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Abstract

In the present paper, a non-Newtonian third-grade fluid flow is considered
in an annulus partially filled by a porous medium of very small permeabil-
ity. An analytical solution by the perturbation series method is obtained
for velocity and temperature fields, assuming Reynolds’s model to ac-
count for the variation of fluid viscosity with temperature. The effects
of various pertinent parameters on the flow field, temperature field and
entropy generation number are obtained and discussed graphically.

Keywords: Annulus, third-grade fluid, entropy generation number, per-
meability and porous medium

1 Introduction

A study on heat transfer in flow through pipes and annular pipes is impor-
tant from both engineering and scientific points of view. Pipes and concentric
annular pipes are often encountered in several engineering and industrial en-
gineering applications such as oil well drilling, lubricants in journal bearing,
cooling channels in gas turbine blades and nuclear reactors, physiology, various
heat exchangers, and transpirations cooling.

Berman [1] obtained closed form solution for a Newtonian fluid flow through
a porous annulus. The extensions of this flow problem to non-Newtonian flu-
ids and heat transfer have been investigated, because of their applications in
biophysical flows, artificial dialysis, oil field operations, food preservation, tech-
nology and industry, by several researchers such as Kapur and Goel [2], Mishra
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and Roy [3,4], Hecht [5], Sharma and Singh [6], and Bhatnagar et al. [7]. Wang
and Chukwu [8] studied unsteady axial couette flow of non-Newtonian power-
law fluids in concentric annulus. Yürüsoy and Pakdemirli [9] and Yürüsoy [10]
examined flow of a third grade non-Newtonian fluid in a pipe and between
concentric circular cylinders respectively. Erdogan and Imrak [11] investigated
steady flow of a second-grade non-Newtonian fluid through an annulus with
porous boundaries.

The axial flow of Newtonian and non-Newtonian fluids through an annulus
or tube filled or partially filled with a porous medium and the associated heat
transfer have many important applications in cooling and heating systems,
ventilation and air-conditioning systems, nuclear reactors and heat exchang-
ers. Chikh et al. [12] obtained an analytical solution of non-Darcian forced
convection flow through an annular duct which is partially filled with a porous
medium. Demirel and Kahraman [13] studied convective heat transfer effects
in an annular packed bed. Scurtu et al. [14] investigated natural convec-
tion in the annulus between two concentric horizontal cylinders filled with a
fluid-saturated porous medium. A theoretical analysis of heat transfer effects
was investigated by Haji-Sheikh [15] and Minkowycz and Haji-Sheikh [16] in
parallel plates and circular ducts filled with fluid saturated porous medium.
Forced convection flow analysis was conducted by Hooman and Gurgenci [17],
Hooman et al. [18, 19], Kuznetsov et al. [20] in a porous saturated circular
tube. Numerical analysis was conducted by Khanafer et al. [21] of free con-
vection in a horizontal annulus partially filled with a fluid-saturated porous
medium. Al-Zahrani and Kiwan [22] investigated heat transfer effects in the
mixed convection flow between concentric vertical cylinders with porous layers.

Bejan [23] investigated minimization of entropy generation in thermal sys-
tem and explained that this minimization improves the efficiency of a system.
Entropy generation in a Newtonian and non-Newtonian fluid flow in circular
pipe or annulus was examined by Dagtekin et al. [24], Mahmud and Fraser
[25], Mansour and Şahin [26], Pakdemirli and Yilbas [27], Tasnim and Mah-
mud [28], Yilbas et al. [29], Yilmaz [30], Yürüsoy et al. [31], Haddad et al.
[32], Al-Zahranah and Yilbas [33]. Influence of slip conditions on forced con-
vection and on entropy generation in a porous saturated circular channel was
investigated by Chauhan and Kumar [34].

Several fluids used in engineering and industrial processes, such as poly
liquid foams and geological materials, exhibit flow properties that cannot be
explained by Newtonian fluid flow model. One of such material models consists
of a differential-type fluid, namely, third-grade non-Newtonian fluid which can
predict such effects. The objective of this study is to determine the temperature
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and velocity distributions in the annular region of a third-grade fluid flow with
porous layer, and to obtain the rate of heat transfer and entropy generation
number as a function of the pertinent parameters under the assumption of
a steady-state laminar fluid flow, fully developed both thermally and hydro-
dynamically.

2 Formulation of the problem

A non-Newtonian third grade fluid flow through an annular pipe is considered,
where a fluid-saturated porous medium layer of very small permeability is per-
fectly attached to the outer boundary of the annulus as shown in the schematic
diagram (Fig. 1). Radius of inner pipe and outer pipe are taken as r∗1 and
r∗0 respectively and (r∗0 − r∗2) is taken as the thickness of the porous layer. In
the clear fluid region (r∗1 < r∗ < r∗2) constant pressure gradient is applied in
the axial direction. The flow in the porous medium is modeled by Darcy’s law
hence the flow is assumed to be zero in the porous region (r∗2 < r∗ < r∗0) in the
absence of any external pressure gradient and very small permeability of the
porous layer. The inner and outer impermeable boundaries of the annulus are
maintained at a constant temperature tw. Viscosity of the fluid is assumed to
be temperature-dependent.

Figure 1: Schematic diagram of the problem

For the present investigation, we seek velocity and temperature fields in
the following form:

V = w (r) ez, (1)

t1 = t1 (r) , (2)

t2 = t2 (r) . (3)
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The equations which govern the fluid flow are given by

divV = 0, (4)

ρ
DV

Dt
= divT, (5)

where V is the velocity vector; ρ, the fluid density; T , the Cauchy stress tensor;
and, D

Dt ≡
∂
∂t + V.∇, the material time derivative.

The constitutive equation for an incompressible third order fluid is given
by (Rivlin and Ericksen [35])

T = −pI+µA1+α1A2+α2A
2
1+β1A3+β2 [A1A2 +A2A1]+β3

(
trA2

1

)
A1, (6)

where p is the hydrostatic pressure; I, the identity tensor; µ, the coefficient of
viscosity and α1, α2, β1, β2 and β3 are the material constants.

Here, the Rivlin-Ericksen tensors are given by

A1 = L+ LT ,

An =
D

Dt
An−1 +An−1L+ LTAn−1, (n > 1)

and L = ∇V .

Following Fosdick and Rajagopal [36], the material parameters must satisfy

µ ≥ 0, α1 ≥ 0, |α1 + α2| ≤
√

24µβ3, β1 = β2 = 0, β3 ≥ 0. (7)

We assume, in our analysis that the non-Newtonian fluid is thermody-
namically compatible. Thus the Cauchy stress tensor for thermodynamically
compatible third grade fluid reduces to

T = −pI + µA1 + α1A2 + α2A
2
1 + β3

(
trA2

1

)
A1. (8)

The energy equation for the present problem is given by

ρ
dE

dt
= T : L− divq, (9)

where E is the specific internal energy; and q, is the heat flux vector.

Using Fourier’s law, we have

divq = −k

(
1

r

dθ

dr
+

d2θ

dr2

)
(10)
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for the present geometry, where the constant k is the thermal conductivity.

Using equations (1-10) and following Massoudi and Christie [37], for the
fully developed, steady state flow in the clear fluid region (r∗1 < r∗ < r∗2) the
equations of motion of a third-grade fluid with heat transfer are given by

µ∗
(
d2w

dr∗2
+

1

r∗
dw

dr∗

)
+

dµ∗

dr∗
dw

dr∗
+

2β3
r∗

(
dw

dr∗

)2( dw

dr∗
+ 3r∗

d2w

dr∗2

)
=

dp

dz∗
, (11)

k

(
d2t1
dr∗2

+
1

r∗
dt1
dr∗

)
+

(
dw

dr∗

)2
[
µ∗ + 2β3

(
dw

dr∗

)2
]
= 0. (12)

A Darcy model for the fluid flow in the porous layer attached to the outer
boundary of the annulus is used. It is recognized at the outset that for a
typical porous medium whose permeability is very small, the fluid flow in the
porous medium will be small compared to that outside the porous medium.
Thus the main effect of this layer is to introduce slip at the outer boundary
of the annulus and to change the value of the thermal conductivity (effective
thermal conductivity) in the porous medium. Beavers-Joseph [38] slip bound-
ary condition is used to model the interface between the clear fluid and porous
medium.

The flow in the porous layer is assumed to be zero and the energy equation
in the fluid-saturated region (r∗2 < r∗ < r∗0) is given by

k̄

(
d2t2
dr∗2

+
1

r∗
dt2
dr∗

)
= 0. (13)

The corresponding matching and boundary conditions are given by

at r∗ = r∗1; w = 0, t1 = tw,

at r∗ = r∗2; τrz =
−α√
K0

µ∗w, t1 = t2, k
dt1
dr∗

= k̄
dt2
dr∗

, (14)

at r∗ = r∗0; t2 = tw,

where, r∗ and z∗ are radial and axial coordinates respectively; w, the axial
velocity; p, the pressure; µ∗, the viscosity; β3, the non-Newtonian parameter;
t1, the temperature in the clear fluid region; k, the thermal conductivity of the
clear fluid; t2, the temperature in the porous region; k̄, effective thermal con-
ductivity in the porous medium; K0, the permeability of the porous medium;
and α is a constant depending upon the structure of the porous medium.
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By introducing the following non-dimensional quantities

R1 =
r∗1
r∗0

, R2 =
r∗2
r∗0

, r0 =
3r∗0

r∗0 − r∗1
, r1 =

3r∗1
r∗0 − r∗1

, r2 =
3r∗2

r∗0 − r∗1
, r =

3r∗

r∗0 − r∗1
,

v =
w

V0
, θ1 =

t1 − tw
tm − tw

, θ2 =
t2 − tw
tm − tw

, µ =
µ∗

µ0
, K =

9K0

(r∗0 − r∗1)
2 , (15)

the equations (11-14) reduce to the following:

µ

(
d2v

dr2
+

1

r

dv

dr

)
+

dµ

dr

dv

dr
+

Λ

r

(
dv

dr

)2(dv

dr
+ 3r

d2v

dr2

)
= C, (16)

d2θ1
dr2

+
1

r

dθ1
dr

+ Γ

(
dv

dr

)2
[
µ+ Λ

(
dv

dr

)2
]
= 0, (17)

d2θ2
dr2

+
1

r

dθ2
dr

= 0, (18)

and the corresponding matching and boundary conditions:

at r = r1; v = 0, θ1 = 0,

at r = r2;µ
dv

dr
+ Λ

(
dv

dr

)3

=
−α√
K

µv, θ1 = θ2,
dθ1
dr

= φ
dθ2
dr

, (19)

at r = r0; θ2 = 0,

where, V0 is the reference velocity; tm, the mean temperature; Γ = µ0V
2
0 /k(tm − tw),

the Brinkman number; Λ = 18β3V
2
0 /µ0(r

∗
0 − r∗1)

2, the dimensionless non-
Newtonian parameter; C = dp

dz (r
∗
0 − r∗1)

2/9µ0V0, the dimensionless pressure
gradient; and ϕ = k̄/k is the ratio of thermal conductivities.

For the variation of viscosity with temperature, we assume the Reynold’s
model,

µ = exp (−Mθ1) ≈ 1−Mθ1. (20)

Also let Λ = ελ and M = εm, where, ε is the perturbation parameter;
M , the exponential constant for Reynold’s model viscosity; m, the ordered
viscosity parameter; and λ is the ordered non-Newtonian coefficient.

For obtaining an approximate solution of the problem, we apply perturba-
tion series method.

Let us assume
v = v0 + εv1 + ..., (21)

θ1 = θ10 + εθ11 + ..., (22)



Entropy analysis for third-grade fluid flow ... 447

θ2 = θ20 + εθ21 + ..., (23)

and

µ = 1− εmθ10 + .... (24)

Substituting (21-24) into equations (16-19), and equating the coefficients
of ε0, ε1, ... on both sides, the following zeroth and first order equations are
obtained:

d2v0
dr2

+
1

r

dv0
dr

= C, (25)

d2θ10
dr2

+
1

r

dθ10
dr

+ Γ

(
dv0
dr

)2

= 0, (26)

d2θ20
dr2

+
1

r

dθ20
dr

= 0, (27)

d2v1
dr2

+
1

r

dv1
dr

−mθ10

(
d2v0
dr2

+
1

r

dv0
dr

)
]

−m
dθ10
dr

dv0
dr

+
λ

r

(
dv0
dr

)2 [dv0
dr

+ 3r
d2v0
dr2

]
= 0, (28)

d2θ11
dr2

+
1

r

dθ11
dr

+ Γ

[
2
dv0
dr

dv1
dr

+

(
dv0
dr

)2
{
λ

(
dv0
dr

)2

−mθ10

}]
= 0, (29)

d2θ21
dr2

+
1

r

dθ21
dr

= 0, (30)

with the corresponding matching and boundary conditions:

at r = r1; v0 = 0, v1 = 0, θ10 = 0, θ11 = 0,

at r = r2;
dv0
dr

=
−α√
K

v0,
dv1
dr

+ λ

(
dv0
dr

)3

=
−α√
K

v1, (31)

θ10 = θ20, θ11 = θ21,
dθ10
dr

= φ
dθ20
dr

,
dθ11
dr

= φ
dθ21
dr

,

at r = r0; θ20 = 0, θ21 = 0.

The solutions of (25) to (30) subject to the boundary/matching conditions (31)
are determined, and the approximate solutions for velocity and temperature
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profiles are obtained as follows:

v =
Cr2

4
+ a1 log r + a2 + ε

{
b0
r2

+ b1r
2 − b2r

4 − b3r
6 + b4r

2 log r (32)

+ b5 (log r)
2 − b6 (r log r)

2 − b7 (log r)
3 + a7 log r + a8

}
,

θ1 = − Γ

{
C2r4

64
+

Ca1r
2

4
+

a21
2

(log r)2
}
+ a3 log r + a4

+ ε
[
c1r

8 + c2r
6 + r4

{
c3 (log r)

2 + c4 log r + c5

}
(33)

+ r2
{
c6 (log r)

2 + c7 log r + c8

}
+ c9 (log r)

4

+ c10 (log r)
3 + c11 (log r)

2 +
c12
r2

+ a9 log r + a10

]
,

θ2 = a5 log r + a6 + ε {a11 log r + a12} , (34)

where, the constants of integration a1, a2, ...., a12 are reported in the appendix.

2.1 Entropy generation

Following Bejan [23] the dimensionless entropy generation number in the clear
fluid region is given by

Ns =

{
1

(θ1 + θ0)
2

(
dθ1
dr

)2
}

+

{
Γ

1

(θ1 + θ0)

(
dv

dr

)2
[
µ+ Λ

(
dv

dr

)2
]}

, (35)

= Ns1 +Ns2, (36)

where Ns =
S′′′
gen

S′′′
G

; S′′′
G = 9k

(r∗0−r∗1)
2 ; θ0 = tw

(tm−tw) ; Ns1, is the term due to

heat generation; and Ns2, is the term due to viscous dissipation.

Since the flow in the porous region is assumed to be zero, entropy generation
in this region is only due to heat transfer, and it is given by

Ns′ =
φ

(θ2 + θ0)
2

(
dθ2
dr

)2

. (37)

3 Discussion

Non-Newtonian third-grade fluid flow is considered in an annulus with a porous
layer of very small permeability attached to the outer boundary, and the heat
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transfer effects are investigated on this flow in annulus by taking temperature-
dependent viscosity of the fluid. Entropy analysis of the annular flow is also car-
ried out because the thermodynamic irreversibility can be quantified through
entropy generation, and its minimization improves system efficiency as ex-
plained by Bejan [23] and many other researchers.

Fig.2 shows the variations of velocity profiles along the radial distance
in the annulus for different values of the non-Newtonian parameter (Λ) and
the viscosity coefficient parameter (M). It is seen that the magnitude of the
maximum velocity in the annulus increases by reducing the non-Newtonian
parameter. Velocity profiles are also compared with that of Newtonian fluid
(Λ = 0) case. Velocity is enhanced in the annulus with the increase in the
value of the viscosity coefficient parameter (M). Because the parameter M
increases by reducing the viscosity, hence the rate of fluid strain enhances near
boundaries and maximum velocity increases in the annulus. Fig. 3 shows the
velocity profiles along the radial distance in the annulus for different values
of the permeability parameter (K) and the Brinkman number (Γ). It is seen
that there is a slip at the outer porous interface, which increases by increasing
the permeability parameter. Consequently the flow in the annulus enhances
with the increase in K value, and the maximum velocity moves towards the
outer porous boundary in the annulus. As Brinkman number increases the
maximum velocity in the annulus also increases.

Fig.4 and 5 show the variation of temperature field in the annulus for differ-
ent values of the non-Newtonian parameter (Λ), viscosity coefficient parameter
(M), Brinkman number (Γ), thermal conductivity ratio (φ) and the permeabil-
ity parameter (K). It is found that the temperature in the annulus increases
with reducing the value of non-Newtonian parameter. It is seen that the tem-
perature gradient decays gradually due to the diffusion of heat transfer in the
middle part of the annulus. The effect of the Brinkman number or viscosity
coefficient parameter is to increase temperature in both clear fluid and porous
region of the annulus. However, conductivity ratio (φ) reduces it in the an-
nulus. Further it is seen that the maximum value of the temperature shifts
to the inner side in the annulus as φ increases. The permeability (K) of the
porous layer significantly influences temperature distribution in the annulus. It
is noticed that by increasing the value of K, temperature in the porous region
and near it decreases while temperature increases in the region near the inner
cylinder.
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Figure 2: Velocity profiles vs r for C = −1, Γ = 1, α = 0.1, K = 0.0001, ε =
0.1, φ = 1.5.

Figure 3: Velocity profiles vs r for C = −1, Λ = 0.1, α = 0.1, M = 1, ε =
0.1, φ = 1.5
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Figure 4: Temperature profiles vs r for C = −1, Γ = 1, α = 0.1, K =
0.0001, ε = 0.1

Figure 5: Temperature profiles vs r for C = −1, Λ = 0.1, α = 0.1, M =
1, ε = 0.1, φ = 1.5
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Table 1: Temperature gradient at r = 1 for C = −1, α = 0.1, ε = 0.1.

Γ Λ M ϕ K (dθ1/dr)r=1

1 0.1 1 1.5 0.0001 1.409573

0.5 0.1 1 1.5 0.0001 0.634602

0.3 0.1 1 1.5 0.0001 0.363917

0.1 0.1 1 1.5 0.0001 0.115691

1 0.05 1 1.5 0.0001 1.474032

1 0 1 1.5 0.0001 1.538491

1 0.1 0.5 1.5 0.0001 1.269204

1 0.1 0 1.5 0.0001 1.128834

1 0.1 1 2 0.0001 1.343574

1 0.1 1 2.5 0.0001 1.303563

1 0.1 1 1.5 0.00001 1.351478

1 0.1 1 1.5 0 1.325552

The variation of rate of heat transfer is reported in Table 1 for different
values of the pertinent parameters. It is found that increasing the thermal
conductivity ratio (φ) leads to a reduction in the rate of heat transfer at the
inner cylindrical boundary of the annulus. It also decreases with increasing
non-Newtonian parameter (Λ) value, while the permeability (K) of the porous
layer enhances the rate of heat transfer at the inner boundary of the annulus.
The same effect is observed with the viscosity coefficient parameter (M) and
the Brinkman number (Γ).

Entropy generation number (Ns1)due to heat transfer in the annulus for
different values of the pertinent parameters is plotted against radial distance
in Fig.6 (a & b). It is seen that the entropy generation number (Ns1) is
very low in the middle part of the annulus because of gradually varying small
temperature gradient there, and attains high values in the vicinity of the inner
cylindrical boundary, porous interface and in the porous layer attached to the
outer boundary of the annulus. It is more pronounced in the region near the
inner boundary of the annulus because of high temperature gradient there.
Further it decays sharply near the annular boundaries because the high rate
of heat transfer takes
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(a)

(b)

Figure 6: Ns1 vs r for C = −1, Λ = 0.1, K = 0.0001, φ = 1.5, θ0 = 1, α =
0.1, ε = 0.1.
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(a)

(b)

Figure 7: Ns2 vs r for C = −1, M = 1, Λ = 0.1, φ = 1.5, θ0 = 1, α =
0.1, ε = 0.1.
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place in this part of the annulus. It is seen that the viscosity coefficient param-
eter (M) as well as the Brinkman number (Γ) enhances the entropy generation
number (Ns1) in the annulus and also in the porous layer.

Fig.7 (a & b) shows entropy generation number (Ns2) due to fluid friction
for different values of the permeability parameter (K) and the Brinkman num-
ber (Γ). It attains high values near the annulus boundaries because of high
fluid strain there. It is seen that Ns2 decreases close to the inner boundary
by increasing the permeability (K) of the porous layer, then increases sharply
in the nearby region. However it decreases near the porous interface in the
annulus by K. The effect of Brinkman number (Γ) is to increase Ns2, and it
attains high values particularly in the region near to the inner boundary of the
annulus.

Figs.8-11 depict the total entropy generation number (Ns) at different lo-
cations (r = 1, r = 2, r = 3.5) in the annulus. It is seen that increasing the
value of the non-Newtonian parameter (Λ) lowers sharply the total entropy
generation number (Ns) particularly close to the inner boundary region; how-
ever the effect is insignificant at the outer porous interface (r = 3.5) and for
the central region (r = 2). The viscosity coefficient parameter (M) increases
the total entropy generation number at both radial locations (r = 1, r = 3.5)
and the effect is insignificant at the location corresponding to r = 2. The effect
of the permeability is insignificant on the entropy generation number (Ns) at
the locations r = 2 andr = 3.5, however, Ns enhances slightly as K increases
at r = 1. Brinkman number (Γ) enhances significantly the entropy generation
number at all locations except in the region corresponding to r = 2.

Conclusions

The conclusions of the present study are as follows:

1. Effect of the non-Newtonian parameter (Λ) is to decrease the flow in
the annulus, while viscosity coefficient parameter(M), or permeability
parameter(K), or Brinkman number (Γ) enhances flow.

2. Effect of parameter Λ is to decrease temperature while parameter Γ or
M enhances it. Increasing value of K, temperature in the porous and
nearly region decreases and near inner boundary it increases.

3. Effect of the parameters Λ or φ, is to reduce rate of heat transfer at the
inner boundary of the annulus while parameter K, or M , or Γ enhances
it.
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Figure 8: Ns vs Λfor C = −1, Γ = 1, M = 1, K = 0.0001, φ = 1.5, θ0 =
1, α = 0.1, ε = 0.1.

Figure 9: Ns vs M for C = −1, Γ = 1, Λ = 0.1, K = 0.0001, φ = 1.5, θ0 =
1, α = 0.1, ε = 0.1.
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Figure 10: Ns vs K for C = −1, Γ = 1, M = 1, Λ = 0.1, φ = 1.5, θ0 =
1, α = 0.1, ε = 0.1.

Figure 11: Ns vs Γ for C = −1, Λ = 0.1, M = 1, K = 0.0001, φ = 1.5, θ0 =
1, α = 0.1, ε = 0.1.
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4. The parameter M or Γ increases the entropy generation number due
to heat transfer (Ns1) in the annulus. Effect of the parameter Γ is
to increase the entropy generation number due to fluid friction (Ns2),
while the parameter K reduces it near the porous interface. Further,
effect of parameter Λ is to decrease the total entropy generation number
(Ns) while M or Γ enhances it. However, the effect of the permeability
parameter is insignificant.
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Entropijska analiza za fluid trećeg reda sa viskozitetom
zavisnim od temperature u anulusu delimično ispunjenom

poroznom sredinom

Posmatra se tečenje nenjutnovske tečnosti trećeg reda sa viskozitetom zavisnim
od temperature u anulusu delimično ispunjenom poroznom sredinom veoma
malog permeabiliteta. Dobijeno je analitičko rešenje metodom perturbacionim
redom za polja brzine i temperature predpostavljajući Rejnoldsov model za
varijaciju viskoznosti fluida sa temperaturom. Efekti raziličitih relevantnih
parametara na tečenje fluida, polje temperature i broj generacije entropije su
dobijeni i grafiķi diskutovani.
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