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Abstract

This paper analyzes the reflection and refraction of plane wave inci-
dences at the interface between magnetoelectroelastic (MEE) and liquid
media. The MEE medium is assumed to be transversely isotropic and
the liquid medium to be nonviscous. Three cases, i.e., the coupled quasi-
pressure wave incidence from the MEE medium, the coupled quasi-shear
vertical wave incidence from the MEE medium, and the pressure wave
incidence from the liquid medium, are discussed. The expressions of
reflection and transmission coefficients varying with the incident angle
are obtained. This investigation would be useful to the MEE acoustic
device field.
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1 Introduction

Acoustic wave behavior at the interface between piezoelectric and liquid me-
dia is a significant topic in some fields such as acoustic device design and
non-destructive evaluation. This problem has been studied for both viscous
and nonviscous liquids, and some valuable solutions have been found. It
is difficult to embrace all the related references and therefore just some of
them are mentioned herein. Noorbehesht et al [1] studied the reflection and
transmission of plane elastic waves at the boundary between piezoelectric
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material and water. Shana et al [2] theoretically investigated the reflection
of obliquely incident shear horizontal bulk acoustic waves at the interface
between a piezoelectrc crystal and a viscous conductive liquid. Nayfeh et al
[3, 4] derived the analytical expressions for the reflection and transmission
coefficients (RTCs) for the fluid-loaded piezoelectric plate and fluid-loaded
piezoelectric half-space in order to study the influence of piezoelectricity on
such waves. Recently, the reflection and transmission of plane waves from a
fluid-porous piezoelectric solid interface was studied by Vashishth et al [5],
and the variation of leaky wave velocity with the frequency was also studied.

Composites consisting of piezoelectric and piezomagnetic phases have at-
tracted considerable interests because the composites have a remarkable mag-
netoelectric effect due to coupling between the two phases [6], and there also
exist some literatures (or earlier works) on the reflection and refraction prob-
lem. For example, Pang et al [7] analyzed the reflection and refraction of
a plane wave incidence at the interface between piezoelectric and piezomag-
netic media, and later Pang et al [8] analyzed a case with an imperfectly
bonded interface. Chen et al [9] investigated the RTCs of oblique incident
plane waves to a multilayered system of piezomagnetic and/or piezoelectric
materials. Besides the layered piezoelectric/piezomagnetic structures, the
magnetoelectric effect can also be obtained by the use of homogeneous mag-
netoelectroelastic (MEE) solids which could avoid interface defects, and some
studies on wave motion were also conducted. For instantce, Wu et al [10] in-
vestigated propagation of symmetric and antisymmetric Lamb waves in an
infinite MEE plate. Feng et al [11] investigated the propagation properties
of Stoneley waves between two MEE half planes, while 25 sets of magneto-
electric interface conditions were adopted. The 12 velocities of surface wave
propagation in MEE materials were obtained in explicit forms by Melkumyan
[12]. To the best knowledge of the author, however, reflection and transmis-
sion of incident waves at the interface between MEE and liquid media have
not been investigated so far, and this could be encountered in the design
of underwater acoustic devices. Therefore, the engineering-oriented problem
motivates the present study.

In this paper, the reflection/refraction at a plane interface between MEE
and liquid media is investigated for three different types of wave incidences.
The RTCs are derived by solving a linear algebraic system of equations. This
investigation is supposed to be helpful to the applications of MEE acoustic
devices.
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2 Basic equations and formulation

We shall discuss the reflection and refraction phenomena of plane waves at
the interface between MEE and liquid half-spaces. Let the x-axis be taken
along the interface and z-axis along the direction pointing vertically upward.
The lower half-space is taken as the MEE medium (z > 0), while the elas-
tic constants, piezoelectric coefficients, piezomagnetic coefficients, dielectric
permittivities, magnetic permeabilities, magnetoelectric coefficients and den-
sity are denoted by cijkl, eij , fij , εij , µij , gij , ρ with i, j, k, l=1, 2, 3
respectively. The upper half-space is taken as the liquid medium (z¿0) with
density ρ′. There exist three cases with this plane problem, viz., (1) incident
quasi-pressure (QP) wave in the solid, (2) incident quasi-shear vertical (QSV)
wave in the solid, (3) incident pressure (P) wave in the liquid. The complete
geometry is shown in Fig.1.

According to the quasistatic approximation and linearity assumption, the
governing equations with electricity and magnetism, in the absence of body
force, are expressed as:

σij,j = ρüi

Di,i = 0 (1)

Bi,i = 0

where ui, σij , Di and Bi are the displacement, stress, electric displacement
and magnetic induction, respectively. The dot denotes time differentiation
and the comma denotes space-coordinate differentiation; the repeated index
in the subscript implies summation.

The constitutive equations of an MEE medium are:

σij = cijklγkl − ekijEk − fkijHk

Di = eiklγkl + εilEl + gilHl (2)

Bi = fiklγkl + gilEl + µilHl

where γij = 0.5 (ui,j + uj,i), Ei = −φ,i, Hi = −ψ,i, φ and ψ are the electric
potential and magnetic potential respectively.

Note that for the plane strain problem considered here all quantities are
independent of the y coordinate. The MEE medium is assumed transversely
isotropic and its electric and magnetic poling directions all parallel to the
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z-axis. The liquid medium is assumed nonviscous. The constitutive equation
of the MEE medium, i.e., Eq. (2), can be given in the two dimensional form:

σxx = c11ux,x + c13uz,z + e31φ,z + f31ψ,z

σzz = c13ux,x + c33uz,z + e33φ,z + f33ψ,z

σxz = c44 (ux,z + uz,x) + e15φ,x + f15ψ,x

Dx = e15 (ux,z + uz,x)− ε11φ,x − g11ψ,x

Dz = e31ux,x + e33uz,z − ε33φ,z − g33ψ,z

Bx = f15 (ux,z + uz,x)− g11φ,x − µ11ψ,x

Bz = f31ux,x + f33uz,z − g33φ,z − µ33ψ,z

(3)

Here, we shall allow the subscripts x, y and z to be synonymous with
1, 2 and 3, respectively. Substituting Eq. (3) into (1), the magneto-electro-
mechanical coupling governing equations for the MEE medium in terms of
mechanical displacements, electric potential and magnetic potential can be
given as:

c11ux,xx + c44ux,zz + (c13 + c44)uz,xz+
(e31 + e15)φ,xz + (f31 + f15)ψ,xz = ρüx

(c13 + c44)ux,xz + c44uz,xx + c33uz,zz+
e15φ,xx + e33φ,zz + f15ψ,xx + f33ψ,zz = ρüz

(e31 + e15)ux,xz + e15uz,xx + e33uz,zz−
ε11φ,xx − ε33φ,zz − g11ψ,xx − g33ψ,zz = 0

(f31 + f15)ux,xz + f15uz,xx + f33uz,zz − g11φ,xx−
g33φ,zz − µ11ψ,xx − µ33ψ,zz = 0

(4)

3 Solution and boundary conditions

Let us assume the harmonic solution as [13]:(
u⃗(n), φ(n), ψ(n)

)
=

(
A(n), B(n), C(n)

)
d⃗(n) exp

(
iη(n)

)
(5)

where different values of the index n serve to label the various types of waves
that occur when an incident wave is reflected and refracted, d⃗(n) is the unit
vector of motion, η(n) is defined as:

η(n) = k(n)
(
x⃗ · p⃗(n) − c(n)t

)
(6)
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where p⃗(n) is the unit propagation vector and x⃗ is the coordinate vector,

A(n), B(n), C(n) the unknown amplitudes, c(n) the phase velocity and k(n)

the wave number. Substituting Eq.(5) into Eq.(4) and eliminating electric
potential and magnetic potential, one can obtain the Christoffel’s equation of
the MEE medium; then with a specified direction, the phase velocities could
be numerically solved from the secular equation [9].

To demonstrate the solution procedure, we consider the case of an inci-
dent QSV wave in the solid as an example. By assigning n=0, there is an
incident QSV wave propagating with velocity cT

(0) in the MEE medium and
it makes an angle θ(0) with the z-axis. For the two dimensional problem,
the corresponding displacement components, electric potential and magnetic
potential could be expressed from Eq.(5) as

u
(0)
x = −A(0) cos θ(0) exp

[
ik(0)

(
x sin θ(0) + z cos θ(0) − c

(0)
T t

)]
u
(0)
z = A(0) sin θ(0) exp

[
ik(0)

(
x sin θ(0) + z cos θ(0) − c

(0)
T t

)]
φ(0) = B(0) exp

[
ik(0)

(
x sin θ(0) + z cos θ(0) − c

(0)
T t

)]
ψ(0) = C(0) exp

[
ik(0)

(
x sin θ(0) + z cos θ(0) − c

(0)
T t

)] (7)

Then, we postulate the following reflected and refracted waves to satisfy
the problem as:

(1) Reflected wave. There is a QP wave propagating with velocity c1L
in the MEE medium and it makes an angle θ(1) with the z-axis. The dis-
placement components, electric potential and magnetic potential could be
expressed as:

u
(1)
x = A(1) sin θ(1) exp

[
ik(1)

(
x sin θ(1) − z cos θ(1) − c

(1)
L t

)]
u
(1)
z = −A(1) cos θ(1) exp

[
ik(1)

(
x sin θ(1) − z cos θ(1) − c

(1)
L t

)]
φ(1) = B(1) exp

[
ik(1)

(
x sin θ(1) − z cos θ(1) − c

(1)
L t

)]
ψ(1) = C(1) exp

[
ik(1)

(
x sin θ(1) − z cos θ(1) − c

(1)
L t

)] (8)

(2) Reflected wave. There is a QSV wave propagating with velocity cT
(2)

in the MEE medium and it makes an angle θ(2) with the z-axis. The dis-
placement components, electric potential and magnetic potential could be
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expressed as:

u
(2)
x = A(2) cos θ(2) exp

[
ik(2)

(
x sin θ(2) − z cos θ(2) − cT

(2)t
)]

u
(2)
z = A(2) sin θ(2) exp

[
ik(2)

(
x sin θ(2) − z cos θ(2) − cT

(2)t
)]

φ(2) = B(2) exp
[
ik(2)

(
x sin θ(2) − z cos θ(2) − cT

(2)t
)]

ψ(2) = C(2) exp
[
ik(2)

(
x sin θ(2) − z cos θ(2) − cT

(2)t
)] (9)

(3) Refracted wave. There is a P wave propagating with velocity c
(3)
L

in the liquid medium and it makes an angle θ(3) with the z-axis. The elec-
tric potential and magnetic potential are neglected, and the displacement
components could be expressed as:

u
(3)
x = A(3) sin θ(3) exp

[
ik(3)

(
x sin θ(3) + z cos θ(3) − c

(3)
L t

)]
u
(3)
z = A(3) cos θ(3) exp

[
ik(3)

(
x sin θ(3) + z cos θ(3) − c

(3)
L t

)] (10)

Owing to the coupled mechanical, electric and magnetic fields, we should
find the relations between the amplitudes. The magnetoelectric boundary
condition falls into four types:

(1) electrically open and magnetically shorted D
(n)
z = B

(n)
z = 0;

(2) electrically open and magnetically open D
(n)
z = ψ

(n)
z = 0;

(3) electrically shorted and magnetically open

φ(n)
z = ψ(n)

z = 0; (11)

(4) electrically shorted and magnetically shorted φ
(n)
z = B

(n)
z = 0.

Herein, the first type is taken to illustrate the analysis procedure.
Substituting Eqs.(7), (8), (9) and (10) into (11), one may get the relations:

B(0) = ξ(0)A(0), B(1) = ξ(1)A(1), B(2) = ξ(2)A(2),

C(0) = ζ(0)A(0), C(1) = ζ(1)A(1), C(2) = ζ(2)A(2)
(12)

where the definitions of ξ(n) and ζ(n) are given in Appendix A.
Apparently, the phase velocities and wave numbers satisfy the relations:

c
(0)
T k(0) = c

(1)
L k(1) = c

(2)
T k(2) = c

(3)
L k(3) = ω (13)
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where ω represents the circular frequency.
The directions of the propagation vectors are given by the Snell’s law, so

that

θ(0) = θ(2),
sin θ(0)

c
(0)
T

=
sin θ(1)

c
(1)
L

=
sin θ(3)

c
(3)
L

(14)

The appropriate mechanical boundary conditions at the interface between
the two half-spaces (z=0) can be described as: (1) the normal component of
displacement is continuous; (2) the tangential stresses are zero because the
liquid is nonviscous; (3) the normal stress is equal and opposite to the acoustic
overpressure δp in the liquid. Mathematically, these boundary conditions
could be written as:

u
(0)
z + u

(1)
z + u

(2)
z = u

(3)
z

σ
(0)
xz + σ

(1)
xz + σ

(2)
xz = 0

σ
(0)
zz + σ

(1)
zz + σ

(2)
zz = −δp = −Zu̇(3)z = −iωZu(3)z

(15)

where Z = ρ′c
(3)
L is the acoustic impedance of the liquid.

Using Eq.(12) and substituting Eqs.(7), (8), (9), (10) into Eq.(15), and
after some algebraic manipulation, one may get

a11
A(1)

A(0) + a12
A(2)

A(0) + a13
A(3)

A(0) = m1

a21
A(1)

A(0) + a22
A(2)

A(0) + a23
A(3)

A(0) = m2

a31
A(1)

A(0) + a32
A(2)

A(0) + a33
A(3)

A(0) = m3

(16)

where aij and mi (i, j = 1, 2, 3) are defined in Appendix B.

From Eq.(16), the RTCs of displacement, viz. A(1)

A(0) ,
A(2)

A(0) ,
A(3)

A(0) , can be
readily solved by the use of Cramer’s rule. For brevity they are not given
here.

Keeping Eq.(12) in mind, then one may get the RTCs of electric potential
and magnetic potential as:

B(1)

B(0)
=
A(1)

A(0)
· ξ

(1)

ξ(0)
,
B(2)

B(0)
=
A(2)

A(0)
· ξ

(2)

ξ(0)
,
C(1)

C(0)
=
A(1)

A(0)
· ζ

(1)

ζ(0)
,
C(2)

C(0)
=
A(2)

A(0)
· ζ

(2)

ζ(0)

(17)
Now we have the solutions for all incident angles smaller than the critical

angle θcr which is implicitly expressed as

sin θcr =
cT

(0)

c
(1)
L

(18)
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The critical angle could be numerically solved with Christoffel’s equation
of the MEE medium.

If θ(0) > θcr, the reflected QP wave is a wave propagating along the
x-axis, and the amplitude decays with the depth into the MEE medium
(decreasing z). For this surface-type wave, the component cos θ(1) becomes

i(c
(1)
L /c

(0)
T )

√
sin2 θ(0) − (c

(0)
T /c

(1)
L )2 [13], and the displacement components,

electric potential and magnetic potential are rewritten as:

u
(1)
x = A(1) exp

(
k(0)z

√
sin2 θ(0) − (c

(0)
T /c

(1)
L )2

)
exp

[
ik(0)

(
sin θ(0)x− c

(0)
T t

)]
u
(1)
z = 0

φ(1) = B(1) exp

(
k(0)z

√
sin2 θ(0) − (c

(0)
T /c

(1)
L )2

)
exp

[
ik(0)

(
sin θ(0)x− c

(0)
T t

)]
ψ(1) = C(1) exp

(
k(0)z

√
sin2 θ(0) − (c

(0)
T /c

(1)
L )2

)
exp

[
ik(0)

(
sin θ(0)x− c

(0)
T t

)]
(19)

To obtain the RTCs when θ(0) > θcr, the modified aij , ξ
(n) and ζ(n) are

defined in Appendices A and B.
Since some of the RTCs become complex numbers beyond the critical

angle [14], we merely show the magnitude ratio of the RTCs and the phase
changes are not discussed, so we employ the following expressions:

Z=
1

∣∣∣A(1)

A(0)

∣∣∣ , Z=
2

∣∣∣A(2)

A(0)

∣∣∣ , Z=
3

∣∣∣A(3)

A(0)

∣∣∣ ,
Z=
4

∣∣∣B(1)

B(0)

∣∣∣ , Z=
5

∣∣∣B(2)

B(0)

∣∣∣ , Z=
6

∣∣∣C(1)

C(0)

∣∣∣ , Z=
7

∣∣∣C(2)

C(0)

∣∣∣ ; (20)

On the other hand, if an incident QP wave originates from the solid, or
an incident P wave originates from the liquid medium, the corresponding
displacement components are

u
(0)
x = A(0) sin θ(0) exp

[
ik(0)

(
x sin θ(0) + z cos θ(0) − c

(0)
L t

)]
u
(0)
z = A(0) cos θ(0) exp

[
ik(0)

(
x sin θ(0) + z cos θ(0) − c

(0)
L t

)] (21)

In the former case the electric potential and magnetic potential could be
expressed as

φ(0) = B(0) exp
[
ik(0)

(
x sin θ(0) + z cos θ(0) − c

(0)
L t

)]
ψ(0) = C(0) exp

[
ik(0)

(
x sin θ(0) + z cos θ(0) − c

(0)
L t

)] (22)



Reflection and refraction of plane waves ... 435

(a) QSV wave incidence in the solid

(b) QP wave incidence in the solid.

(c) P wave incidence in the liquid

Figure 1: Reflected and refracted waves at the boundary between MEE and
liquid media.
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While in the latter case the electric potential and magnetic potential are
neglected. The RTCs for the two cases can be evidently obtained by following
the above procedure.

4 Conclusion

Exact solutions are obtained for the reflection and refraction of plane waves
at the interface between linear MEE material and liquid. The solutions im-
plicitly contain the cases for elastic material/liquid [14], piezoelectric mate-
rial/liquid [1] and piezomagnetic material/liquid.

Appendix A

ξ(n) and ζ(n) in Eq. (12) are given as:

ξ(0) = ξ(2) =
sin θ(0) [(e31 − e33)µ33 + (f33 − f31) g33]

g233 − ε33µ33
,

ξ(1) =
cos θ(1) (e33µ33 − f33g33) + sin θ(1) tan θ(1) (e31µ33 − f31g33)

g233 − ε33µ33
, (A1)

ζ(0) = ζ(2) =
sin θ(0) [(f31 − f33) ε33 + (e33 − e31) g33]

g233 − ε33µ33
,

ζ(1) =
cos θ(1) (f33ε33 − e33g33) + sin θ(1) tan θ(1) (f31ε33 − e31g33)

g233 − ε33µ33
.

ξ(n) and ζ(n) in Eq. (12) modified in terms of Eq. (19) are given as:

ξ(1) =
i sin θ(0) (f31g33 − e31µ33)√

sin2 θ(0) − (c
(0)
T /c

(1)
L )2

(
g233 − ε33µ33

)

ζ(1) =
i sin θ(0) (e31g33 − f31ε33)√

sin2 θ(0) − (c
(0)
T /c

(1)
L )2

(
g233 − ε33µ33

) , (A2)
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Appendix B

aij and mi in Eq. (16) are given as:

a11 = − cos θ(1),

a12 = sin θ(2),

a13 = − cos θ(3),

a21 = 2 cos θ(1)c44 − e15ξ
(1) − f15ζ

(1),

a22 =
cos 2θ(2)c44 − sin θ(2)

(
e15ξ

(2) + f15ζ
(2)

)
sin θ(2)

,

a23 = 0,

(B1)

a31 = sin θ(1)c13 +
cos θ(1)c33 − e33ξ

(1) − f33ζ
(1)

tan θ(1)
,

a32 =
sin θ(2) (c13 − c33)− e33ξ

(2) − f33ζ
(2)

tan θ(2)
,

a33 =
Zc

(3)
L

sin θ(3)
.

m1 = − sin θ(0),

m2 = −
cos 2θ(0)c44 − sin θ(0)

(
e15ξ

(0) + f15ζ
(0)

)
sin θ(0)

,

m3 =
sin θ(0) (c13 − c33)− e33ξ

(0) − f33ζ
(0)

tan θ(0)
.

(B2)

aij and mi in Eq.(16) modified in terms of Eq.(19) are given as:

a11 = 0,

a21 = − sin θ(0)
(
e15ξ

(1) + f15ζ
(1)

)
+ i csc θ(0)c44

√
sin2 θ(0) − (c

(0)
T /c

(1)
L )2,

a31 = c13 − i csc θ(0)
(
e33ξ

(1) + f33ζ
(1)

)√
sin2 θ(0) − (c

(0)
T /c

(1)
L )2.

(B3)
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Odbijanje i prelamanje ravanskog talasa na granici izmedju
magnetoelektroelastične i tečne sredine

Analizira se prelamanje ravanskog upadnog talasa na granici izmedu magne-
toelektroelastične ( MEE ) i tečne sredine. Za MEE sredinu pretpostavlja se
da je poprečno izotropna dok je tečna sredina po pretpostavci neviskozna. Tri
slučaja, tj., (1) spregnuti skoro - pritiskujući talas dolazeći od MEE sredine,
(2) spregnuti skoro - smičući vertikalni talas dolazeći od MEE sredine, kao i
(3) pritiskujući talas dolazeći od tečne sredine, se razmatraju. Izrazi za ko-
eficijente refleksije i prenosa se variraju sa upadnim uglom. Ovo istraživanje
bi moglo biti korisno za MEE uredjaje sa akustičnim poljem.
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