

f ′(ξ, 0) = 1, g(ξ, 0) = 0, h(ξ, 0) = 0. (26)

In these equations, primes denote differentiation of the functions with re-
spect to Y . Here solution of the set of equations (23)-(25) is obtained by
implicit finite difference method together with the Keller-box elimination
technique (also known as Keller box method), introduced by Keller and Ce-
beci [[35] and described in more detail in Cebeci and Bradshaw [36]. In this
case, the expressions for the shear stress, the couple-stress and rate of heat
transfer given in (19) become

τ = [1 + (1− n)] ξ−1f ′′(ξ, 0),
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m =

(
1 +

K

2

)
ξ−2g′(ξ, 0), (27)

q = −ξ−1hg′(ξ, 0).

3.3 Asymptotic solutions

Solutions for small ξ

Near the leading edge, or equivalently for small ξ, we expand the functions
f, g and h in powers of ξ as given below:

f(ξ, Y ) =
∞∑
i=0

ξifi(Y ), g(ξ, Y ) =
∞∑
i=0

ξigi(Y ), h(ξ, Y ) =
∞∑
i=0

ξihi(Y ) (28)

Substituting these into equations (23)-(25) and then equating the terms of
like powers of ξ to zero, we get the following pairs of ordinary differential
equations for the functions fi, gi and hi:

(1 +K)f ′′′0 +
1

2
f0f

′′
0 +Kg′0 = 0,

(1 +K/2)g′′0 +
1

2
(f0g

′
0 + g0f

′
0) = 0,

1

Pr
h′′0 +

1

2
fh′0 = 0 (29)

f0(0) = f ′0(0) = 0, g0(0) = −nf ′′0 (0), h0(0) = 1,

f ′0(∞) = 1, g0(∞) = 0, h0(∞) = 0. (30)

The higher order equations, for i > 1, are as follows:

(1 +K)f ′′′i + sf ′′i−1 +Kg′i =
1

2

l∑
r=0

(
rf ′rf

′
i−r − (1 + r)f ′rf

′′
i−r

)
,

(1+K/2)g′′i +sg
′
i−1−K(2gi−2+f

′′
i−2) =

1

2

l∑
r=0

{
(r − 1)grf

′
i−r − (1 + r)frg

′
i−r

}
,

(1 +K/2)h′′i + sh′i−1 =
1

2

l∑
r=0

{
rhi−rf

′
r − (1 + r)frh

′
i−r

}
. (31)
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fi(0) = f ′i(0) = 0, gi(0) = −nf ′′i (0), hi(0) = 0,

f ′i(∞) = 0, gi(∞) = 0, hi(∞) = 0. (32)

for i = 1, 2, . . . .

In the above equations the functions f0, g0 and h0 are the well-known
free convection similarity solutions for flow around a constant temperature
semi-infinite vertical plate and the functions fi, gi and hi (i = 1, 2, 3, . . . )
are effectively first and higher order corrections to the flow due to the effect
of the transpiration of the fluid through the surface of the plate, Further
the equations for each i ≥ 1) are linear, but coupled, and may be found by
pair-wise sequential solution. These pair of equations has been integrated
using an implicit Runge-Kutta-Butcher (Butcher [37]) initial value solver
together with the iteration scheme of Nachtsheim and Swigert [38]. In the
present investigation, solutions of 10 sets of equations have been obtained.

The solution of the above equations enables the calculation of the various
flow parameters near the leading edge, such as the values of shear stress, τ ,
the couple-stress, m, and rate of heat transfer, q. Using the relation given
in (27), the quantities τ , m and q can now be calculated, respectively, from
the following expressions:

τ = [1 + (1− n)K] ξ−1
∞∑
i=0

ξif ′′i (0)

m =

(
1 +

K

2

)
ξ−2τ =

(
1 +

K

2

)
ξ−1

∞∑
i=0

ξig′i(0) (33)

q = −ξ−1τ =

(
1 +

K

2

)
ξ−1

∞∑
i=0

ξih′i(0)

Solutions for large ξ

In this section attention has been given to the solution of equations (23)-
(25) when ξ is large. The order of magnitude analysis of various terms in
(23)-(25) shows that the largest terms are f ′′′ and ξf ′′ in (23), g′′ and ξf ′

in (24), and h′′ and ξh′ in (25). In the respective equations both the terms
have to be balanced in magnitude and the only way to do this is to assume
that Y be small and hence derivatives are large. Given that h = O(1) as
ξ → ∞, it is essential to find appropriate scaling for f and Y . On balancing
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f ′′′ and ξf ′′ in (23), it is found that Y = O(ξ−1) and f = O(ξ−1) as ξ → ∞.
Therefore the following transformations are introduced:

f = ξ−1F (ξ, η), g = ξG(ξ, η), h = H(ξ, η), η = ξY. (34)

Equations (23)-(25) together with the transformations given in (34) then
become

(1 +K)F ′′′ +KG′ + sF ′′ =
1

2
ξ−1

(
F ′∂F

′

∂ξ
− F ′′∂F

∂ξ

)
, (35)

(1 +K/2)G′′ −K(2G+ F ′′) + sG′ =
1

2
ξ−1

(
F ′∂G

∂ξ
−G′∂F

∂ξ

)
, (36)

1

Pr
H ′′ + sH ′ =

1

2
ξ−1

(
F ′∂H

∂ξ
−H ′∂F

∂ξ

)
. (37)

For sufficiently large ξ, we can write the above equations as follows

(1 +K)F ′′′ +KG′ + sF ′′ = 0, (38)

(1 +K/2)G′′ −K(2G+ F ′′) + sG′ = 0, (39)

1

Pr
H ′′ + sH ′ = 0. (40)

Boundary conditions take the form

F (ξ, 0) = F ′(ξ, 0) = 0, G(ξ, 0) = −nF ′′(ξ, 0), H(ξ, 0) = 1,

F ′(ξ,∞) = 1, G(ξ,∞) = 0, H(ξ,∞) = 0. (41)

The various flow parameters such as the shear stress, the couple-stress and
rate of heat transfer may be calculated from the following relations:

τ = [1 + (1− n)K]F ′′(ξ, 0),

m =

(
1 +

K

2

)
G′(ξ, 0), (42)

q = −H ′(ξ, 0).

Numerical values of τ , m and q thus obtained are compared with that ob-
tained from primitive variable formulation through figures 2 and 3.
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ξ
0.0 1.0 2.0 3.0 4.0

0.0
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0.6

0.8
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SFF K

f"
(ξ

,0
)

5.0

3.0

1.0

0.5
0.3
0.1

n =1

(b)

(a) n = 0

ξ
0.0 1.0 2.0 3.0 4.0

0.0

0.2

0.4

0.6

0.8
PVF

SFF K

f"
(ξ

,0
)

5.0

3.0

1.0

0.5
0.3
0.1

n =1

(b)

(b) n = 1

Figure 2: Development of wall shear stress f ′′(ξ, 0) as a function of ξ for
various values of K.

4 Results and discussion

Numerical computation were carried out mainly for fluid having a Prandtl
number, Pr = 10.0 while the value of the vortex viscosity parameter, K =
0.0, 2.0 and 5.0 and the transpiration parameter, s = 0.5, 1.5 and 3.0.

Representative numerical values of X−1/2g′(100, 0) obtained from the
present integration of equation (23) are entered into the Table 1 for com-
parison with those of Rees and Bossom [12].
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ξ
0.0 0.5 1.0 1.5 2.0

0.0

0.1

0.2

0.3

0.4
K

PVF

SFF

0.1

0.5

1.0

3.0
5.0

(a)

g’
(ξ

,0
)

(a)

ξ
0.0 0.5 1.0 1.5 2.0

0.20

0.30

0.40

0.50

0.60

0.70 K

PVF

SFF

5.0

3.0

1.0
0.5
0.1

(b)

g’
(ξ

,0
)

(b)

Figure 3: Development of change of the gyration component at the wall,
g′(ξ, 0) as a function of ξ

Table 1
Numerical values of X−1/2g′ at X = 100 and
Y = 0 for n = 0 and different values of K

K Rees et al. [12] present
0.1 -0.06895 -0.06908
0.3 -0.1050 -0.10518
0.5 -0.1211 -0.12124
1.0 -0.1354 -0.13555
3.0 -0.1285 -0.12859
5.0 -0.1145 -0.11455
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From this table it may be seen that the present solutions are in excellent
agreement with Rees and Bossom [12]. Further, throughout figures 2 to 5
the solid lines represent solutions from primitive variable formulation (PVF)
and the dotted are from stream-function formulation (SFF).

In Figs 2 and 3 we have shown a comparison between the stream-function
formulation and the primitive-variable formulation of the variations of both
the shear stress and of the rate of change of the gyration component at the
solid boundary with considering s = 0.0, Pr = 10.0 and a range of values
of K with n fixed. The agreement between these formulations is seen to be
extremely good. We further observe that these figures are exactly similar to
that of Rees et al. [12].

A comparison between the results obtained by the stream-function for-
mulation and the primitive-variable formulation is shown in Figs 4 and 5.
From the figures, it is evident that there is an excellent agreement between
these two results, which is expected. Hence rest of the results presented
and discussed here is based on primitive-variable formulation. In Fig.6, we
depict the values of local shear stress, τ , the local heat transfer, q, at the
surface and the distribution of the local couple-stress, m, in the boundary
layer for different values of the vortex viscosity parameter K (= 0.0, 2.0
and 5.0) while the Prandtl number, Pr = 10, the transpiration parame-
ter, s = 1.0, and the temperature gradient parameter, n = 0.5. In these
figures the curves marked by solid, broken and dotted curves represent re-
spectively, the results obtained by the finite difference method, the series
solution method and the asymptotic method. From these figures it may be
seen that an increase in the value of the vortex viscosity parameter K leads
to an increase in the value of the local shear stress, the local heat transfer
and the local couple-stress. We further observe that for any selected value
of the vortex viscosity parameter K, values of the shear stress, heat transfer
and the couple-stress reach the respective asymptotic values smoothly. The
heat transfer also reaches its asymptotic values at smaller ξ; whereas the
shear stress and the couple-stress does so at comparatively larger value of
ξ. We further observe that as the value of K increases, the shear stress,
the heat transfer and the couple-stress reach their asymptotic values faster.
Finally, it may be concluded that the values of the shear stress, the heat
transfer and the couple-stress obtained by the three methods are in excellent
agreement with each other when the value of K is large. The effect of the
transpiration parameter, s, on the local shear stress, the heat transfer and
the couple-stress are presented graphically in Fig.7.
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Figure 4: The surface shear stress, τ , the couple-stress, m, and the heat
transfer, q, for n = 0.5,K = 0.5, P r = 10.0 and for various values of s.
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Figure 5: The surface shear stress, τ , the couple-stress, m, and the heat
transfer, q, for n = 0.5,K = 0.5, P r = 10.0 and for various values of s.
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Figure 6: The surface shear stress, τ , the couple-stress, m, and the heat
transfer, q, for n = 0.5, s = 1.0, P r = 10.0 and for various values of K.
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Figure 7: The surface shear stress, τ , the couple-stress, m, and the heat
transfer, q, for n = 0.5,K = 0.5, P r = 10.0 and for various values of s.



Boundary layer flow and heat transfer in a micropolar... 421

It is observed from these figures that an increase in the value of s increases
the value of the shear stress, the heat transfer and the couples-tress. We also
observe that for any selected value of s, values of the shear stress, the heat
transfer and the couple-stress tend to their respective asymptotic values. As
the value of s increases, the shear stress, the heat transfer and the couple-
stress reach their asymptotic values faster In this case we also found that
the results from the three methods are in excellent agreement.

5 Conclusions

In the present study we have investigated the effects of the vortex viscosity
parameter, K, and the transpiration parameter, s, on laminar mixed con-
vection boundary layer flow of a micropolar fluid past a vertical permeable
flat plate. The governing boundary layer equations have been simulated
employing four distinct methods, namely: (1) the series solution for small
ξ ; (2) the asymptotic solution for large ξ; (3) the implicit finite difference
method together with Keller-box scheme; and the primitive-variable formu-
lation method for all ξ. Results are expressed in terms of the surface shear
stress, the couple-stress and heat transfer rate. From the present investiga-
tion it may be concluded that:

(i) Agreement between the solutions of the stream-function formulation and
the primitive-variable formulation found to be excellent.

(ii) An increase in the value of the vortex viscosity parameter, K, leads to
an increase in the value of the surface shear stress, the heat transfer rate
and the local couple-stress.

(iii) Value of the surface shear stress, the heat transfer rate or the couple-
stress increases due to increase in the rate of increase in fluid injection
parameter s.
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Protok graničnog sloja preko propusne ravne ploče i prenos
toplote u mikropolarnoj tečnosti

Izvršena je analiza u cilju proučavanja smičućeg napona, naponskog sprega i
karakteristika prenosa toplote laminarne mešovite konvekcije graničnog sloja
preko izotermalne propusne ploče protokommikropolarnog fluida. Vladajuće
neslične jednačine graničnog sloja su analizirane korǐsćenjem (i) rešenja
pomoću reda za male ξ, (ii) asimptotskog rešenja za velike ξ i (iii) pris-
tupa sa primitivnim promenljivim, a formulacija strujne funkcije se koristi
za sve ξ. Efekti materijalnih parametara, kao što su, parametar vrtložne
viskoznosti, K, i parametar transpiracije, s, na smicajni napon, naponski
spreg i prenos toplote su istraženi. Za slaganje izmedju rešenja dobijenih iz
formulacije strujnom funkcijom i formulacije sa primitivnim promenljivim
je utvrdjeno da je odlično.

doi:10.2298/TAM1303403H Math. Subj. Class.: 74A35; 74A60; 76D10.


	622-Hossain-Naslov
	TAM 622 MM Hossain

